
1. Introduction
Earth observation (EO) science and remote sensing have undergone a radical transformation in the last two 
decades. Satellite platforms, sensors, and instruments with ever greater spatial, temporal, and radiometric resolu-
tions have been launched into orbit, computational processing capabilities have expanded, and increased informa-
tion accessibility has connected users across the globe (Denis et al., 2017). One of the largest transformations has 
been the shift to open-source projects (e.g., Quantum GIS, GRASS GIS, GDAL/OGR, GeoTools, Orfeo ToolBox, 
PostGIS) and cloud-based cyberinfrastructures (e.g., Google Earth Engine, Google Colab, Pangeo, Microsoft 
Planetary Computer, Open Data Cube, JupyterHub, ArcGIS Online) for storing, processing or analyzing EO 
data (Gomes et al., 2020; Gorelick et al., 2017; Kopp et al., 2019; Kumar & Mutanga, 2018; Liang et al., 2018; 
Wagemann et  al.,  2022). These cloud-computing environments represent high-throughput technological 
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Plain Language Summary Earth observation (EO) data are used to understand the social, 
environmental, and climatic causes and consequences of changes to the Earth. Greater diversity in EO 
data sources and access points, the evolution of web-based and collaborative platforms for analysis and 
communication, and the growth of the global user community are each changing how EO science is undertaken 
and communicated. These advances are also changing how scientists and educators teach students. Over the 
past few years, a group of EO educators and researchers met and identified three central pillars for teaching 
today's EO students within this new paradigm. The pillars of cloud-based teaching EO science are: (a) 
fundamental concepts, (b) ethical considerations, and (c) engagement. These pillars can guide not only EO 
students but also researchers and practitioners to make valid, valuable, and engaging contributions to EO 
science.
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infrastructures that  enable big data processing using multiple remote physical servers, databases, and computers 
over the internet (Wagemann et al., 2022; Yang et al., 2019). To take advantage of these, many scientists using 
geospatial datasets have moved their research workflows from their local computers or servers to a cloud-based 
platform (Crowley & Cardille, 2020; Wagemann et al., 2021). Additionally, the wide adoption of open-access 
data policies enables access to freely available geospatial datasets (e.g., Gentemann et  al.,  2021; Gorelick 
et al., 2017; Woodcock et al., 2008; Zhu et al., 2019). Open-access data policies are now the norm for civilian 
satellite programs from the National Aeronautics and Space Administration (NASA), United States Geological 
Survey (USGS), European Space Agency (ESA), Brazil's National Institute for Space Research (INPE), and 
Japan Aerospace Exploration Agency (JAXA). The now-intertwined development of open-access EO science 
and cloud-based infrastructures have also driven a broader shift in EO science toward automated workflows and 
novel machine learning and deep learning algorithms to support sustained, near-real-time monitoring of a diver-
sity of processes such as deforestation, natural hazards, and agricultural production (Hey et al., 2009; Kennedy 
et al., 2018; Wulder et al., 2018). These advances have disrupted how researchers and other users undertake EO 
science by providing rapid access to an ever-greater diversity of interoperable EO datasets at the global scale 
(Aikat et al., 2017; Denis et al., 2017).

The paradigm shift of EO to cloud-based technologies is affecting how EO science is taught (e.g., Dordevic 
et  al.,  2016; Gibson & Ifenthaler,  2017; Hsu et  al.,  2018; Lisle,  2006; Mejía Ávila et  al.,  2021; Minner & 
Micklow, 2016; Monet & Greene, 2012; Patterson, 2007; Ratinen & Keinonen, 2011; Sawaguchi, 2018; Xiang 
& Liu, 2017; Zhong et al., 2009), and is prompting educators to have conversations about how to teach the next 
generation of scientists and professionals to use EO to address pressing socio-ecological challenges (e.g., Baig 
et al., 2020; Gibson & Ifenthaler, 2017; Luan et al., 2020). In this commentary article, we provide an overview 
of three major pillars we have identified for teaching and learning EO science in the cloud in the era of big data 
(Figure 1). Our thoughts initially emerged from conversations between EO science educators, researchers, and 
practitioners at the 2019 Geo for Good summit in Mountain View, California, USA (https://sites.google.com/
earthoutreach.org/geoforgood19/). These ideas were then refined in the years that have followed through annual 
Geo for Good summits, surveys to the community of educators and students, virtual meet-ups, a virtual speaker 
series, and a forthcoming open-access textbook (www.eefabook.org). The conversations have only become more 
relevant given the shift to virtual learning environments during the global COVID-19 pandemic.

