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Abstract
The variability of surface air temperature is of great importance for both society and the environment,
is impacted by global warming and local-scale changes. In the arid eastern part ofWashington state of
USA, substantial urbanization has transformed the Tri-cities into the state’s third-largest urban
cluster. This study utilizes a combination of in situ observations and reanalysis datasets to investigate
the influence of land use changes on the region’s 2-meter temperature, revealing local effects that
compensate for the background global warming.Within the urban fabric, distinctmicroclimates have
emerged due to varying land use, establishing unique relationships between greenness and
temperature alterations caused by land use transitions. Notably, ourfindings demonstrate that the
observed compensating signal in the temperature of farmland locations is primarily attributed to local
vegetation increases. Through these observations, this research highlights the urban impacts on local
climate, offering valuable insights into the complexities surrounding land use and its consequences on
the environment.

1. Introduction

The global surface air temperature has exhibited a steady increase of approximately 0.96°C from1850 to 2023
[1], primarily attributed to the increase in greenhouse gases resulting fromhuman activities [2]. However,
understanding long-term temperature trends at regional and local scales becomesmore complex due tomultiple
factors beyond background climate change. Land use and land cover changes, such as deforestation, forest
management, and urbanization, alongwith alterations in local atmospheric forcing caused by clouds, aerosols,
and other factors, canmodulate local temperature trends [3–5]. Notably, urban areas frequently experience
higher temperatures compared to non-urban areas, a phenomenon commonly known as the urban heat island
effect [6–8]. However, cities in arid regionsmay exhibit small or even negative urban temperature signals,
referred to as urban cool islands [9]. Themagnitude of the urbanwarming or cooling signal depends on various
factors, including the diurnal cycle, urbanmorphology, physical characteristics, irrigation practices, urban
extent, waste heat release, and regional climate factors [10–13]. Evaluating the relative importance of the near-
surface air temperature signals in urban regions compared to other compensating factors and feedback is
challenging due to the scarcity of long-termurban-scalemeasurements [14].

Distinguishing the individual impacts of greenhouse gas emissions and land use changes on temperature
trends poses a significant challenge, as both factors generally contribute to the overall increase inmean surface
air temperature. Previous efforts to estimate the effects of urbanization on temperature have often relied on
comparing urban and rural observations, yielding varying results based on themethods used to define urban and
rural areas, such as population data or satellite imagery of nighttime light [15–19]. A previous seminal study
compared temperature data from∼2000 stations in theUSwith analysis data based on globalmodel simulations
that excluded urbanization effects [20]. They found that urbanization and other land use changes account for
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half of the observed decrease in the diurnal temperature range, with an estimatedmean surface warming of
0.27°Cper century due to land use changes.

While extensive research has explored the climate impacts of urbanization in larger cities, the effects on
smaller andmid-sized cities have received comparatively less attention [21–25]. It is essential to note that a
significant amount of the global population resides in cities with populations below 300,000 [26, 27]. These
smaller cities often undergo rapid growth and urbanization, resulting in significant changes in the local climate
[28, 29]. Understanding the impacts of urbanization on climate inmid-sized cities is therefore crucial for
effective urban planning andmanagement.

This study focuses on theTri-Cities urban agglomeration located inWashington state, United States.
Comprising of three interconnected cities, Richland, Kennewick, and Pasco, the Tri-Cities area is situated at the
confluence of the Yakima, Snake, andColumbia Rivers in the semi-arid Columbia Basin of EasternWashington.
Experiencing rapid growth since 2000, the Tri-Cities area has become the state’s third-largest city, reaching a
population of 300,000 in 2020.Despite this expansion, the Tri-Cities represent a typical understudied city type: a
mid-sized city in a semi-arid regionwith unique characteristics and location. Consequently, this study aims to
investigate the influence of urbanization in the semi-arid region of the Tri-Cities on seasonal climate patterns
and local warming trends. The subsequent sections describe the datasets used in this study (section 2), analyze
the impacts of land use changes on surface air temperature during different seasons (section 3), and provide a
summary of the results and implications (section 4).

