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Abstract
Through conversion of land cover to more built-up, impervious surfaces, cities create hotter
environments than their surroundings for urban residents, with large differences expected between
different parts of the city. Existing measurements of ambient air temperature and heat stress,
however, are often insufficient to capture the intra-urban variability in heat exposure. This study
provides a replicable method for modeling air temperature, humidity, and moist heat stress over
the urban area of Chapel Hill while engaging citizens to collect high-temporal and
spatially-resolved air temperature and humidity measurements. We use low-cost, consumer-grade
sensors combined with satellite remote sensing data and machine learning to map urban air
temperature and relative humidity over various land-cover classes to understand intra-urban
spatial variability of ambient heat exposure at a relatively high resolution (10 m). Our findings
show that individuals may be exposed to higher levels of air temperature and moist heat stress than
weather station data suggest, and that the ambient heat exposure varies according to land cover
type, with tree-covered land the coolest and built-up areas the warmest, and time of day, with
higher air temperatures observed during the early afternoon. Combining our resulting dataset with
sociodemographic data, policymakers and urban planners in Chapel Hill can use data output from
this method to identify areas exposed to high temperature and moist heat stress as a first step to
design effective mitigation measures.

1. Introduction

During 2018–2020, a total of 3066 heat-related deaths occurred in the United States (CDC, 2022). Climate
change is increasing the probability of intense, prolonged heat waves in many parts of the world (IPCC 2021,
Vargas Zeppetello et al 2022). Extreme heat exposure in urban areas is of particular concern for public health.
The urban heat island (UHI) effect, the phenomenon of higher temperatures in urban areas compared to
their rural surroundings (Oke 1982), exacerbates the negative health effects of heat waves and extreme
temperatures within cities (Iungman et al 2023). Exposure to excessive heat can kill people, and it can also
cause general discomfort, respiratory problems, heat cramps and exhaustion, non-fatal heat strokes, and
dehydration (Zander et al 2015, Heal and Park 2016, Park et al 2020). At the population level, extreme heat
can lead to a loss of labor productivity and decreased learning (Tan et al 2010). These cumulative impacts are
expected to increase in frequency and severity as the portion of the human population living in cities is
projected to grow over the next few decades and climate change worsens (Ritchie and Roser 2018). The IPCC
Sixth Assessment Report on Climate Change anticipates increases in the frequency and intensity of heat
waves, with pernicious effects that interact dynamically with urban heat exposure (Krayenhoff et al 2018).
Future urbanization is also expected to worsen average summer daytime and nighttime wet bulb globe
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temperature (a more physiologically complete measure of heat stress than air temperature alone) of
0.5 ◦C–0.7 ◦C and up to∼3 ◦C in some locations (Huang et al 2019).

Within cities, prior research has shown that temperatures (either air or land surface) vary considerably
according to multiple factors. The presence (or absence) of urban green space, amount (size of city), form
(building height, ratio of building height to width of street canyon, etc), and color (influencing reflectivity of
solar radiation) of built-up structures, and intensity of human activity (through increased anthropogenic
heat flux) all lead to intra-urban variability of land surface temperatures (LSTs) and the surface UHI effect
(Chakraborty et al 2019, Benz and Burney 2021). Since urban landscapes are diverse and thermally complex,
heat is unevenly distributed (Shi et al 2021, Chakraborty et al 2022), and research has shown differential
access to green space and tree cover along with exposure to denser, built-up urban areas translates into
varying potential for heat exposure (Chakraborty et al 2019, 2020, Ziter et al 2019). This intra-urban
variability may also lead to different heat exposure by sociodemographic group, with people of color and
poorer urban residents living in neighborhoods with higher land surface and air temperatures than
non-Hispanic white and wealthy counterparts in nearly all major U.S. cities (Eliasson and Svensson 2003,
Erell and Williamson 2007, Fenner et al 2017, Skarbit et al 2017, Bechtel et al 2019, Benz and Burney 2021,
Hsu et al 2021, Qian et al 2022, Chakraborty et al 2023).

