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A. Supplementary Notes 40 

Note 1: Discussions on different representations between land surface temperature 41 

(LST) and surface air temperature (SAT) and on attribution of surface warming 42 

Satellite-derived LST as well as elaborately characterized transitions in land cover 43 

types facilitate the investigation of surface warming of global cities. We are, however, 44 

aware of the different representations between LST and SAT in terms of climate 45 

change1 considering that they possess different physical meaning and responses to 46 

climate change. LST characterizes a two-dimensional representation of a 47 

three-dimensional urban surface2 – they represent a combination of surface 48 

temperature signals from building roofs, walls, urban lawns and tree canopies, and 49 

streets3. SAT accounts for the warming or cooling of an atmospheric layer or volume 50 

from the surface to approximately the mean roof level (i.e., building height)4. 51 

Furthermore, satellites can only obtain valid LST data under clear skies, while 52 

all-weather SAT can be obtainable from reanalysis data. Satellite LSTs are not 53 

flawless for measuring surface climate change or, more especially, heat stress. 54 

Nevertheless, here we primarily concentrate on warming trend rather than the absolute 55 

value, which can reduce the LST-SAT difference significantly. The anomalies 56 

between satellite LST and reanalysis SAT over urban core (refer to Supplementary 57 

Fig. 3) confirm, to some degree, the potential validity for comparing the trends 58 

between these two parameters. We should make clear that the LST-based warming 59 

results do not serve as a surrogate for SAT-based analysis, but they provide a different 60 

approach that overcomes some limitations or difficulties in finding appropriate urban 61 

– rural station pairs of SAT over global cities.  62 

 63 

To isolate the contributions from controls to surface warming across global cities 64 
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consistently, we employed a statistical attribution method that disregards the 65 

interactions among controls and that uses population for the proxy of urbanization 66 

effect. Part of the reason lies in the difficulty in obtaining times series urban 67 

parameters in urban morphology and fabrics across 2000+ cities worldwide. We 68 

acknowledge this can over-simplify the complexity in urbanization on surface 69 

warming for cities at different development stages. Future work can incorporate 70 

detailed urban parameters in surface morphology and surface fabrics towards a more 71 

accurate quantification of urbanization effect. In addition, SAT and associated 72 

atmospheric urban heat island refers to a warming or cooling of the urban air and 73 

directly impacts human health and well-beings5, 6. LST provides a direct characterize 74 

of surface thermal conditions and plays an important role in regulating SAT through 75 

the surface-air exchange4. Future attention should be paid to the combination of these 76 

two types of temperature, which can improve the interpretation of urban thermal 77 

environments and assist in developing effective heat mitigation strategies. 78 

 79 

 80 
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Note 2: Relationships between LST and population density (or EVI) trends 81 

We investigated the relationships between LST and population density (or EVI) trends 82 

over urban areas across different continents. The rations between LST and population 83 

density (or EVI) trends suggest that the global mean LST trend would increase by 84 

0.096 K·decade−1 when population density increases by 100/km2 per decade, while it 85 

would decrease by 0.26 K·decade−1 when EVI increases by 0.01 per decade 86 

(Supplementary Table S4). The ratios between LST and population density (or EVI) 87 

trends show variations among continents. The ratios between LST and population 88 

density trends in Europe and North America are relatively large, with the mean ratios 89 

of 0.21 and 0.29, respectively. While there were relatively small ratios between LST 90 

and population density trends in Asia and Africa (with the mean ratios of 0.057 and 91 

0.025 respectively), even though they have more pronounced urban surface warming 92 

trend. The reason for such discrepancies might be related to the greater growth rates 93 

of population density in Asia and Africa7. We further observe that the ratios between 94 

LST and EVI trends are smaller in Europe, Africa, and South America than in other 95 

regions. This can be attributed to the relatively larger EVI trends in these three regions. 96 

For example, the largest regional mean EVI trend occurs in Europe (0.012 ± 0.0032 97 

decade−1), while decreasing trends occur in Africa and South America, with the mean 98 

values of −0.0088 ± 0.0031 decade−1 and −0.0091 ± 0.0037 decade−1, respectively. 99 

The declining EVI trends in Africa and South America may be related to reduction of 100 

urban green spaces induced by human activities. These results strongly demonstrate 101 

the regional differences in the quantitative relationships between LST and population 102 

density (or EVI) trends among continents. They would help provide a rough estimate 103 

of future urban surface warming and geographically targeted guidelines for the design 104 

of heat mitigation strategies.  105 



 6 / 31 

Note 3: Possible uncertainties related to satellite and reanalysis data 106 

We use satellite land surface temperature (LST) and reanalysis surface air temperature 107 