2.Method

2.1. In-situ observations
GlobalHistorical ClimatologyNetwork (GHCN) -Daily is a comprehensive database consisting of climate data
compiled from various sources and subjected to rigorous quality review [30]. This composite dataset
incorporates over 40meteorological variables, including dailymaximumandminimum temperatures, with
some station records dating back to the 19th century. The database is regularly updated, and new data is typically
available within one to two days of observation. In the Tri-Cities area,Washington state, seven stations are
included in theGHCN-Daily dataset, with records spanning from1950 onwards. Among these stations, three
have been in operation for several decades and are locatedwithin or in close proximity to the urbanized area, as
depicted infigure 1(c). Figure B1 in the appendix B shows the locations of the three stations at a larger spatial
scale, whilefigure B2 depicts the locations of the otherfive stations.

To visually represent the land use conditions surrounding the three long-operating stations, their locations
are shown onGoogleMaps infigure 1(d). Station 5, situated at the center of the Tri-Cities, is surrounded by a
community park and residential area, hence referred to as ‘residential.’ Station 3, located to the east of the Tri-
Cities, is surrounded by commercial and industrial buildings, hereafter referred to as ‘concrete.’ Station 2 is the
furthest from the city among the three selected stations and is characterized by uncultivated arid land and
farmland in its vicinity, hence referred to as ‘farmland.’These distinct land use settings surrounding the stations
will be considered in section 3 to demonstrate the combined response to global warming and local effects
stemming from land use changes.

2.2. Reanalysis data
The EuropeanCentre forMedium-RangeWeather Forecast’s Reanalysis dataset version 5 (ERA5), developed by
the EuropeanCentre forMedium-RangeWeather Forecasts (ECMWF), is one of the latest global reanalysis
datasets available [31]. Covering the time period from1950 to the present, ERA5 assimilates a vast array of
ground-based observations, atmospheric sounding data, and remote sensing data to generate a comprehensive
set of surface and atmospheric variables. To address land-specific characteristics, ERA5-landwas introduced as a
land component of the ERA5 climate reanalysis, featuring a higher spatial resolutionwith a grid spacing of
approximately 9 km. This dataset incorporates information on uncertainties for all variables, albeit at reduced
spatial and temporal resolutions [32, 33]. Despite its extensive coverage, ERA5 and ERA5-land lack sufficient
in situmeasurements frommid- and small-sized cities to represent the effects of land use changes in these areas
adequately. Hence, the 2-meter temperature from the ERA5-land dataset is employed as a proxy for capturing
large-scale variations in surface air temperature.

2.3. Satellite-derived estimates
Vegetation cover plays a crucial role inmodulating surface climate, and its significance extends to urban
areas [34]. In this study, we employ theNormalizedDifference Vegetation Index (NDVI), derived from
Landsat satellite data, as a reliable proxy for assessing greenness [35]. NDVI is a widely used index that
effectively captures the presence of live green vegetation at the surface, with documented correlations
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betweenNDVI values and the fraction of absorbed photosynthetic active radiation intercepted by plants
[36]. Furthermore, NDVI has proven valuable in examining the feedback effects of vegetation on local
climate dynamics [37].

To estimate greenness, we calculate themeanNDVI for the 30-meter pixel overlaying each stationwhile
ensuring cloud-free conditions through rigorous cloud screening of satellite images. Landsat pixels were first
removed if any clouds or cloud shadowswere detected by theCFMask algorithmbefore calculating theNDVI
[38]. This analysis spansmultiple seasons and years, specifically from1985 to 2021. Landsat 5 data is utilized for
the period from1985 to 2012, followed by Landsat 7 for 2013 and 2014, and Landsat 8 for 2015 to 2021, ensuring
comprehensive coverage and data continuity [39].

2.4. Separating land use changes fromother factors
To isolate the specific impacts of urbanization and land use changes fromother contributing factors, we adopt a
methodology akin to the approach employed byKalnay et al (2003) [20]. This approach involves subtracting the
reanalysis datasets from the station datasets, with the annualmean removed from each dataset. This subtraction
yields the observationminus reanalysis signal (OMR).