Despite the increasing severity and probability of heat waves and extreme heat waves disproportionately
impacting urban areas, high-resolution measurements attuned to measure intra-urban heat variability are
lacking for most cities (Muller et al 2013, Ziter et al 2019). Air temperature, feels-like temperature, and other
weather data for an entire city are often based on one or a few meteorological stations at best, which are fixed
either at a city’s center or near an airport, which means they are not necessarily characteristic of the entire
city’s weather conditions; and cannot provide estimates of variability by neighborhood (van Hove et al 2015).
Other types of information to contextualize weather data that are relevant include the type of land cover or
local climate zone where a station is located. Therefore, most studies on heat-related mortality and morbidity
utilizing these single-point weather station measurements make a critical limiting assumption that all people
living in a geographic area are all exposed similarly (Rajagopalan et al 2020).

To address this limitation, researchers have turned to collecting ground-based data (i.e. air temperature,
humidity, etc), which can be time and resource consuming, or using satellite remote sensing data. Numerical
weather models of the urban surface and atmosphere are also increasingly being used as alternatives
(Krayenhoff et al 2021, Wang et al 2023). But these models can be computationally expensive when run at
fine scales and have their own uncertainties (Krayenhoff et al 2021). Satellite measurements have the
advantage of inexpensively providing data using consistent methods at high frequency and at policy-relevant
geographic scales (Manoli et al 2019, 2020, Chakraborty et al 2020, Hoffman et al 2020, Benz and Burney
2021, Hsu et al 2021). Of the factors that pertain to urban heat and are of interest from a public health
perspective, however, satellites only measure LST—a significant limitation since this measurement is difficult
to apply to pedestrian-level heat exposure (Stewart et al 2021, Venter et al 2021). In addition, satellite data are
limited to certain times of the day (i.e. overpass times) and strictly clear-sky conditions (for optical and
thermal imagery), and represent a directional view of land surface temperature dependent on sensor view
angle (Shi et al 2021). A previous study found weak relationships between satellite-derived LST and ambient
heat stress across scales during daytime (Chakraborty et al 2022).

To address these data limitations, citizen science methods, which engage local communities in collecting
relevant data such as air temperature and humidity at a high temporal and spatial resolution, and private
weather stations, have been proposed as possible solutions to provide more detailed data to improve
estimates of intra-urban air temperature variation. Since 2017, the National Oceanic and Atmospheric
Administration (NOAA) has partnered with more than 60 cities in the U.S. to design heat mapping
campaigns that utilize mobile sensors attached to vehicles to map intra-urban heat variability throughout a
typically hot summer day (NOAA n.d.). These data have been used to develop city-wide heat maps (Shandas
et al 2019) and inform local policy regarding heat mitigation measures. Although these campaigns provide
baseline measures of intra-urban heat variability for participating cities, Shi et al (2021), compared the
NOAA citizen heat mapping data collected in Baltimore in 2019 to fixed sensor data and found several
limitations, including the need for air temperatures above land surfaces other than roads collected through
either bicycle or on-foot traverses to reduce sampling biases.

Recent advances in machine learning (ML) and other non-linear, non-parametric statistical modeling
approaches provide potential to combine earth observation data along with ground-based measurements to
develop more comprehensive and higher-resolution, continuous maps of heat exposure and stress across an
urban area. Several previous studies have combined satellite remote imagery along with ground-based
measurements, either citizen-collected data, defined as data collected from hand-held (Schwarz et al 2012) or
mobile sensors attached to vehicles (Hart and Sailor 2009, Shandas et al 2019), weather stations (Ho et al
2014, Venter et al 2020, Vulova et al 2020, Shi et al 2021, Zumwald et al 2021, Burger et al 2022), using
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non-parametric ML techniques for classification and regression modeling to predict and evaluate ambient
air temperature. None of these studies, however, predict humidity, which is an important contributor to
moist heat stress (Steeneveld et al 2011).

