
1	Supplementary Materials: Lower urban humidity moderates outdoor heat
2	stress
3	T. Chakraborty ^{1,2,*} , Z. S. Venter ³ , Y. Qian ² , X. Lee ^{1,*}
4	
5	¹ School of the Environment, Yale University, New Haven, CT, USA
6	² Pacific Northwest National Laboratory, Richland, WA, USA
7	³ Terrestrial Ecology Section, Norwegian Institute for Nature Research—NINA, 0349 Oslo,
8	Norway
9	
10 11	Corresponding Authors: T. Chakraborty (<u>tc.chakraborty@pnnl.gov</u>) and X. Lee (xuhui.lee@yale.edu)
12 13	

Fig. S1 Diurnal composites of citizen weather station data. Diurnal composites of Netatmo **a** air temperature (T_a), **b** relative humidity (RH), and **c** heat index (HI₀) from all stations in rural buffers considered in the present study. The upper and lower lines represent the 75% and 25% percentile of the measurements, and the middle line is for the mean from all the observations by hour of the day. The dashed horizontal line in sub-figure **c** shows the threshold below which the simplified equation is used for calculating HI₀ (Eq. 1 in Methods).

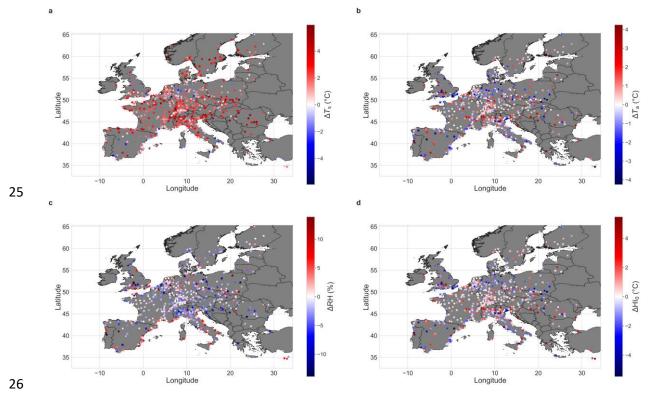


Fig. S2 Urban-rural differences for Terra day across urban clusters in Europe. Spatial distribution of urban-rural differences in **a** surface temperature (ΔT_s), **b** air temperature (ΔT_a), **c** relative humidity (Δ RH), and **d** heat index (Δ HI₀) for urban clusters in Europe with sufficient data corresponding to the Terra satellite daytime overpass (\approx 10:30 am local time) for July 2019. The stars represent clusters with statistically significant (p<0.01) differences between the urban and rural values.

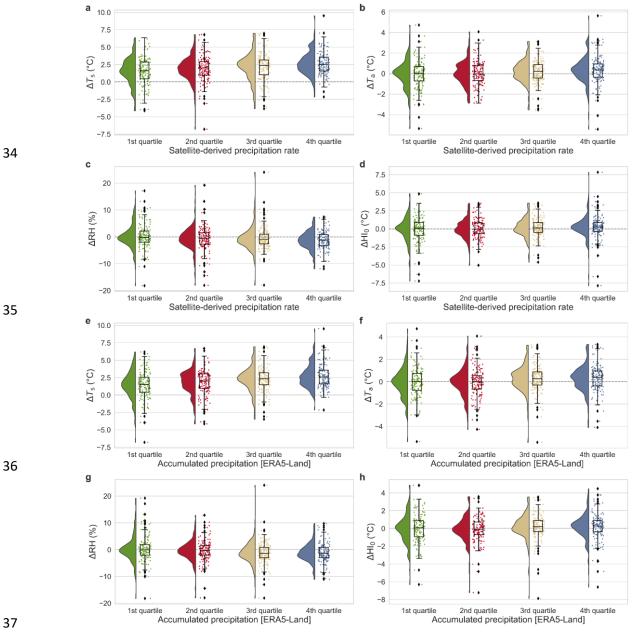
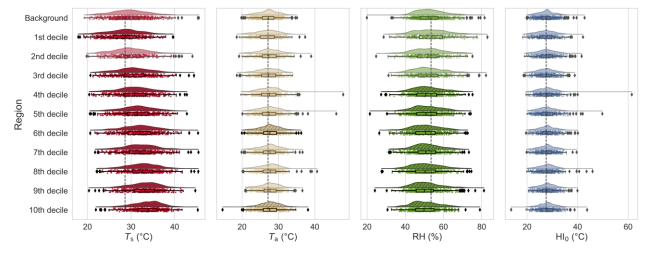