2. Pillar 1: EO Science in the Cloud Is Built on Fundamentals
The fundamentals of remote sensing and geospatial science must remain central to EO science curricula so that 
students understand the (ever-growing) opportunities of EO technologies as well as their limitations. Following 
a revised Bloom's Taxonomy, fundamentals in EO can be broken up into procedural and conceptual domains 
of knowledge (Forehand,  2005). In EO science, procedural fundamentals include core workflows like raster 
analyses (e.g., Haralick et al., 1973; Tomlin, 2013), calculation of spectral indices (e.g., Crist & Kauth, 1986; 
Huete et al., 2002; Tucker, 1979; Xu, 2006), multi-temporal change detection (e.g., Coppin et al., 2004; Gómez 
et al., 2016; Kennedy et al., 2009), and image classification and validation (e.g., Foody, 2002; Goldblatt et al., 2018; 
Stehman, 1997; Stehman & Czaplewski, 1998). Conceptual domains include understanding how sensors capture 
imagery and radiometric concepts like radiance and reflectance (Masek et al., 2020; USGS, 2022).

Retaining a focus on EO fundamentals when teaching in the cloud can be challenging since the scope of applica-
tions and the diversity of data sets that we engage in our teaching have broadened considerably. Through cloud 
computing platforms, students can access data with fine spatial (e.g., 1-m National Agriculture Imagery Program 
[NAIP] imagery (USDA FSA, N.D)) and temporal (e.g., sub-weekly Sentinel-2 imagery (ESA, N.D)) resolutions at 
national or global scales, often within hours or days of collecting the imagery. Combining data across multiple EO 
sensors (i.e., multi-sensor fusion) and their derived products is increasingly the norm, as is the uptake of EO data 
by students and researchers in fields as diverse as fire ecology (Crowley et al., 2019a, 2019b), conservation biol-
ogy (Evans & Malcom, 2021; Xie et al., 2019), archeology (Firpi, 2016; Liss et al., 2017), and epidemiology (Li 
et al., 2022). Additionally, a growing collection of open-access resources (e.g., Clinton, 2018; Prados et al., 2019; 
UCGIS, 2016) can support students in learning remote sensing fundamentals from educators and researchers from 
diverse backgrounds, including geographic locations, career stages, and scientific expertise (Table 1).

As an increasing number of platforms, sensors, and derived data products become available, teaching the inherent 
tradeoffs between data sets is increasingly essential (Botje et al., 2022; Kennedy et al., 2009; Mahood et al., 2021). 
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Students must be able to leverage the concepts, theories, and principles fundamental to EO sciences to contextual-
ize analyses performed with cloud-based computing in the big data era. For example, a product with high global 
accuracy may have a much lower accuracy at the local or regional level due to differences in biome, weather, land 
use, or the training data used to generate the product (Chakraborty et al., 2021; Haywood et al., 2004). Knowing 
how to determine the influence of atmospheric, topographic, and illumination conditions on image quality and 
assessing the necessity of potential corrections are crucial for students to understand a data set's suitability for 
a given application (Van Den Hoek et al., 2021; Young et al., 2017). Improved technology may not translate to 
greater learning potential student expertise if EO fundamentals are not already in place.

Underlying each of these fundamentals is the need for EO students to be able to identify and potentially miti-
gate data quality issues and communicate the uncertainty in their analyses. Training the next generation of EO 
scientists and industry leaders to characterize the uncertainty of an EO-based analysis (e.g., Brown et al., 2022), 

Figure 1. Cloud-based Earth observation (EO) research and teaching grows from soil rich in traditional EO concepts. This conceptual tree diagram illustrates the shift 
from traditional EO to cloud-based EO where the three pillars of (a) Fundamentals, (b) Ethics, and (c) Engagement form the trunk. Traditional EO is depicted as the 
roots of the tree, providing core processes, skills, and knowledge. Cloud-based EO is represented as the canopy where growth and development continue to occur as 
increased accessibility creates new opportunities. The foundational pillars provide the supporting structure to better prepare students to learn EO and emphasize the link 
between traditional and cloud-based paradigms.
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# Pillar Sub-themes Main takeaway