In this study, we provide a replicable, scalable approach to engaging citizens in utilizing low-cost,
consumer-grade, hand-held sensors to map varied land-cover traverses of intra-urban heat, humidity, and
heat stress variability. Combined with satellite remote sensing data on land cover, normalized difference
vegetation index (NDVI; a measure of greenness), normalized difference built up index (NDBI; a proxy for
urban structures), and LST, we develop a ML model to predict air temperature, humidity, and thus moist
heat stress for the U.S. town of Chapel Hill, NC. The resulting dataset allows for examination of heat,
humidity, and heat stress trends across the entire urban extent, which can aid policymakers in determining
key areas to prioritize for heat mitigation measures such as albedo management and shade increase.

2. Materials andmethods

2.1. Study area
Chapel Hill, NC is a town with a 2021 population of 61128 (US Census Bureau 2021) located within the
Raleigh-Durham-Cary metropolitan statistical area, spanning the counties of Durham, Orange, and
Chatham. It is the second largest metropolitan area in the state of North Carolina, with a 2019 population of
2079687. Its total area is 21.75 square miles (56.32 km2), with a population density of 2871.2 people per
square mile or 1107.75 people per square kilometer (US Census Bureau 2021). Chapel Hill is in a humid
subtropical climate (Cfa), according to the Koppen-Geiger climate zone classification (Rubel and Kottek
2010), with typical air temperatures averaging between 32 ◦F and 88 ◦F, or about 0 ◦C and 31 ◦C.

2.2. Air temperature and humidity data collection
Working with local government officials in the Town of Chapel Hill, we identified five areas from the Town of
Chapel Hill’s Future Land Use Map and Extreme Heat Resiliency Assessment (Town of Chapel Hill 2020) for
citizen scientists to map. These five neighborhoods—(1) Franklin St., (2) Meadowmont; (3) Southern
Village; (4) University Place; and (5) Chapel Hill North were areas in Chapel Hill with relatively less tree
cover, a higher density of built infrastructure (i.e. buildings, roads) and population than the rest of Chapel
Hill (Town of Chapel Hill 2020). Each were identified as ranking ‘high’ on the Town’s Extreme Heat
Vulnerability rating, meaning the town has gauged these areas with the highest number of sensitive
populations and highest percentage of developed land cover (>85%), with a low amount of tree canopy
coverage (<33%) (Town of Chapel Hill 2020).

Two to three mile pedestrian routes were determined for each neighborhood to include a variety of
land-cover types, from sidewalk, shaded/unshaded, pavement, and grassy areas (see figure S1). We planned
routes first using Google maps to determine approximately 2–3 mile walking routes (or roughly 1 h) that
avoided potentially dangerous areas (i.e. highways or road crossings without designated crosswalks). Our
team then visited each neighborhood and tested each route and made adjustments to ensure traverse paths
were safe for pedestrians and walkable. We developed two routes per neighborhood to maximize mapping
coverage in the event that multiple volunteers showed for each time period. Citizen volunteers were recruited
using email lists sent by the Town of Chapel Hill and Museum of Life and Science, as well as from the UNC
Chapel Hill community. Since our Institutional Review Board exemption only covered adults over the age of
18, our volunteers had to be over the age of 18 to participate, even though no sensitive or personal data were
collected. Participants were emailed walking routes prior to the study and were asked to assess their own
ability to walk outside on a hot day while carrying a smartphone and Pocketlab sensor for at least an hour
and a half.