Fig. S3 Urban-rural differences in variables for precipitation quartiles. Distributions of urban-38 39 40

rural differences in **a** surface temperature (ΔT_s), **b** air temperature (ΔT_a), **c** relative humidity (Δ RH), and **d** heat index (Δ HI₀) corresponding to the Aqua daytime overpass (\approx 1:30 pm local time) for quartiles of satellite-derived precipitation rate in July 2019. Sub-figures e, f, g, and h are 41 similar, but use quartiles of accumulation precipitation in July 2019 from the ERA5-Land 42 reanalysis dataset. 43

Fig. S4 Intra-urban gradients of variables for Terra day. Distributions of composite mean surface temperature (T_s), air temperature (T_a), relative humidity (RH), and heat index (HI₀) in each of the T_s decile neighborhoods across the urban clusters considered. The vertical dashed lines mark the median of the distribution of the corresponding variable in the 1st T_s decile neighborhood. Decile neighborhoods that show statistically significant (p<0.01) differences from the background reference values are shown using hatched density plots and darker shades. All calculations are for the Terra daytime overpass (\approx 10:30 am local time) for July 2019.

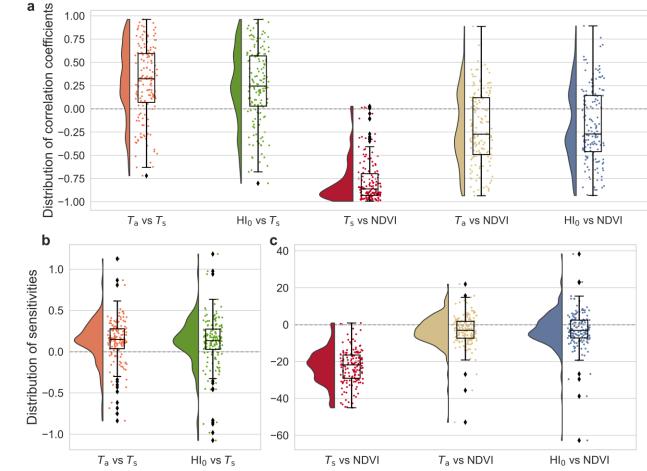
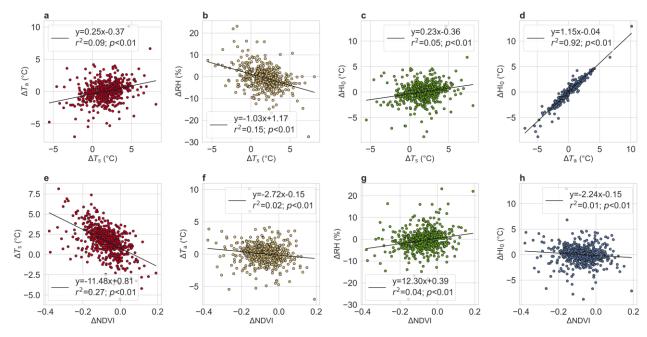
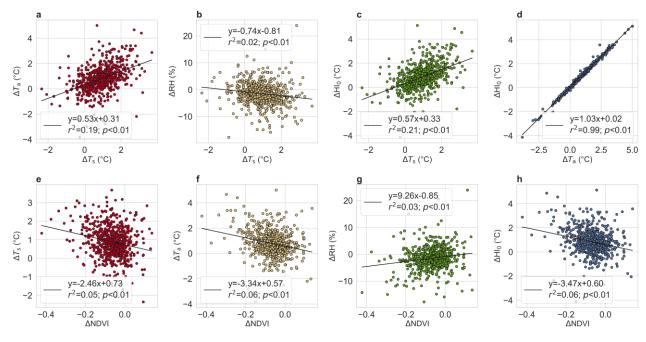