(SAT) data to investigate the contributions of background climate change (BCC), 108 

urbanization, and landscape greening on surface warming trends over global cities. 109 

The possible uncertainties may occur because of the deficiencies of the used LST and 110 

SAT datasets. 111 

 112 

We acknowledge that the data error of satellite LST in urban lands may bias the 113 

results. Nevertheless, the data processing method and research target in this study 114 

would greatly reduce these uncertainties. On the one hand, the surface warming trends 115 

across cities were calculated based on all the available surface warming trends at the 116 

pixel level. This spatial average process can greatly reduce the possible uncertainties 117 

of a certain pixels. On the other hand, the large-scale investigation could substantially 118 

suppress the uncertainties in a few cities, according to the ‘Central Limit Theorem’ 119 

(the global deviation would be much smaller than the deviation for a single city 120 

especially for a large sample size)8-10. More importantly, satellite LST and particularly 121 

the MODIS LST product remains indispensable for a global study as such, due to their 122 

advantages to provide global coverage, repeatability, consistency, medium spatial 123 

resolution (1 km), and free availability of relatively long time series LST 124 

observations11-13. 125 

 126 

We used the SAT data as a proxy to investigate the BCC impacts on urban surface 127 

warming. The SAT reanalysis data were used to represent the BCC mainly due to the 128 

following aspects: (1) BCC can be mainly reflected by SAT and precipitation over the 129 

inter- or intra-annual scales14, 15. However, here only SAT was included, mainly 130 
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considering that precipitation has more profound implications for intra-annual and 131 

diurnal LST variations rather than inter-annual LST variations16, 17. We only used SAT 132 

also because the influence of precipitation on LST is difficult to quantify directly by 133 

remote sensing, mostly due to the unavailability of satellite LST observations when 134 

precipitation event occurs16, 18. (2) The SAT reanalysis data were expected to reflect 135 

background climate conditions because the current climate models generally do not 136 

contain urbanization information signals such as land use and cover changes (Zhao et 137 

al., 2021; Zheng et al., 2021). More importantly, previous study has used reanalysis 138 

SAT data as a proxy for BCC to investigate the urban warming (or urban heat island) 139 

responsive to BCC at the global scale13, 18. 140 

 141 

We acknowledge that reanalysis SAT data may contain urbanization signals induced 142 

by data assimilation of different datasets. To suppress the possible uncertainties 143 

related to the urbanization signals, we only incorporated the reanalysis SATs over 144 

rural areas yet totally discarded the urban ones in this study. We admit that SAT 145 

responds both to internal natural variability and external forcing factors19-22. Therefore, 146 

the identified contribution from BCC to urban surface warming trends may be biased 147 

by natural oscillations of SAT in a few cities. Nevertheless, the research topic and 148 

target in this study can greatly reduce these uncertainties, mostly due to the following 149 

aspects. On the one hand, we mainly focused on the LST-derived surface warming 150 

trends rather than SAT-derived atmospheric warming trends. Generally, the LST 151 

variations are strongly determined surface biophysical properties, although they are 152 

also highly linked to background climate23-26. Consequently, the possible uncertainties 153 

induced by natural oscillations are expected to be relative weak. On the other hand, 154 

despite the unavoidable uncertainties in individual cities, the large-scale investigation 155 
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could also substantially suppress the uncertainties. This is mainly because the global 156 

deviation can be smaller than that of individual cities, according to the Central limit 157 

theorem8, 9. 158 

 159 

Nevertheless, we acknowledge that there still exist some residual uncertainties on the 160 

identified surface warming trends from natural oscillations of SAT. To better assess 161 

the contribution of BCC to the surface warming trends, future endeavors should 162 

consider the incorporation of co-trending tests and regression-based decomposition 163 

method to separate natural oscillations and external forcing factors19, 20. 164 

 165 
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Note 4: Identification of abrupt changes (breakpoints) in time series LST and 166 

enhanced vegetation index (EVI) data 167 

To classify accurately the urban surfaces and their surroundings into urban core, rural 168 

background, and transitional land, the abrupt changes (i.e., breakpoints) in time series 169 

LST or EVI data were dectected by the BFAST algorithm. The BFAST algorithm 170 

decomposes the time series data into the trend, the seasonal, and the remainder 171 

components. The trend component describes an inter-annual change in the time series 172 

data, which can contain several segment-specific trends when there exist a single or 173 

several breakpoints27. The seasonal component describes the periodic variation of 174 