We worked with NOAA to identify a hot day in August when rain was not forecasted to conduct the heat
mapping campaign, which we identified as Saturday, 28 August 2021. On the mapping campaign day, we set
up five hubs in each neighborhood as meeting points for volunteers to receive the sensors and mapping route
instructions. We provided instructions to each volunteer to ensure that they held the sensors in their hands
and that the sensor ports were unobstructed. In total around 40 citizen volunteers participated in two
mapping sessions: from 2–3 pm EDT, UTC−05:00 and 5–6 pm to capture two time periods’ air temperature
and humidity measurements (see table 1). Thirteen volunteers participated from 2–3 pm, and 15 volunteers
participated from 5–6 pm. For some neighborhoods, like the Franklin Street neighborhood, we had some
instances of multiple volunteers mapping the same route during a session, but for most routes, we split
volunteers so that they were not walking the same route. When more than two volunteers showed up to map
a given route during a session, we had them start a route at different ends of the routes, to take into account
any temporal fluctuations that might have occurred during the hour or so it took for them to map a route.
Participants were able to select which side of roads and walkways they mapped. Since no participants
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Table 1. Descriptive statistics of air temperature and RH data collected by citizens in all five neighborhoods.

Session No. of volunteers Variable Count Min Mean Median Max St.dev.

2–3 pm 12 Air temperature (◦C) 20 551 33.3 37.8 37.7 42.6 2.0
2–3 pm 12 Relative humidity (%) 20 471 30.0 40.4 39.5 58.9 5.0
5–6 pm 12 Air temperature (◦C) 12 996 29.9 34.7 35.1 39.2 1.6
5–6 pm 12 Relative humidity (%) 12 552 33.8 45.2 45.0 58.2 4.0

Table 2. PocketLab sensor specifications (from PocketLab Weather Specifications n.d.).

Relative humidity Air temperature

Range 0%–100% −40 ◦C–85 ◦C (−40 ◦F–185 ◦F)
Resolution 0.02% 0.01 ◦C (0.02 ◦F)
Absolute accuracy 3% 0.5 ◦C (0.9 ◦F)

volunteered for Southern Village’s 5–6 pm time period, we only recorded measurements for the 2–3 pm
session for this neighborhood. table S1 shows the type and percent of each land cover that participants
mapped during the two sessions.

2.3. Pocketlab sensors
For data collection, we utilized PocketLab(™) Weather sensors (PocketLab Weather Specifications n.d.)
containing a three-in-one BME280 module that embeds sensors to gauge air temperature, relative humidity
(RH), and barometric pressure. In our study, we set the PocketLab sensors to collect geographic location
(latitude and longitude), ambient air temperature and RH data every 1 second (table 2). To evaluate the
overall accuracy and validity of the PocketLab sensors to record air temperature and humidity, we conducted
a comparison study with the PocketLab sensors and the NC State Climate Office’s research-grade local
weather station in Chapel Hill, located at the Old Horace Williams Airport (North Carolina State Climate
Office, NC State University n.d.), which is located slightly north of the UNC-Chapel Hill campus
(35◦56′02.9′′N 79◦03′43.0′′W). The weather station instruments for air temperature and RH are at 2 m
height (further details on the sensor manufacturer and models can be found at the North Carolina State
Climate Office, NC State University (n.d.) website for the Old Horace Williams Airport weather station). We
were only able to conduct the comparison study on the afternoon of 6 February 2023, which had an average
air temperature of 48.6 ◦F, min air temperature of 37.8 ◦F and max air temperature of 61.2 ◦F. We compared
PocketLab sensors for each of the following conditions: handheld (∼1 m in height; 3 total sensors) in
non-shade conditions and non-handheld (<1 m in height; 2 total sensors) on a table in both shade and
non-shade conditions. For the sensors that were handheld, we minimized walking around the weather station
since the purpose of the comparison was to see how well the sensors aligned with the weather station data.