Fig. S5 Associations between variables within urban clusters for Terra day. Sub-fig a shows the 56 distributions of the correlation coefficient (r) of linear regressions between surface temperature 57 (T_s) and air temperature (T_a) , T_s and heat index (HI₀), Normalized Difference Vegetation Index 58 59 (NDVI) and T_s , NDVI and T_a , and NDVI and HI₀, respectively, for urban clusters in Europe. Each data point is from a linear regression between pairs of variables for a cluster. The linear 60 61 regressions have a sample size of ten (one for each T_s decile neighborhood). Sub-fig **b** and **c** show the distributions of the slope of those linear regressions, or the sensitivity of one variable to unit 62 63 changes in the other. The unit of sensitivity in Sub-fig c is °C per unit NDVI. All calculations are for the Terra daytime overpass (\approx 10:30 am local time) for July 2019. 64

65

Fig. S6 Associations between variables across urban clusters for Terra day. Associations between urban-rural differences in **a** surface temperature (ΔT_s) and air temperature (ΔT_a), **b** ΔT_s and relative humidity (Δ RH), **c** ΔT_s and heat index (Δ HI₀), **d** ΔT_a and Δ HI₀, **e** Normalized Difference Vegetation Index (Δ NDVI) and ΔT_s , **f** Δ NDVI and ΔT_a , **g** Δ NDVI and Δ RH, and **h** Δ NDVI and Δ HI₀ across urban clusters in Europe. Each dot represents one cluster and the lines and equations of best fit are shown. All calculations are for the Terra daytime overpass (\approx 10:30 pm local time) for July 2019.

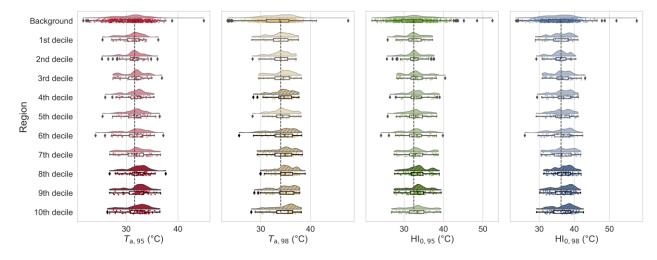
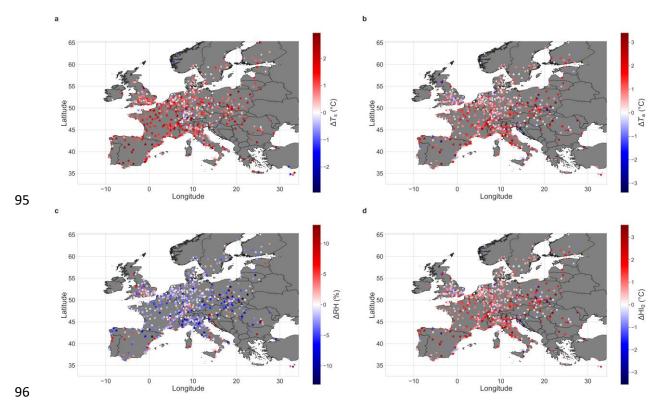


Fig. S7 Associations between variables across urban clusters for Aqua night. Associations between urban-rural differences in **a** surface temperature (ΔT_s) and air temperature (ΔT_a), **b** ΔT_s and relative humidity (ΔRH), **c** ΔT_s and heat index (ΔHI_0), **d** ΔT_a and ΔHI_0 , **e** Normalized Difference Vegetation Index ($\Delta NDVI$) and ΔT_s , **f** $\Delta NDVI$ and ΔT_a , **g** $\Delta NDVI$ and ΔRH , and **h** $\Delta NDVI$ and ΔHI_0 across urban clusters in Europe. Each dot represents one cluster and the lines and equations of best fit are shown. All calculations are for the Aqua nighttime overpass ($\approx 1:30$ am local time) for July 2019.