The underlying principle of OMR is that reanalysis data do not incorporate local land surface observations
such as for temperature,moisture, andwind speed. As a result, theOMRapproach assumes that these variables
remain relatively unaffected by urbanization and land use changes and are primarily influenced by assimilated
temperature trends [40–46]. It is important to note that the reanalysis data used byKalnay et al (2003) relied on
theNCEP-NCARdataset, which has been found to exhibit systematic bias inmultidecadal variability. This bias
can significantly impact themagnitude ofOMR signal trends during different time periods [47].

Tomitigate this issue, we utilize different reanalysis datasets demonstrating improved agreement with
observations by assimilating selected ground-basedmeasurements. It is worth noting that using these alternative
reanalysis datasets does not affect theOMRmethodology since the ERA5-land reanalysis data employed in this
study does not incorporate ground-basedmeasurements from the Tri-Cities area. The urbanization and land
use changes in this region occur at a smaller scale than the grid resolution of the ERA5-land datasets, allowing the
independence of theOMRanalysis from localized ground-basedmeasurements.

Figure 1. (a)Population in the Tri-cities area. Two of the three cities are themajor area in BentonCounty, andPasco is themajor area
in FranklinCounty regarding population. (b)Operational period of the stations in the Tri-cities area. (c) Location of the stations.
Shading infigure c is the leaf area index fromERA5-land under the constant assumption. Grey lines in (c) donate the rivers. (d)
Satellite images fromGoogleMapswith the zoom-in figures of the three long-time operated stations. (e)Time series of annually-mean
2 m temperature fromERA5-Land and PRISM.

3

Environ. Res. Commun. 6 (2024) 021004



3. Results

The analysis of seasonal averages of the observationminus reanalysis signal (OMR) derived fromdaily
maximumandminimum temperatures reveals a consistent decreasing trend across all seasons and stationswith
significant correlations (figure 2 and table 1). In contrast, the seasonal averages of the station temperatures
themselves do not exhibit significant trends (see figure A1 in theAppendix), suggesting that local effects in the
Tri-Cities area are compensating for the overall global warming (figure 1(e)). Notably, the residential station
displays a significant and uniformdecreasing rate across all seasons, surpassing other stations in terms of the
magnitude of this decline. This finding can be attributed to factors such as the expanding area of residential
lawns, increased housing construction, and the establishment of community parks in this region, all

Figure 2. Long-term trend in theOMR signals for dailymaximumair temperature for (a)winter (DJF:December, January, and
February), (b) spring (MAM:March, April, andMay), (c) summer (JJA: June, July, andAugust), and (d) fall (SON: September,
October, andNovember).Tst is the 2 m air temperature anomalies from stations respective to their 70-years annual cycle.Tera5l is the
2 m air temperature fromERA5-land reanalysis datasets after removing their annual cycle.We only show the linear regression lines
with p-values smaller than 0.05. The correlation coefficients are shown in table 1.

Table 1.Correlation coefficients ofOMR signals infigure 2. The ‘NaN’ in the table indicates
indicates that there are no significant trends.

DJF MAM JJA SON

DailyMAX residential −0.044806 −0.049814 −0.051330 −0.046904

concrete NaN −0.024786 −0.017516 NaN

farmland NaN −0.021177 −0.040135 −0.009424

DailyMIN residential −0.043970 −0.046681 −0.050015 −0.046828

concrete NaN −0.021279 −0.015386 NaN

farmland NaN −0.019702 −0.039216 −0.015616
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contributing to variable surface heating.On the other hand, the concrete stations exhibit theweakest cooling
OMR signals, which do not showdiscernible seasonal variations. This can be attributed to the local warming of
concrete surfaces, which offer comparatively less compensation for global warmingwhen compared to areas
with vegetation. The farmland station exhibits the highest decreasing rate in summer, with lower rates observed
in spring and fall, and no significant trends observed inwinter. These seasonal variations in the coolingOMR
signals of farmlandmay be linked to the gradual transition of vegetation typewithin the farmland region,
influenced by the crop growth lifecycle.