To compare the measurements, we examined correlation coefficients between the PocketLab and weather
station data, and conducted Analysis of Variance (ANOVA) statistical tests to compare the mean
measurements of the PocketLab sensors and the weather station for the validation study (tables S2 and S3).
Overall, we found that the Pocketlab sensors were responsive to changes in air temperature, aligned well with
the weather station’s absolute air temperature measurements (r = 0.48 comparing handheld sensor and
weather station; see figure S2; table S2), and the way in which they were carried did not significantly
(p> 0.1) impact their consistency s (−0.0006 ◦C; se: 0.045; table S3). During our comparison, a large drop
in air temperature was observed after 15:30 from all sensors, which may have been due to clearing of
previous cloudy conditions. The RH measurements did not align as closely with the weather station
measurements (r = 0.05 comparing handheld sensor and weather station data; table S2) and showed higher
significant differences compared to the handheld sensors (2.870%; se: 0.060). These differences in the RH
values are to be expected, since RH is more difficult to measure, and the weather station sensor for RH is
shaded, compared to our handheld sensors, which were gauging RH in sunlight. Regardless, since RH is
strongly affected by air temperature, which we show in supplementary figure S3, we determined that our
method using the PocketLab sensors can still provide measures of overall heat stress even if there might be
underestimations in RH.

Participants were asked to place the PocketLab sensors on the palm of their hands (∼1 m above ground)
so that the air temperature and humidity ports, which are located on the sides of the sensor casing, were not
obstructed. During our preliminary testing of the devices, we determined that body temperature does not
warm the device or lead to an increase in air temperature measurement. We asked participants to allow the
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Table 3. Overview of spectral data collected.

Date type
Spatial
resolution

Temporal
resolution Data source Data acquired time Data layer calculation

Land surface
temperature
(LST)

30 m
(resampled
from native
resolution
of 100 m)

16 d Landsat 8 (USGS 2021) 24 August 2021;
Average LST of August
and September, 2021

—

Land use/land
cover (LULC)

10 m — ESAWorldcover 2020
(Zanaga et al 2021)

2020 —

Satellite-derived
indices

10–20 m 8 d Sentinel-2 (Zanaga
et al 2021)

on 5 September 2021 NDVI= (NIR− Red)/
(NIR+ Red)
NDBI= (SWIR−NIR)/
(SWIR+ NIR)

Aerial imagery 1 m 2–3 years The National
Agriculture Imagery
Program (NAIP)
(Earth Resources
Observation And
Science (EROS) Center
2017)

2018 —

sensors to acclimate for a few minutes before recording. A csv data file was saved after each participant
finished a mapping session.

After data were recorded and compiled, we observed some data quality issues related to some sensor,
smartphone, or user errors. For example, we noticed that the first and last two minutes of a participant’s data
collection exhibited more fluctuations as participants were initializing their smartphone app and pairing
with the PocketLab sensor. We therefore removed these data points. We also removed outliers greater than
three standard deviations around the mean of each data file following the study on UHI by Chapman et al
(2017) using crowdsourcing data. Since some volunteers mapped the same route during the same time of
day, we averaged geographically overlapping readings (data with the same latitude and longitude value) to
avoid data duplication. Table S4 documents the total number of participants whose data were used for the
study after all quality control.

2.4. Spectral and remote sensing data collection
To develop city-wide maps of air temperature, humidity, and estimates of moist heat stress, we collected
multi-spectral satellite remote sensing imagery, including LST, and land use/land cover (LULC). Since local
temperature is related to surface characteristics (Chen et al 2006, Chakraborty et al 2019), we combined
some of this multi-spectral data to calculate common indices for green (Chen et al 2014), and built-up area,
NBDI (Zha et al 2003) (table 3). We also collected high-resolution aerial imagery from the USGS National
Agriculture Imagery Program (Earth Resources Observation And Science (EROS) Center 2017).

