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Supplementary Note 1: Uneven distribution of weather stations across global urban areas 

Combining the global weather stations provided by Berkeley Earth (http://berkeleyearth.org/) 

and the GHSL urban boundary data (refer to Methods), we find that urban and non-urban stations 

account for 9% and 91% of global available stations, respectively. The proportions of urban 

stations in the high-income (HIC), upper-and-middle income (UMIC), lower-and-middle-income 

(IMIC), and low-income (LIC) cities are 15%, 38%, 42%, and 5%, respectively (Fig. S2B). HIC 

cities account for 15% of all major cities, yet they possess 45% urban stations. By comparison, 

LMIC cities account for 42% of these cities, but they have only 15% urban stations (Fig. S2, B 

and C). The station density in HIC cities (1/123 km2, i.e., one urban station per 123 km2) is about 

twice of that in low-income cities (1/219 km2; including UMIC, IMIC, and LIC cities). With 

such a contrast in station distribution and density over cities with different economic levels, it is 

therefore very difficult to identify the world’s hottest and coldest cities. 

  

http://berkeleyearth.org/
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Supplementary Note 2: Possible uncertainties related to the MODIS LST product 

The MODIS LST data product is currently considered the most appropriate satellite dataset 

to investigate urban thermal environment across global cities in a globally consistent fashion 

( Clinton and Gong 2013; Chakraborty and Lee 2019; Si et al. 2022). The MODIS sensors 

provide daily acquisitions with a spatial resolution of ~1 km since 2001 (since 2003 for the Aqua 

satellite data used here), with the retrieval errors being mostly below 1.0 K over homogeneous 

surfaces (Wan et al. 2015). We acknowledge that the retrieval errors of the daily MODIS LST 

products can become relatively higher over urban areas due to urban thermal anisotropy (Jiang et 

al. 2021) and urban high heterogeneity (Clemens et al. 2021). However, these errors should be 

largely minimized through the data processing. We first temporally aggregated daily LST data 

into monthly composites (table S2) and then spatially aggregated these monthly composites into 

city mean values. This kind of spatiotemporal aggregation can considerably reduce the effects of 

urban thermal anisotropy and especially the random retrieval errors of the daily MODIS LST 

products. Note since some the systematic retrieval errors span the entire retrieval period, these 

would not be an issue in this study, since the LST is used as an input variable to model near 

surface-air temperature (NSAT).  
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Supplementary Note 3: Overall and monthly validations for the monthly mean maximum and 

minimum NSATs across cities with different income levels 

We evaluated the root mean squared error (RMSE) and mean absolute error (MAE) of the 

ideal RF model for the cities with different income levels. The results suggest that the accuracy 

of the RF model is broadly consistent with that of previous studies (dos Santos 2020; Ho et al. 

2014; Hooker et al. 2018; Verdin et al. 2020; Yoo et al. 2018). The RMSE/MAE of the monthly 

mean maximum NSAT for the low-income (LIC), lower-and-middle-income (LMIC), upper-

and-middle-income (UMIC), and high-income (HIC) cities are 1.22 °C/0.80 °C, 1.05 °C/0.76 °C, 

1.19 °C/0.86 °C, and 0.97 °C/0.71 °C, respectively (Fig. S15). The corresponding RMSE/MAE 

of the monthly mean minimum NSAT for LIC, LMIC, UMIC, and HIC are 1.05 °C/0.71 °C, 0.94 

°C/0.67 °C, 1.05 °C/0.75 °C, and 0.98 °C/0.73 °C, respectively (Fig. S16). 
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Supplementary Note 4: Validation and relative importance scores for the monthly mean 

maximum and minimum NSATs across Europe, North America, and China 

Here we tested the performance of the trained model across Europe, North America, and 

China. The results reveal that there is a slight difference in the accuracy among these three 

regions (Fig. S17). The RMSE/MAE of monthly mean maximum NSAT are 1.05 °C/0.74 °C, 

1.04 °C/0.76 °C, and 0.96 °C/0.72 °C, respectively for Europe, North America, and China. 

Similarly, those for monthly mean minimum NSAT are 1.05 °C/0.73 °C, 1.06 °C/0.78 °C, and 

0.86 °C/0.63 °C, respectively.  