Previous research has identified several physicalmechanisms bywhich vegetation influences the local
climate, such as transpiringwater vapor from leaves, increasing atmospheric humidity, and inducing a cooling
effect by reducing surface heat loss [34]. To assess the contribution of local greenness changes to the observed
coolingOMR signals shown infigure 2, we examine theNormalizedDifferenceVegetation Index (NDVI)
derived fromLandsat satellite data, which indicates changes in greenness since 1985 (figure 3). In all seasons
except for winter, NDVI values are higher in the period 2017-2021 compared to 1985-1989, indicating a general
increase in greenness in recent years. The largest differences are observed in summer, while spring and fall show
smaller differences. These seasonal differencesmay be related to the gradual transition of vegetation type in the
region from evergreen conifers tomore seasonal (deciduous) species, including common lawn grasses.

The averagedNDVI among the nearest ten grids surrounding the three examined stations exhibits variations
corresponding to their respective land use types (table 2). Inwinter, all three locations show a decrease inNDVI,
presumably reflecting the prevalence of deciduous lawn grasses that become less visible during this season,
contrastingwith the region’s native coniferous evergreen forests. In spring, summer, and fall, a reduction in
NDVI is observed at the concrete locations, possibly due to built-up areas in recent years. Conversely, increases
inNDVI are observed at the farmland location during these threewarm seasons, which is likely due to the
original semi-arid layouts and the crop growth lifecycle. The residential location exhibits theweakest variations
in these threewarm seasons, likely resulting froma combination of built-up areas (e.g., residential buildings)
and grass lawns.

The relationships betweenNDVI and theOMR signals, as depicted infigure 4, reveal that statistically
significant correlations are only observed for the farmland locations. This indicates that in these farmland areas,
the variations in vegetation, as represented byNDVI, can explain a significant portion of the observed cooling
OMR signals. On the other hand, in concrete locations, where vegetation cover is limited and dominated by
built-up areas, theweak coolingOMR signalsmay arise fromother factors that are compensated by the heating
effects associatedwith buildings and infrastructure. On the other hand, the insignificant trends observed in the
residential location are not surprising, given the relatively small differences inNDVI values displayed in table 2.
This does not imply that land use changes do not contribute to theOMR signals in residential areas but rather
suggests that the spatial variations in vegetation and buildings at the 30-meter resolution of the satellite-derived
NDVI datasetmay not capture the small-scale variations in community parks and residential areas. Therefore,

Figure 3.The density of the differences between the averagedNDVI during 2017–2021 and 1985–1989.

Table 2.Difference ofNDVI between 2017-2021 and 1985-1989 for the
three stations.

DJF MAM JJA SON

residential −0.19219 0.042 83 −0.00702 0.017 94

concrete −0.07445 −0.04672 −0.06547 −0.04799

farmland −0.08352 0.044 53 0.065 42 0.055 63
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further investigation is warranted to explore the specific factors contributing to the observedOMR signals in
residential areas and understand the complex interactions between land use changes and local climate dynamics.

4.Discussion and conclusions

Washington State’s Tri-cities area has experienced rapid expansion in recent decades,making it the third largest
urban agglomeration in the state. Herewe study how land use changes have affected the region’s 2-meter
temperature, and our findings indicate that the area has consistent cooling signals from land use changes. These
cooling signals compensate for the changes due to global warming and can partly be attributed to the increased
greenness resulting from land use changes.We also show that differentmicroclimates have emerged due to
variations in land use changes, resulting in unique relationships between greenness and the temperature changes
caused by land usemodifications.

The analysis of observationminus reanalysis signal (OMR)derived fromdailymaximumandminimum
temperatures reveals a consistent decreasing trend across all seasons and stations in the Tri-Cities area. The
residential station exhibits themost significant and uniformdecline, attributed to factors such as expanding
residential lawns, increased housing construction, and establishing community parks. Concrete stations display
weaker coolingOMR signals, likely due to higher surface sensiblefluxes from concrete compared to areaswith
vegetation. The farmland station shows the highest decreasing rate in summer, with variations across seasons
linked to the transition of vegetation types within the farmland region.NormalizedDifference Vegetation Index
(NDVI) analysis indicates an overall increase in greenness since 1985, particularly in recent years, with larger
differences observed in summer.NDVI variations among the nearest 10 grids surrounding the specific stations
alignwith their respective land use types, including a decrease inwinter and reductions in spring, summer, and
fall in concrete areas, while farmland areas show increases during these warm seasons. The relationships
betweenNDVI andOMR signals demonstrate statistically significant correlations primarily for the farmland
locations, indicating that vegetation greennessmay play a pivotal role in generating the observed coolingOMR
signals. Furthermodeling-based analysis in the futuremay be required to confirm and refine this hypothesis and
explore any additional factors thatmay contribute to the negativeOMR signals.