LST or EVI data within an annual cycle, primarily driven by the annual variation in 175 

incoming solar radiation27, 28. The seasonal variations of LST and EVI can be 176 

approximated by a widely used sinusoidal function27, 29. The noise component is an 177 

irregular variation in LST or EVI data induced by atmospheric conditions (e.g., cloud 178 

coverage and aerosols), and disturbance events (e.g., flood and fire), etc.29. The 179 

BFAST algorithm has been shown capable of identifying such abrupt changes27. 180 

When tested with the LST and EVI data, this algorithm demonstrates a relatively high 181 

accuracy (Supplementary Fig. 14). The breakpoints (both the breakpoint number and 182 

date) using LST data are often consistent with those using EVI data (Supplementary 183 

Fig. 15). This result indicates the close connection between LST and EVI as well as 184 

the robustness of this algorithm.  185 

 186 

We find that more than 30% of the global cities are detected significantly with LST 187 

and EVI breakpoints based on hypothesis-testing. These breakpoints mainly occur 188 

from 2006 to 2012 and they are often overlapped with the newly urbanized areas 189 

(Supplementary Fig. 15). However, the breakpoints are not completely overlapped 190 
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with these newly urbanized areas because abrupt thermal changes may occur over 191 

intra-urban surfaces (e.g., due to urban redevelopment and urban renewal). The results 192 

reveal that 63% of the cities detected with significant breakpoints appear in Asia and 193 

Africa, while few occur in Europe (Supplementary Fig. 16). This occurrence is 194 

associated with the difference in urbanization (urban expansion) among continents – 195 

rapid urbanization has been witnessed in Asia and Africa in recent decades30, while 196 

urbanization has been relatively slow in Europe31. 197 

 198 

 199 
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B. Supplementary Figures 200 

 201 

 202 

Supplementary Fig. 1 | Warming trends over rural background and transitional 203 

surface. Map of daytime trend over rural background (a) and transitional surface (c), 204 

and map of nighttime trend over rural background (b) and transitional surface (d).  205 

 206 

 207 

Supplementary Fig. 2 | Comparison between MODIS land surface temperature 208 

(LST) and reanalysis surface air temperature (SAT) over urban core. Temporal 209 

anomalies (a) and statistical relationships (b) between MODIS LST and reanalysis 210 
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SAT. K1 to K3 are the trends (K·decade−1) for daytime LST, nighttime LST, and 211 

reanalysis SAT, respectively, and r1 and r2 are the Pearson's correlation coefficients 212 

between MODIS LST and reanalysis SAT for daytime and nighttime, respectively.  213 

 214 

 215 

Supplementary Fig. 3 | The ratio of surface warming trend between urban core 216 

and rural background by city size and continent. Note that the error bars represent 217 

10% ~ 90% percentiles. 218 

 219 

Supplementary Fig. 4 | Surface warming trend at the rural background by city 220 

size and continent. Note that the error bars represent 10% ~ 90% percentiles. 221 
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 222 

 223 

Supplementary Fig. 5 | Urban greening trends (decade−1) characterized by 224 

enhanced vegetation index (EVI) across the world. Maps of trends over urban core 225 

(a), rural background (b), and transitional surface (c), and continental mean trends 226 

over urban core (d), rural background (e), and transitional surface (f).  227 

 228 

 229 
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 230 

Supplementary Fig. 6 | Surface UHI intensity trends across the world. Map of daytime trend (a), 231 

map of nighttime trend (c), and surface UHI intensity trends in daytime (b) and nighttime surface 232 

UHI intensity trends (d). The two boxed regions in (a) and (c) are enlarged as (e) and (f) for daytime 233 

and (g) and (h) for nighttime. Note that the error bars represent 10% ~ 90% percentiles. 234 

 235 

 236 
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 237 

Supplementary Fig. 7 | Surface UHI intensity trends (quantified by the LST 238 

difference between the urban core and rural background) by city size and 239 

continent. Note that the error bars represent 10% ~ 90% percentiles. 240 

 241 
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 242 

Supplementary Fig. 8 | Maps of the dominant contributor | Blue, red and green 243 

(dark and light) indicate that the dominant (or maximum) contributor to urban surface 244 

warming trend is background climate change (BCC), urbanization (URB) and 245 

landscape greening (LSG), respectively. Dark green and light green indicate that LGS 246 

contribution is negative and positive, respectively. 247 

 248 
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 249 

Supplementary Fig. 9 | Maps of the minimum contributor. Blue, red and green 250 

(dark and light) indicate that the minimum contributor to urban warming trend is 251 

background climate change (BCC), urbanization (URB) and landscape greening 252 

(LSG), respectively. Dark green and light green indicate that LGS contribution is 253 

negative and positive, respectively.  254 

 255 



 18 / 31 

 256 

Supplementary Fig. 10 | Relationships between EVI trend and urban core size. 257 

Relationships for global cities (a) and clusters with urban core size < 500 km2 (b).  258 