2.4.1. Landsat LST data
Studies have found positive correlation between satellite-derived LST and air temperature (Mildrexler et al
2011, Zhang et al 2014), particularly during nighttime (Chakraborty et al 2022), and LST data have been
widely used as a proxy for urban heat exposure in the past (Chakraborty et al 2019, Manoli et al 2019,
Hoffman et al 2020, Hsu et al 2021, McDonald et al 2021, Mentaschi et al 2022). In this study, the LST data
from satellite sensors Landsat 8 and MODIS were examined, since both data sources have their advantages
and trade-offs. After comparing the spatial and temporal coverage of both sources of data, we decided to use
the LST data from Landsat 8 for its higher spatial resolution (100 m) and temporal coverage for the time
period we sampled. One cloud-free scene closest to the citizen-collected data on 24 August 2021 at 15:53
UTC from Landsat 8 was selected. Based on the National Weather Service (NWS), the selected Landsat 8
scene date (24 August 2021) and campaign data collection date (28 August 2021) have similar daytime air
temperature ranges, where the weather station reported air temperatures for Chapel Hill range from 19.4 ◦C
to 32.8 ◦C vs. 22.2 ◦C to 33.9 ◦C respectively for the two dates. To reduce the dependency on a single date
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LST data and add robustness to the model, averaged LST data for August and September 2021 was also added
as an independent variable. We filtered out any scene with 10% of cloud coverage or more during this time
window.

2.4.2. LULC
Studies have found that different LULC types directly result in air temperature variance at and near the
earth’s surface because of different biophysical effects, which include land-surface energy exchanges
(Mahmood et al 2013, Li and Gallagher 2019). Since air temperature data from our campaign is measured in
2021 and our collected land cover (i.e. built-up, grassland, tree, barren/sparse, and cropland) data is from
2020, we assume that patterns in near surface air temperature and its anomalies are consistent temporally.
We detail the number and percentage of land-cover mapped in study in table S1.

2.4.3. Satellite-derived indices
Although we make the assumption that LULC types have a consistent impact on the near surface air
temperature and the anomalies between the years 2020 and 2021, there might be seasonal variance in air
temperature and potential LULC change. We incorporate NDVI and NBDI—two commonly-used satellite
derived indices that have established relationships with LST (Chakraborty et al 2019) to aid in prediction for
air temperature and RH. NDVI indicates vegetation coverage or ‘greenness’ and can distinguish between
different LULC types and aid in understanding the relationship between vegetation and local climate (Rouse
et al 1974, Ziter et al 2019). NDBI, developed by (Zha et al 2003), indicates built-up area as well as captures
any new urban development of the study area between 2020 and 2021. Both indices are calculated with the
satellite image from Sentinel-2 on 5 September 2021—the latest available and cloud free scene since data
collection (table 3).

2.4.4. The national agriculture imagery program (NAIP)
The National Agriculture Imagery Program acquires aerial imagery at 1 m resolution during the ‘leaf-on’
season in the continental U.S starting from 2003. NAIP imagery is available every 2–3 years for each state.
This high-resolution multispectral product can provide the details of land cover/land use, building structure,
etc. for urban areas. All four bands of NAIP (Red, Green, Blue, Near-infrared) imagery from year of 2018
were evaluated as input variables.

2.5. Model selection and data preprocessing
We evaluated several ML models to predict air temperature, RH and thus moist heat stress across the entire
spatial extent of our study area: multilinear regression (MLR), support vector regression (SVR), random
forest (RF), and XGBoost. The MLR based model is one of the most popular multidimensional interpolation
algorithms in urban studies for its ability to capture the correlation between local temperature and UHI with
the intra-urban environment variances (Voogt and Oke 2003, Kousis et al 2021). We used MLR as the
baseline model to compare the performance of other models because it is easy to implement. SVR with a
radial kernel is an extension of the classifier support vector machine (SVM), which has also been used to
study urban environments (Lai et al 2021). Studies on at or near surface air temperature modeling have
found this estimator results in a lower root mean square error (RMSE) compared with other more complex
algorithms (Chevalier et al 2011, Paniagua-Tineo et al 2011). RF regression is a nonparametric ML algorithm
and known for picking up the non-linear relationship between the input variables (Breiman 2001). RF has
been applied to multiple studies to produce high-resolution LST from relatively coarse data and shown solid
performance or predicting spatially continuous air temperature when combined with satellite-derived
information (Hutengs and Vohland 2016, Yang et al 2017, Venter et al 2020). Finally, XGBoost is one of the
state-of-art regression models based on the gradient boosting decision tree model. We used a standard 80/20
split to create training and testing subsets of our data, meaning we used 80% of our data to train our model
and held out 20% of the original data to test model performance. We used RMSE and r2 as the model
comparison metrics to evaluate how selected models performed on both training and test dataset. For
instance, a low RMSE and high r2 value indicates the model trained using 80% of the data was able to predict
the ‘unseen’ 20% of the data.