Thefindings highlight the significant influence of vegetation and land use changes on the observedOMR
signals.While the farmland areas show clear associations between vegetation changes and coolingOMR signals,
the limited vegetation cover and dominant built-up areas in concrete locations contribute toweaker cooling
signals. The insignificant correlation betweenNDVI andOMR signals observed in the residential areasmay be
attributed to the small-scale spatial variations not adequately captured by the 30-meter resolution of theNDVI
dataset. Further investigations arewarranted to delve into the specific factors driving the observedOMR signals
in residential areas and to gain a deeper understanding of the complex interactions between land use changes
and local climate dynamics.

There has been substantial discussion on the role of urbanization onmeasured temperature trends inmany
parts of theworld [46, 48, 49]. This discussion has primarily focused onwhether urbanization, through urban
expansion and densification, contributes to long-termwarming trends by impacting the footprint of nearby
weather stations.Here, wefind an interesting counterexample that shows the opposite urban impact. For this
semi-arid region, wefind that if urbanizationwere taken into account, it would actually decrease the overall
warming trends due to local urban greening over time. Thesefindings are particularly intriguing because this
result is consistent with broader definitions of urbanization that are not restricted tomere increases in built-up
areas. Urbanization can encompass awide range of human-mediated land covermodifications, including

Figure 4.Correlations between theNDVI andOMR signals. The solid line is the linear regression of the correlations for thosewith
p-values smaller than 0.05. The numbers are the coefficients of the linear regression.
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practices like lawn irrigation and tree planting efforts, each characterized by specific traits unique to their
respective cities and regions [9, 13, 50, 51]. Thesemodificationsmay also yield similar observations of cooling
due to increased greenery in cities [52–57]. In general, small or negative urban heat islands (referred to as urban
cool islands) have been often observed for cities in arid and semi-arid areas, including a general cooling in arid
cities over time [58–60]. Our findings stress the importance of a nuanced understanding of the relationship
between urbanization and rising temperatures and underscore the importance of consideringmultiple factors
when studying climate change.

Also, it is important to acknowledge certain limitationswithin the scope of this study. Firstly, themethod
employed in this research relies on statistical techniques to infer the cooling effects of anthropogenic activities,
potentially linked to local vegetation increases. Future research could providemore comprehensive details,
including sensitivity studies usingmodeling approaches, whichwould enhance our understanding of the
underlyingmechanisms involved and driving factors of this cooling effect [57]. Secondly, expanding the focus to
include similar cities would bolster ourfindings’ generalizability and contribute to amore holistic
understanding of the dynamics at play. Thirdly, urbanization and land use changesmay interact non-linearly
with global warming [51]. Future studies could extend to investigate the urban cooling effect in awarmer
climate. These limitations underscore the need for continued research in this domain, with the potential for
more robust and nuanced insights in subsequent studies.
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AppendixA. Air temperature trends

Based onfigure A1, it appears that there are no significant warming or cooling trends in the 2-meter
temperature. This suggests that any global warming in this regionmay be offset by other factors.
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Appendix B. Location of stations

The locations of the three selected stations infigure 1(c) are displayed at a larger spatial scale infigure B1.
Additionally, figure B1 shows the locations of the otherfive stations with shorter duration of data availability
(figure 1(b)).

Figure A1. Long-term trend of the stational 2 m temperature in (a)winter (December, January, and February), (b) spring (March,
April, andMay), (c) summer (June, July, andAugust), and (d) fall (September, October, andNovember).

Figure B1. Location of the three selected stations in figure 1(c).
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