Example from the Google Earth 
Engine community and their 

contributions

1 Fundamentals Core workflows We must integrate fundamental 
EO concepts into our 
lessons on cloud-based 
platforms to ensure valid 
EO contributions

“Cloud-based Remote Sensing 
with Google Earth 
Engine—Fundamentals and 
Applications” textbook www.
eefabook.org

 55 chapters, 10,000 lines of 
code, 100 authorsResolutions and their tradeoffs

“Earth Engine for Education” 
website https://developers.
google.com/earth-engine/
tutorials/edu

Sources of bias and error

 10 labs, 10 lectures, 15 
institutions, 6 languages

2 Ethics Internal We must recognize the ethical 
dimensions of EO science, 
some of which are novel due 
to the potential scale of EO 
analysis in the cloud

SilvaCarbon eLearning training 
modules (SilvaCarbon, 2022)

 6 modules, 2 languages, 25 
countries

Capacity building and hub-led 
research with SERVIR 
Global (Frankel-Reed, 2018; 
Kansakar & Hossain, 2016; 
Mayer, 2020; Searby 
et al., 2019)

External

 5 regions, 50 countries, 
600 institutions, 10,000 
individuals trained

Environmental

3 Engagement Research engagement As educators, we must support 
our students to engage with 
local knowledge and existing 
resources, as well as teach 
them to communicate their 
contributions broadly

Service-learning GIS and EO 
classes at DePaul University 
(Rosing & Hofman, 2010)

Local knowledge  Annually: 3–4 classes, 40–55 
students, 8–10 community 
partner projects

“Awesome GEE Community 
Catalog” https://
gee-community-catalog.org/

 7 contributors, 212 TB of 
data sets, 485 stars, 1,150 
data sets

Open-access and transparent

“Awesome GEE” GitHub 
repository: https://github.
com/giswqs/Awesome-GEE

Communication strategy

 9 contributors, 255 linked 
resources, 732 stars

Earth Engine User 
Meetups (Szeto, 2022): 
www.youtube.com/
EarthEngineUserMeetup

Knowledge exchange

 16 recorded sessions, 817 
subscribers, 8,924 views

Table 1 
Summary of Pillars, Sub-Themes, Main Takeaways, and Examples From the Google Earth Engine Community That 
Demonstrate Each Pillar Through Teaching and Learning in the Cloud-Based Earth Observation Paradigm
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whether through qualitative or quantitative approaches, can lead to more informed use of analytical outputs and 
less potential for miscommunication between data creators and data users. Last, as future generations of EO 
scientists are educated using largely cloud-based platforms, there is also a need for teaching the limitations of 
cloud-based approaches and local computing alternatives. Many cloud-based services are owned by corpora-
tions, are often not open-source, and may become less widely accessible with monetization. While it is beyond 
the scope of this article to discuss the difference between teaching cloud-based EO and their implementation 
beyond the university environment, it can be an important consideration for preparing students for industrial job 
roles. Current cloud-based EO offerings are all led by private companies, this may have implications for data and 
compute access down the road if their monetization structures change. These will be important topics for the EO 
and education community to discuss and consider going forward as cloud-based tools for EO become more and 
more common.

3. Pillar 2: EO Science in the Cloud Requires a Deeper Consideration of Ethics
A longstanding conversation in the field of remote sensing and geospatial sciences has been the importance 
of integrating ethical considerations into courses and professional organizations, given the potentially sensitive 
information that can be interpreted from aerial and satellite sources (Harris, 2013; Kochupillai, 2021; Nelson 
et  al.,  2022; Slonecker et  al.,  1998; Wetherholt & Rundquist,  2010). The emerging field of Critical Remote 
Sensing (Bennett et al., 2022) examines who EO data harms and helps, and encourages EO scientists to leverage 
satellite data to (a) expose injustice; (b) engage local knowledge; and (c) empower marginalized actors. The types 
of ethical considerations of the greatest importance for students and EO practitioners continue to evolve along 
with increasing accessibility to sensitive data and technological advances (Kent, 2017; Zhao et al., 2021). We 
have identified three types of ethics—individual, social, and subject—that merit renewed priority in teaching and 
learning as EO and global imagery continue to become more widely accessible in this new paradigm (Figure 1).