Fig. S18 reveals that the relative importance of these variables rarely changes across 12 

months over Europe, North America, and China. We therefore calculated the annual mean values 

of these relative importance (Fig. S19). For Europe, North America, and China, the 2-m AT 

dominates the urban maximum NSAT while nighttime LST dominates the urban minimum 

NSAT (Fig. S19). This suggests that background climate variables and urban LST have a greater 

impact on urban maximum and minimum NSATs, respectively. Moreover, for both the urban 

maximum and minimum NSATs, the relative importance value of the 2-m AT in China is larger 

than that of Europe and North America, while for daytime/nighttime LST, the relative 

importance value in China is smaller than those of Europe and North America (Fig. S19). These 

regional differences imply a larger contribution from background climate in China while a larger 

urbanization-induced contribution in Europe and North America. One possible reason for this is 

the lower latitude of China and the higher urbanization level in Europe and North America. In 

addition, a considerable contribution of EVI homogeneity is found in these three regions (Fig. 

S19), indicating that the landscape patterns and vegetation diversity play a critical role in 

affecting urban maximum and minimum NSATs. 

The contrasting relative importance of background climate and urban variables, as well as 

their slightly different performance across Europe, North America, and China, suggest that the 

designed random forest models may be constrained by potential physical components. Therefore, 

future efforts are still required to further incorporating more physical rules and advancing the 

capability of RF models to simulate climate extremes (O’Gorman and Dwyer 2018; Reichstein et 
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al. 2019). This could potentially improve further the accuracy and robustness of such models in 

estimating urban NSAT and other climate-related variables. 
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Supplementary Note 5: Validation of the intra-urban variability of maximum and minimum 

NSATs across nine cities with relatively dense weather stations 

We validated the intra-city variability of NSATmax (for July) and NSATmin (for January) in 

nine cities with relatively dense weather stations for the years 2003, 2010, and 2019. The results 

reveal that the RF models possess relatively high accuracies and are capable of capturing intra-

city temperature variability. Specifically, the mean RMSE and MAE of the monthly mean 

maximum NSAT for these nine cities are 1.17 °C and 0.82 °C respectively (Fig. S20), while 

those for the monthly mean minimum NSAT are 1.99 °C and 1.13 °C respectively (Fig. S20).  
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Supplementary Note 6: Relative importance of input variables for random forest models in 

estimating monthly mean maximum and minimum NSATs 

We find that the relative importance scores for the input variables remain largely stable 

across all months. The 2-m air temperature (2-m AT) has the highest mean relative importance 

(i.e., 15.33%) in estimating monthly mean maximum NSAT, followed by the secondary one of 

11.75% for daytime LST (Fig. S21). Besides, both downward surface solar radiation (DSSR) and 

downward surface thermal radiation (DSTR) contribute to a considerable percentage of the 

relative importance compared to the remaining factors. This indicates that the intra-city 

maximum NSAT is dominated by background climate variables, with a secondary role for the 

input variables related to intra-city surface thermal property such as daytime LST. In contrast, 

the mean relative importance of nighttime LST is larger than that of 2-m AT, DSTR, and DSSR 

in estimating monthly mean minimum NSAT (Fig. S21). This implies that the monthly mean 

minimum NSAT is largely affected by intra-city surface thermal property rather than background 

climate variables. This makes sense because urban AT and LST tend to show stronger coupling 

during nighttime (Chakraborty et al. 2022). 
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Supplementary Note 7: Reasons for using an empirical model based on the relative humidity-

temperature index 

Empirical models derived from the relative humidity-temperature index have received wide 

popularity in the estimation of thermal discomfort and they have also been acknowledged in 

various official reports (Schoen 2005; NOAA, 2023; Weinberger et al. 2018). However, such 

empirical models may hold potential uncertainties because they do not incorporate the radiation 

components (such as mean radiation temperature, termed MRT). The MRT is subject to 

reflection and absorption of heat induced by the 3D structure, materials, and colors of urban 

buildings (Huang et al. 2014; Lindberg et al. 2008), yet it is a very challenging task to accurately 

derive urban MRT across global cities. Therefore, empirical models derived from the 

temperature-humidity index are still one of the more feasible means to estimate thermal 

discomfort, especially for large-scale studies.  
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Supplementary Note 8: Possible uncertainties related to retrieval of relative humidity used for 

calculating thermal discomfort index 

This study calculated the thermal discomfort index (TDI) for global urban settlements by 

incorporating humidity information obtained from reanalysis data. We acknowledge that the 

incorporated reanalysis data-derived humidity may not be sufficiently accurate because of the 

absence of a true urban signal in reanalysis data (Balsamo et al. 2009; Bassett et al. 2021; Venter 

et al. 2021). In other words, the reanalysis data-derived humidity over urban areas may either be 

overestimated or underestimated due to urban dryness island effect (UDI) and urban moisture 

effect (UMI) respectively. Nevertheless, the UDI or UMI intensity is relatively small in terms of 

its impacts on local thermal discomfort (Du et al. 2022). The urban-rural difference in relative 

humidity is mostly lower than 10% or even lower (Meili et al. 2022). One recent study over 

rapidly urbanizing China demonstrates that the monthly mean UDI intensity is only 3.5% (Luo et 

al. 2021). More importantly, it is hard to derive accurate estimates of UDI intensity across global 