 259 

 260 

Supplementary Fig. 11 | EVI trends over urban core by city size. Note that the 261 

error bars represent 10% ~ 90% percentiles. 262 

 263 



 19 / 31 

 264 

Supplementary Fig. 12 | Relationships of temporal anomalies between MODIS 265 

LST and reanalysis SAT over the rural background in six megacities | They 266 

include (a) Abujia (Nigeria), (b) Phoenix (USA), (c) London (UK), (d) SaoPaulo 267 
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(Brazil), (e) Beijing (China), and (f) Moscow (Russian). r1 and r2 are the Pearson's 268 

correlation coefficients between MODIS LST and reanalysis SAT for daytime and 269 

nighttime, respectively.  270 

 271 

 272 

Supplementary Fig. 13 | Demonstration of the statistically negative relationships 273 

between the annual mean LST and EVI over the rural background in six 274 

megacities | They include (a) Abujia (Nigeria), (b) Phoenix (USA), (c) London (UK), 275 
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(d) SaoPaulo (Brazil), (e) Beijing (China), and (f) Moscow (Russian). r1 and r2 are 276 

the Pearson's correlation coefficients between MODIS LST and reanalysis SAT for 277 

daytime and nighttime, respectively. 278 

 279 

 280 

Supplementary Fig. 14 | Mean RMSEs (root mean square errors) of the BFAST 281 

algorithm and the linear regression over global cities for modelling daytime 282 

MODIS LSTs over different land cover types. Note that the error bars represent 10% 283 

~ 90% percentiles. 284 

 285 
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 286 

Supplementary Fig. 15 | Percentages of the number (a) and the date (b) for the 287 

breakpoints detected by the BFAST algorithm for the daytime (nighttime) LST 288 

and EVI, as well as the coincidence rates of the number (c) and date (d) of 289 

between the breakpoints detected from the daytime (nighttime) LST and EVI 290 

data.  291 

 292 

 293 
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 294 

Supplementary Fig. 16 | Map of the breakpoint information identified by the 295 

BFAST algorithm | Number (the first column, a–c) and date (the second column, d–f) 296 

information of the breakpoints for daytime LST (a and d), nighttime LST (b and e), 297 

and EVI (c and f).  298 

 299 

 300 
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C. Supplementary Tables 301 

 302 

Supplementary Table 1. The trends in LST/EVI over the urban core, rural 303 

background, and transitional surfaces. 304 

LST/EVI Surface type Trends (annual) Trends (summer) 

daytime LST 

K·decade−1 (mean ± one S.D.) 

urban core 0.60 ± 0.21 0.57 ± 0.26 

rural background 0.40 ± 0.23 0.42 ± 0.27 

transitional surface 1.06 ± 0.41 1.10 ± 0.43 

nighttime LST 

K·decade−1 (mean ± one S.D.) 

urban core 0.43 ± 0.16 0.44 ± 0.24 

rural background 0.37 ± 0.21 0.38 ± 0.22 

transitional surface 0.84 ± 0.39 0.85 ± 0.37 

EVI 

1·decade−1 (mean ± one S.D.) 

urban core 0.0039 ± 0.0017 0.0044 ± 0.0025 

rural background 0.0083 ± 0.0026 0.0087 ± 0.0028 

transitional surface −0.088 ± 0.025 −0.090 ± 0.027 

 305 

 306 
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Supplementary Table 2. The separate contributions from different drivers to urban warming for cities with different sizes. BCC, URB, 307 

and LSG represent background climate change, urbanization, and landscape greening, respectively.  308 