Individual ethics refers to the intrapersonal ethical principles that guide how an individual conducts oneself when 
working with EO data. Individual ethics can also include accountability, transparency, service, charity, integrity, 
and empathy (Nelson et al., 2022). Though they may not be referred to as being part of individual ethics, these 
principles are often discussed in the classroom when creating replicable workflows or making publicly accessible 
data repositories (Shook et al., 2019). In a cloud-based environment characterized by easier access to data (e.g., 
sensitive high-resolution data) and dissemination of EO science, teaching individual ethics requires renewed 
attention that can be informed by existing capacity-building training programs from interagency organizations 
like SilvaCarbon (2022), SERVIR Global (Frankel-Reed, 2018; Kansakar & Hossain, 2016; Mayer, 2020; Searby 
et al., 2019), NASA ARSET (NASA ARSET, 2022), NASA Harvest, Sentinel Hub (Sentinel Hub, 2022), and 
RUS Copernicus (RUS Copernicus, 2022).

Social ethics refers to the interpersonal ethical principles that shape research, teaching, and learning with others. 
Social ethics includes ensuring the human dignity of subjects, working toward social justice, following laws and 
data limitations, working to contribute to the public good, and aiming to increase inclusivity, diversity, equity, 
and justice (Chandra & Bhatia, 2020; Monmonier, 2018; Nelson et al., 2022; Owusu et al., 2021). Students and 
scientists practice social ethics by promoting increased data accessibility for underrepresented communities, 
actively including Indigenous scientists in research activities or raising awareness of sources and consequences 
of error, bias, uncertainty, and limitations of EO data, or identifying potential harms of EO data-driven appli-
cations, whether direct or indirect. The full scope of social ethics is less frequently covered by traditional EO 
curriculum, but there are strong examples from the Earth Engine community that can help guide future lessons. 
For example, social ethics are taught to EO learners in the context of community-led research using Earth Engine 
by the Indigenous Mapping Collective and the Google Earth Outreach team (Fields, 2022). Additionally, social 
ethics regarding accuracy assessments, area estimation, error, and bias are covered by the eLearning modules 
from SilvaCarbon (2022) and the Earth Engine textbook (www.eefabook.org) (Table 1). Critical Remote Sensing 
practices (Bennett et al., 2022) are now being taught as part of remote sensing education, encouraging students 
to ask how satellite data exposes, empowers, or engages marginalized communities in harmful or helpful ways.

Subject ethics builds off of the fundamentals identified above and encompasses principles of trust, steward-
ship, confidentiality, information integrity, and regional biases of an EO study (Fisher et al., 2021; Harris, 2013; 
Kochupillai, 2021). In the classroom, subject ethics are often discussed in terms of false precision, map seduction, 
responsibility for inference, different types of error, and responsible accuracy (Monmonier, 2018). Subject ethics 
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are especially pertinent when it comes to working with machine learning and deep learning, as these types of 
algorithms can impart regional biases due to sampling deficiencies, inappropriate tuning, and insufficient data 
(Tulbure et al., 2022). Students should be taught how to identify whether cloud-hosted EO datasets or derived 
products have adequate metadata and clear provenance, and be able to determine whether the spatial, temporal, 
and spectral resolutions of a data set or analytical result are fit for the specific purpose at hand; being able to think 
through the value and relevance of a data set is especially important considering new EO products with which an 
instructor or student may have less experience. Students should also be taught to take a critical approach to EO 
data and understand what local knowledge satellite information cannot capture or obscures (Bennett et al., 2022).

4. Pillar 3: EO Science in the Cloud Benefits From Engaging With the Concerns of 
Diverse User Communities and Stakeholders
Given the potential global reach of cloud-based EO platforms and their users, it is vital that EO students learn 
how to effectively develop analyses and share results that engage with the broader EO community. Incorporating 
opportunities for students to contribute to interdisciplinary collaborative projects can help students develop impor-
tant skills like recognizing and responding to the values and concerns of potential users or stakeholders. Inclusive 
hackathons that target stakeholder-derived topics are especially valuable experiences for cultivating knowledge 
exchange and research engagement (Formosa, 2019; Huppenkothen et al., 2018) and preparing students for the 
broad user base and audience that typifies the cloud-based EO paradigm. Additionally, substantive engagement 
with collaborators outside the academic setting is especially valuable in EO education. Collaborations outside of 
academia are made significantly more accessible through online-based communities like the Earth Engine devel-
opers' group, the Forum@Sentinel Hub, the ESRI user community, the Women+ in Geospatial Slack community 
and #EOChat and #GISChat communities on Twitter and LinkedIn.