13,135 settlements especially over cities in the Global South, although observations on relative 

humidity over some of the cities in the Global North do exist. Given these limitations, reanalysis 

data provide humidity information in a globally consistent way that can be used for a fair 

comparison across global cities. We therefore use reanalysis data-derived humidity information 

to calculate the TDI.  
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Fig. S1. Distribution of cities with usable stations with valid measurements of monthly mean maximum and minimum near 
surface-air temperature (NSAT) versus those without. (A) denotes the global distribution as well as the city proportions with and 
without available valid measurements for the monthly mean maximum NSAT, while (B) represents those for the monthly mean 
minimum NSAT. HIC, UMIC, IMIC, and LIC correspond to high-income, upper-and-middle-income, lower-and-middle-income, and 
low-income cities, respectively.  
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Fig. S2. Distribution of usable weather stations and distribution of cities with different income levels. Proportions and 
distribution of rural and urban stations (A); proportions and distributions of cities with different income levels (B); proportions and 
distribution of urban stations with different income levels (C); and distribution of quasi-urban stations within the 15-km buffer of city 
boundaries (D). 
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Fig. S3. An overall schematic depicting the steps to optimize and assess the random forest 
model. NSAT, RMSE, and MAE are abbreviations of the near-surface air temperature, root 
mean squared error, and mean absolute error, respectively. 
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Fig. S4. Variations of the Akaike information criterion (AIC), Bayesian Information Criterion (BIC), and out of bag error 
depending on tree number for each month when training the random forest model for monthly mean maximum (A, B, & C) 
and minimum near surface-air temperatures (D, E, & F), respectively. Once the number of trees exceeds around 50, the AIC, 
BIC, and out of bag errors start to converge towards a limit.  
 



 
 

15 
 

 

 
Fig. S5. Comparisons between the observed and estimated monthly mean maximum near 
surface-air temperature (i.e., NSATmax) for each month based on the global random forest 
model using all the temperatures as inputs. Colors from blue to red denote the increase in 
point density.  
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Fig. S6. Same as Fig. S5, but for the monthly mean minimum near surface-air temperature 
(i.e., NSATmin). 
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Fig. S7. Comparisons between the observed and estimated monthly mean maximum near 
surface-air temperature (i.e., NSATmax) for each month based on the local random forest 
model using extreme temperatures as inputs. Colors from blue to red denote the increase in 
point density.  
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Fig. S8. Same as Fig. S7, but for the monthly mean minimum near surface-air temperature 
(i.e., NSATmin).  
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Fig. S9. Mean maximum near surface-air temperature (i.e., NSATmax) in Jul. 2003 (A) and 2010 (B) for each city and mean 
minimum near surface-air temperature (i.e., NSATmin) in Jan. 2003 (C) and 2010 (D) for each city. 
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Fig. S10. Comparison of near surface-air temperature (NSAT) and thermal discomfort 
index (TDI) over Shanghai of China and Cape Town of South Africa. The Shanghai case (A, 
B, & C) and the Cape Town case (D, E, & F); and statistical distributions of pixel-based 
temperature values for Shanghai (C) and Cape Town (F), respectively. 
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Fig. S11. High-resolution satellite-derived images of the identified world’s hottest city 
(Manama, A) and the coldest city (Yakutsk, B). 
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Fig. S12. Comparison of monthly mean relative humidity between Manama in Bahrain and 
Riyadh in Saudi Arabia (refer to https://www.worldweatheronline.com). The background 
light yellow denotes the hot months. 
  

https://www.worldweatheronline.com/
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Fig. S13. The number of TDImax and TDImin cities under different income levels. LIC, LMIC, 
UMIC, and HIC represent the low-income, lower-and-middle-income, upper-and-middle-
income, and high-income cities, respectively. 
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Fig. S14. Proportions of Top 20% hottest and coldest cities with a population < 100,000 at 
different income levels.  
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Fig. S15. Overall and monthly validations for the monthly mean maximum near surface-air temperature (i.e., NSATmax) across cities with 
different income levels. LIC, LMIC, UMIC, and HIC correspond to the cities of low-income, lower-and-middle-income, upper-and-middle-
income, and high-income, respectively. 
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Fig. S16. Same as Fig. S15, but for the monthly mean minimum near surface-air temperature (i.e., NSATmin). 
 