 Control Global Small-cities Medium-cities Large-cities Mega-cities 

D
ay

tim
e 

(m
ea

n 
± 

on
e 

S.
D

) BCC 0.34 ± 0.13 0.30 ± 0.092  0.32 ± 0.11 0.39 ± 0.17 0.37± 0.15 

URB 0.27 ± 0.13 0.20 ± 0.088 0.26 ± 0.13  0.31 ± 0.17 0.33± 0.16 

LSG −0.10 ± 0.028 −0.14 ± 0.043  −0.13 ± 0.040 −0.072 ± 0.034 −0.079± 0.034 

Others 0.044 ± 0.023 0.049 ± 0.024  0.057 ± 0.028 0.035 ± 0.026  0.040± 0.029 

N
ig

ht
tim

e 

(m
ea

n 
± 

on
e 

S.
D

) BCC 0.25 ± 0.078 0.24 ± 0.073  0.24 ± 0.071 0.25± 0.080 0.25 ± 0.086 

URB 0.21 ± 0.094 0.18 ± 0.075  0.20 ± 0.084 0.24 ± 0.097 0.24 ± 0.12 

LSG −0.052 ± 0.014 −0.087 ± 0.014  −0.055 ± 0.016 −0.040 ± 0.019  −0.037 ± 0.18 

Others 0.030 ± 0.013 0.041 ± 0.015  0.029 ± 0.015 0.024± 0.017  0.027 ± 0.017 

 309 

 310 
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Supplementary Table 3. Separate contributions from different drivers to urban warming for cities across continents.  311 

 Control Asia Africa Europe 
North 

America 

South  

America 
Oceania 

D
ay

tim
e 

(m
ea

n 
± 

on
e 

S.
D

) BCC 0.41 ± 0.13 0.26 ± 0.066 0.32 ± 0.10 0.36 ± 0.14 0.26 ± 0.15 0.37 ± 0.13 

URB 0.38 ± 0.17 0.25 ± 0.082 0.24 ± 0.084 0.25 ± 0.11 0.16 ± 0.043 0.25 ± 0.12  

LSG −0.14 ± 0.039 0.053 ± 0.024 −0.17 ± 0.044 −0.085± 0.050 0.049 ± 0.022 −0.12 ± 0.057 

Others 0.056 ± 0.013 0.034 ± 0.014 0.043 ± 0.012 0.038 ± 0.020 0.037 ± 0.019 0.030 ± 0.011 

N
ig

ht
tim

e 

(m
ea

n 
± 

on
e 

S.
D

) BCC 0.29 ± 0.054 0.21 ± 0.057 0.26 ± 0.12 0.25 ± 0.12 0.20 ± 0.096 0.24 ± 0.073 

URB 0.28 ± 0.082 0.21 ± 0.059  0.22 ± 0.11 0.18 ± 0.091 0.14 ± 0.034 0.16 ± 0.073 

LSG −0.070± 0.021 0.041 ± 0.016 −0.10 ± 0.025 −0.043 ± 0.022 0.022 ± 0.0098  −0.059 ± 0.019 

Others 0.033 ± 0.015 0.024 ± 0.014 0.032 ± 0.016 0.029 ± 0.0068 0.031 ± 0.012 0.033 ± 0.013 

 312 

Supplementary Table 4. The ratios between LST and population density (or EVI) trends over urban areas among continents.  313 

 
LSTPOP 

(K decade−1) 

POD 

(km2) 

Ratio_POD 

(×102) 

LSTEVI 

(K decade−1) 

EVI 

(decade−1) 

Ratio_EVI 

(×10−2) 

Global 0.34 353 0.10 0.10 0.0039 0.26 

Asia 0.41 716 0.06 0.14 0.0024 0.58 
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Africa 0.26 1052 0.03 −0.05 −0.0088 0.06 

Europe 0.32 151 0.21 0.17 0.012 0.14 

North America 0.36 123 0.29 0.09 0.0017 0.50 

South America 0.26 397 0.07 −0.05 −0.0091 0.05 

Oceania 0.37 58 0.64 0.12 0.0052 0.23 

Note: LSTPOD and LSTEVI (K decade−1) represent the variations of urban LST trends induced by population density and EVI (K decade−1) trends, 314 

respectively; POD denotes the population density; Ratio_POD (or Ratio_EVI) is the ratio between LSTPOD and POD (or EVI). 315 

 316 
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Supplementary Table 5. List of major acronyms and abbreviations used in this 317 

study 318 

Abbreviations Description 

LST Land surface temperature 

SAT Near-surface air temperature 

EVI Enhanced vegetation index 

UHI Urban heat island 

SUHI Surface urban heat island 

BFAST Breaks For Additive Season and Trend 

URB Background climate change 

BCC Urbanization 

LSG Landscape greening 

TOBS The observed increment of annual mean urban LST as 

referenced to the annual mean value at the previous year 

TBCC Temperature increment signals attributed to BCC 

TURB Temperature increment signals attributed to URB 

TLSG Temperature increment signals attributed to LSG 

βBCC Scaling factor of TBCC 

βURB Scaling factor of TURB 

βLSG Scaling factor of TLSG 

vBCC Noise from internal variability in TBCC 

vURB Noise from internal variability in TURB 

vLSG Noise from internal variability in TLSG 

ε Residual error term 

 319 
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