Moving beyond the classroom to the multi-disciplinary EO community, the value of collaboratively producing EO 
science (e.g., co-production; Djenontin & Meadow, 2018) is particularly important to teach and practice to ensure 
that contributions will be valuable to multiple sectors and disciplines (Davis et al., 2021; Steger et al., 2020). 
Students are often presented with academic use cases in the classroom, but EO is increasingly used by govern-
ment agencies, NGOs, businesses, and local stakeholders. Co-production encourages students to become familiar 
with a broader scope of EO applications, provides partner organizations with EO insight, and keeps the educator 
up to date on how EO is used in a variety of sectors. Additionally, co-production with local stakeholders can help 
mitigate scientific colonialism and “parachute” science when scientists carry out research in culturally disparate 
contexts (Fritz et al., 2017; Kansakar & Hossain, 2016; Serrat-Capdevila et al., 2015; Singeo & Ferguson, 2022; 
Thapa & Bajracharya, 2017; Thapa et al., 2021).

Experiences like these can be practiced in our classrooms and internships, as exemplified by programs like 
NASA DEVELOP (NASA DEVELOP, 2022) and the community-based service-learning GIS courses at DePaul 
University (Table  1). In these courses, students work with Chicago-area community groups that have EO or 
spatial data analysis needs (Block et al., 2018; Rosing & Hofman, 2010). For example, in the winter quarter of 
2022, graduate students utilized NAIP imagery to quantify green space access for a community greening project 
in Pilsen (Stuhlmacher et al., 2022). Practicing multi-disciplinary collaboration builds skills in cross-disciplinary, 
cooperative thinking that are making the most of the cloud-based EO paradigm. Moreover, students learn to 
document and communicate their geospatial workflows and findings, which helps the community groups under-
stand and use the EO deliverables (Owusu et al., 2021). Cloud-based EO platforms can also enable novel ways of 
sharing findings, whether using interactive visualization or real-time analysis through dashboards, mobile apps, 
and websites (Nussbaumer Knaflic, 2015).

5. Discussion and Concluding Remarks
The role of teaching and learning in shaping EO science is often under-recognized outside of education circles. 
We have identified three pillars for teaching EO science with cloud-based platforms that are centered on funda-
mentals, ethics, and engagement and address novel challenges and considerations that come with having access 
to global-scale analysis of petabytes of EO data at our fingertips.

The future of EO science depends on how we educate the next generation of practitioners. To fully embrace the 
challenges and opportunities of cloud computing and EO, we must refine and transform our pedagogical approach. 
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Traditionally, EO has followed the teaching norms of other natural sciences by presenting the fundamentals in a 
siloed fashion. The proliferation of EO tools can lead to neglecting ethical considerations and engagement neces-
sary for meaningful advancement. There is a need to create learning environments which model substantial and 
respectful EO science that works together rather than in opposition.

Collective and communal learning has enriched our commentary article, and we believe it is the way forward 
for cloud-based EO. Our familiarity with virtual, global collaboration through the Earth Engine Education and 
broader Earth Engine communities enabled us to transition and remain collaborative even when the COVID-19 
pandemic began in March 2020. It will be vital for new cloud-based platforms to cultivate their own communi-
ties. In emphasizing a community-based approach from the researcher to the learner to the user, we believe these 
pillars and principles will emerge even more strongly in the future.

While these pillars may come from the Google Earth Engine Education community, they are equally relevant for 
teaching with other cloud-based platforms. Additionally, we selected three pillars based on discussions amongst 
coauthors and this community, but there are certainly more than three issues worth considering, including inter-
net connectivity equity, data science literacy, standardization of geospatial data formats, etc., as we solidify best 
practices for teaching EO using the cloud. By identifying pillars like these as a community, we hope to instill in 
students that the most impactful and insightful EO science is not done in isolation but rather through meaningful 
connections with others interested in addressing shared questions or challenges. Consideration of the pillars 
above will help educators and students build on the legacy of EO science while leveraging the expanded oppor-
tunities and communities of cloud-based computing.
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