 



 
 

27 
 

 

 
Fig. S17. Overall validations for the monthly mean maximum and minimum near surface-
air temperatures (i.e., NSATmax and NSATmin) over Europe, North America, and China. 
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Fig. S18. Monthly relative importance of input variables for random forest models over Europe, North America, and China. Relative 
importance scores (in %) of input variables for the models of monthly mean maximum (A, B, and C) and minimum (D, E, and F) near surface-air 
temperatures, respectively. The 2-m AT, DSTR, DSSR, NIR band, red band, LST, ISP, and EVI represent 2-m air temperature, downward surface 
thermal radiation, downward surface solar radiation, surface reflectance for the near-infrared band, surface reflectance for the red band, land 
surface temperature, impervious surface percentage, and enhanced vegetation index, respectively. 
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Fig. S19. Mean relative importance of input variables for random forest models over 
Europe, North America, and China. Relative importance scores (in %) of input variables for the 
models of monthly mean maximum (A) and minimum (B) near surface-air temperatures, 
respectively. The 2-m AT, DSTR, DSSR, NIR band, red band, LST, ISP, and EVI represent 2-m 
air temperature, downward surface thermal radiation, downward surface solar radiation, surface 
reflectance for the near-infrared band, surface reflectance for the red band, land surface 
temperature, impervious surface percentage, and enhanced vegetation index, respectively. 
  



 
 

30 
 

 

 
Fig. S20. Validation for the intra-urban variability of monthly mean maximum and 
minimum near surface-air temperatures (i.e., NSATmax and NSATmin) across nine cities with 
relatively dense weather stations. The numbers from 1 to 9 refer to Dallas-Fort Worth, San 
Francisco-Oakland, Tokyo, Los Angeles-Long Beach-Santa Ana, New York-Newark, Phoenix-
Mesa, Seattle, Miami, and San Diego, respectively. 
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Fig. S21. Relative importance of input variables for random forest models in estimating 
monthly mean maximum (A) and minimum (B) near surface-air temperatures. The 2-m AT, 
DSTR, DSSR, NIR band, red band, LST, ISP, and EVI denote 2-m air temperature, downward 
surface thermal radiation, downward surface solar radiation, surface reflectance for the near-
infrared band, surface reflectance the for the red band, land surface temperature, impervious 
surface percentage, and enhanced vegetation index, respectively. 
  



 
 

32 
 

 

Table S1. Monthly numbers of valid samples for the global random forest models using all 

the temperatures as inputs. 

month NSATmax NSATmin month NSATmax NSATmin 

January 81,555 81,047 July 81,122 80,174 

February 81,758 81,351 August 81,407 80,520 

March 82,124 81,613 September 81,763 80,850 

April 81,756 81,347 October 81,700 81,033 

May 81,761 81,050 November 81,180 80,823 

June 81,733 80,877 December 80,768 80,268 
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Table S2. Input variables used to train the random forest models to predict NSAT and TDI. 

Variable type 
Variable 

order 
Variable name Descriptions 

Temporal 

resolution 

Spatial 

resolution 

land surface 

temperature 

(LST) 

1 daytime LST (K) 1:30 pm during the day, derived from MODIS data monthly 1 km 

2 nighttime LST (K) 1:30 am at night, derived from MODIS data monthly 1 km 

auxiliary 

variable 

3 
impervious surface 

percentage (%) 

estimated percentage of impervious surface areas in each 

90×90 m2 grid, derived from the GAIA dataset 
yearly 90 m 

4 population counts (person) 

estimated residential population in each 90×90 m2 grid, 

derived from the Annual 90-m WorldPop Global Project 

Population Data 

yearly 90 m 

5 nighttime light 
derived from the annual 1-km harmonization of DMSP and 

VIIRS nighttime light data 
yearly 1 km 

6 elevation (m) 
digital surface model (DSM), derived from the 30-m ALOS 

Global Digital Surface Model 
/ 30 m 
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7 slope (°) 
DSM-derived slope, derived from the 30-m ALOS Global 