76

75


85

87

Fig. S8 Intra-urban gradients of extremes. Distributions of the 95th and 98th percentile of hourly

- 89 observations in July 2019 of air temperature (T_a) and heat index (HI₀) in each of the T_s decile
- 90 neighborhoods across the urban clusters considered. The vertical dashed lines mark the median of
- 91 the distribution of the corresponding variable in the 1st T_s decile neighborhood. Decile
- 92 neighborhoods that show statistically significant (p<0.01) differences from the background
- 93 reference values are shown using hatched density plots and darker shades.

Fig. S9 Urban-rural differences for Aqua night across urban clusters in Europe. Spatial distribution of urban-rural differences in **a** surface temperature (ΔT_s), **b** air temperature (ΔT_a), **c** relative humidity (Δ RH), and **d** heat index (Δ HI₀) for urban clusters in Europe with sufficient data corresponding to the Aqua satellite nighttime overpass (\approx 1:30 am local time) for July 2019. The stars represent clusters with statistically significant (p<0.01) differences between the urban and rural values.

- 103
- 104

- **Table S1.** P-values of the Mann Whitney two-sample statistic between the observations
- 106 corresponding to the Aqua daytime overpass (\approx 1:30 pm local time) in the background reference
- region and the observations in the decile neighborhoods for surface temperature (T_s) , air
- 108 temperature (T_a), relative humidity (RH), US National Weather Service heat index (HI₀), four
- additional estimates of heat index (HI₁ to HI₄), and the humidex for July 2019.

Group	Ts	Ta	RH	HI ₀	HI_1	HI ₂	HI3	HI4	Humidex
1 st decile	< 0.01	0.16	0.25	0.26	0.21	0.24	0.21	0.18	0.23
2 nd decile	0.25	0.23	0.06	0.25	0.27	0.25	0.32	0.23	0.39
3 rd decile	0.01	0.43	0.38	0.39	0.40	0.38	0.42	0.41	0.46
4 th decile	< 0.0001	0.38	< 0.01	0.74	0.72	0.74	0.94	0.43	0.91
5 th decile	< 0.0001	0.09	< 0.01	0.25	0.23	0.24	0.34	0.1	0.43
6 th decile	< 0.0001	0.01	< 0.01	0.05	0.05	0.05	0.09	0.02	0.14
7 th decile	< 0.0001	0.02	< 0.0001	0.13	0.11	0.13	0.24	0.03	0.37
8 th decile	< 0.0001	< 0.01	< 0.0001	0.05	0.04	0.05	0.11	< 0.01	0.20
9 th decile	< 0.0001	< 0.0001	< 0.0001	< 0.001	< 0.001	< 0.001	< 0.01	< 0.0001	< 0.01
10 th decile	< 0.0001	< 0.0001	< 0.0001	< 0.01	< 0.01	< 0.01	< 0.01	< 0.0001	0.03

- **Table S2.** P-values of the Mann Whitney two-sample statistic between the observations
- 113 corresponding to the Terra daytime overpass (\approx 10:30 am local time) in the background reference
- region and the observations in the decile neighborhoods for surface temperature (T_s) , air
- temperature (T_a), relative humidity (RH), US National Weather Service heat index (HI₀), four
- estimates of heat index (HI₁ to HI₄), and the humidex for July 2019.