Digital Surface Model 
/ 30 m 

8 longitude (°) 
DSM-derived longitude, derived from the 30-m ALOS 

Global Digital Surface Model 
/ 30 m 

9 latitude (°) 
DSM-derived latitude, derived from the 30-m ALOS Global 

Digital Surface Model 
/ 30 m 

10 spectral reflectance 
surface reflectance for MODIS bands 1 & 2, derived from 

MODIS data 
monthly 500 m 

11 enhanced vegetation index derived from MODIS data monthly 250 m 

12 
dissimilarity of impervious 

surface percentage  

derived from gray level co-occurrence matrix of impervious 

surface percentage 
yearly 1 km 

13 
homogeneity of impervious 

surface percentage  

derived from gray level co-occurrence matrix of impervious 

surface percentage 
yearly 1 km 

14 
dissimilarity of enhanced 

vegetation index  

derived from gray level co-occurrence matrix of enhanced 

vegetation index 
yearly 1 km 
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15 
homogeneity of enhanced 

vegetation index  

derived from gray level co-occurrence matrix of enhanced 

vegetation index 
yearly 1 km 

16 2-m air temperature (°C) derived from ERA5-Land reanalysis data monthly 
resampled 

1 km 

17 
downward surface solar 

radiation (J/m2) 
derived from ERA5-Land reanalysis data monthly 

resampled 

1 km 

18 
downward surface thermal 

radiation (J/m2) 
derived from ERA5-Land reanalysis data monthly 

resampled 

1 km 
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Table S3. Number of valid samples of each year from quasi-urban sites. 

year NSATmax NSATmin year NSATmax NSATmin 

2003 54,866 54,185 2012 60,010 59,556 

2004 55,649 55,157 2013 57,500 57,125 

2005 58,028 57,733 2014 57,459 56,734 

2006 57,780 57,489 2015 56,577 55,969 

2007 58,137 57,618 2016 56,546 56,256 

2008 59,507 58,808 2017 56,644 56,347 

2009 60,041 59,494 2018 54,341 54,107 

2010 60,471 59,877 2019 54,258 54,165 

2011 60,813 60,333    
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Table S4. Monthly numbers of valid samples for the local random forest models using 

extreme temperatures as inputs.  

month NSATmax NSATmin month NSATmax NSATmin 

January 4,090 19,189 July 4,141 18,929 

February 4,110 19,234 August 4,176 19,079 

March 4,095 19,307 September 4,163 19,144 

April 4,067 19,228 October 4,106 19,229 

May 4,129 19,109 November 4,103 19,205 

June 4,148 19,054 December 4,107 19,191 
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Table S5. The world’s Top 10 hottest cities with urban built-up area > 10 km2.  

Ranking City Climate Country 
Area 

(km2) 

Population 

(person) 

Tmax ± std 

(°C) 

1 Manama arid Bahrain 345 1247,790  48.18 ±1.31 

2 Ras Laffan arid Qatar 26 74,199  47.86 ±0.86 

3 Al Qunfudhah arid Saudi Arabia 10 96,487  47.80 ±1.75 

4 Shahdadkot arid Pakistan 11 213,098  47.17 ±0.80 

5 Al-Hawr arid Qatar 13 52,366  47.11 ±0.73 

6 Usta Muhammad arid Pakistan 12 137,181  47.01 ±0.85 

7 Thuqbah arid Saudi Arabia 134 364,257  46.96 ±1.06 

8 Ar-Rayyan arid Qatar 380 1556,520  46.67 ±0.98 

9 Leiah arid Pakistan 30 82,987  46.60 ±0.70 

10 Munda arid Pakistan 27 99,986  46.35 ±0.69 
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Table S6. The world’s Top 10 coldest cities with urban built-up area > 10 km2.  

Ranking City Climate Country 
Area 

(km2) 

Population 

(person) 

Tmin ± std 

(°C) 

1 Yakutsk snow Russia 90  215,984  –42.96 ±0.72 

2 Novy Urengoy snow Russia 36  96,123  –36.99 ±0.93 

3 Norilsk snow Russia 23  69,024  –36.82 ±0.72 

4 Nizhenvartovsk snow Russia 45  123,163  –35.12 ±0.62 

5 Kyzyl semi-arid Russia 26  84,273  –33.85 ±0.80 

6 Yakeshi snow China 24  132,936  –32.42 ±0.60 

7 Haila'Er snow China 47  209,890  –31.97 ±0.88 

8 Nenjiang snow China 25  140,203  –31.89 ±0.51 

9 Tomsk snow Russia 143  529,132  –31.55 ±0.93 

10 Chita snow Russia 59  184,185  –31.35 ±1.34 
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