Group	Ts	Ta	RH	HI ₀	HI_1	HI ₂	HI ₃	HI4	Humidex
1 st decile	< 0.0001	0.27	0.27	0.25	0.27	0.29	0.26	0.28	0.25
2 nd decile	0.49	0.41	0.08	0.55	0.58	0.49	0.70	0.44	0.80
3 rd decile	< 0.001	0.85	0.06	0.86	0.82	0.89	0.60	0.91	0.49
4 th decile	< 0.0001	0.28	< 0.01	0.50	0.58	0.48	0.81	0.32	0.98
5 th decile	< 0.0001	0.44	< 0.001	0.81	0.86	0.74	0.85	0.52	0.70
6 th decile	< 0.0001	< 0.01	< 0.0001	0.04	0.04	0.04	0.09	< 0.01	0.16
7 th decile	< 0.0001	0.05	< 0.001	0.15	0.17	0.14	0.33	0.07	0.49
8 th decile	< 0.0001	0.03	< 0.0001	0.13	0.14	0.12	0.31	0.04	0.47
9 th decile	< 0.0001	0.01	< 0.0001	0.06	0.07	0.06	0.18	0.02	0.29
10 th decile	< 0.0001	< 0.01	< 0.0001	0.03	0.04	0.02	0.09	< 0.01	0.16
	-								

Table S3. P-values of the Mann – Whitney two-sample statistic between the 95th and 98th121percentile of hourly observations in July 2019 of air temperature (T_a) and US National Weather122Service heat index (HI₀) for CWSs in the background reference region and the corresponding123observations in the decile neighborhoods.

			HI0,98
0.48	0.36	0.63	0.41
0.40	0.34	0.54	0.69
0.06	0.05	0.15	0.18
0.01	< 0.01	0.04	0.02
0.05	0.03	0.13	0.11
0.03	< 0.01	0.11	0.06
0.01	< 0.01	0.06	0.03
< 0.001	< 0.0001	< 0.01	< 0.01
< 0.001	< 0.0001	< 0.01	< 0.01
< 0.001	< 0.0001	0.01	< 0.01
	0.40 0.06 0.01 0.05 0.03 0.01 <0.001 <0.001	$\begin{array}{cccc} 0.40 & 0.34 \\ 0.06 & 0.05 \\ 0.01 & < 0.01 \\ 0.05 & 0.03 \\ 0.03 & < 0.01 \\ 0.01 & < 0.01 \\ < 0.001 & < 0.0001 \\ < 0.001 & < 0.0001 \end{array}$	$\begin{array}{cccccccc} 0.40 & 0.34 & 0.54 \\ 0.06 & 0.05 & 0.15 \\ 0.01 & < 0.01 & 0.04 \\ 0.05 & 0.03 & 0.13 \\ 0.03 & < 0.01 & 0.11 \\ 0.01 & < 0.01 & 0.06 \\ < 0.001 & < 0.0001 & < 0.01 \\ < 0.001 & < 0.001 & < 0.01 \end{array}$

- **Table S4.** P-values of the Mann Whitney two-sample statistic between the observations
- 127 corresponding to the Aqua nighttime overpass (\approx 1:30 am local time) in the background reference
- region and the observations in the decile neighborhoods for surface temperature (T_s) , air
- temperature (T_a), relative humidity (RH), US National Weather Service heat index (HI₀), four
- additional estimates of heat index (HI₁ to HI₄), and the humidex for July 2019.

Group	Ts	Ta	RH	HI ₀	HI_1	HI ₂	HI3	HI4	Humidex
1 st decile	< 0.0001	0.27	0.12	0.21	0.21	0.20	0.16	0.26	0.14
2 nd decile	0.14	0.42	0.01	0.46	0.48	0.30	0.57	0.43	0.61
3 rd decile	0.79	0.15	< 0.01	0.18	0.18	0.21	0.25	0.16	0.28
4 th decile	0.01	0.02	< 0.01	0.02	0.02	0.56	0.02	0.02	0.03
5 th decile	< 0.001	0.01	< 0.01	0.01	0.01	0.38	0.02	0.01	0.02
6 th decile	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.45	< 0.0001	< 0.0001	< 0.0001
7 th decile	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.63	< 0.0001	< 0.0001	< 0.0001
8 th decile	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.56	< 0.0001	< 0.0001	< 0.0001
9 th decile	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.47	< 0.0001	< 0.0001	< 0.0001
10 th decile	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	0.02	< 0.0001	< 0.0001	< 0.0001