We implemented the ML algorithms in the R Statistical Computing Environment (version 4.2). MLR is
included within R version 4.2; SVM and RF are from R package caret version 6.0-92 (Kuhn 2008); and
XGBoost from XGBoost R package version 1.6.0.1 (Chen and Guestrin 2016). All selected models, except
MLR, are controlled by a set of hyperparameters, which constrain the learning process (Yang and Shami
2020). The hyperparameters in SVM are the penalty parameter for the error term, which controls the margin
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of the decision boundary and sigma, which defines the distance between support vectors and the decision
boundary. In RF, we tune the model with the number of trees, number of variables randomly sampled as
candidates at each split, the minimum number of observations in a terminal node, and the matrix to use to
split the data into two branches. In XGBoost, hyperparameters include the maximum depth of the tree, the
learning rate, the minimum sum of weight in a node, and minimum loss reduction. We tuned each model
with five-fold cross validation on a range of parameters to achieve the best parameters resulting in lowest
RMSE and highest r2 on the data’s test set.

Two data preprocessing approaches were used in our study. First, two sets of variables were prepared and
evaluated with all four ML algorithms for modeling air temperature. The first set with all variables is
described in table 3, while the second set removed all NAIP bands. Although the NAIP data gives a high level
of detail of the study area, the latest available data is from 2018 and the vegetation and urban extent
information may have changed in the past 3 years. Meanwhile, in the input variables, Sentinel-2 NDVI and
NDBI provide similar information about vegetation and built-up density and are more temporally
consistent. Second, we scaled and centered the continuous variables with a preprocessing function
(prePrecoss) from R package caret version 6.0-92. This preprocessing function resulted in a new dataset with
rescaled and normalized input variables, which was achieved by subtracting the mean from each input
variable and dividing by its standard deviation, so that each variable has a mean of zero and a standard
deviation of 1. This approach is applied to the dataset for SVMmodel training only. SVMmodels are
sensitive to feature scaling, as SVM takes input variables to find the margins of hyperplanes to best separate
the data. The distances between data points with and without scaling are different. Thus, the SVM can be
biased if trained with un-scaled data.

2.6. Model evaluation and final selection
Supplementary tables S5 and S6 shows the results of air temperature prediction from each model with the
best parameters. The RF and XGBoost model have similar test RMSE and r2 for both sessions, but
outperform the other two models in terms of RMSE and r2 For computation time, RF model training is
about seven times faster than XGBoost training on an 8-core Windows PC. Comparing the results from
different sets of variables with the same model, the set without NAIP yielded better results in both sessions
(table S6). Based on the results from both sets of variables with all four selected models, we decided to use
the RF model and the dataset without NAIP for its overall predictive performance and fast computation for
our dataset. The best performing air temperature model results in a RMSE= 0.76 ◦C, r2 = 0.86 on the test
data for the 2–3 pm session and RMSE= 0.48 ◦C, r2 = 0.91 on test data for the late afternoon (5–6 pm).

We used the same input variables as the air temperature model to build the RH models. Table S7 shows
the results of the RH predictions from all four ML algorithms with their best parameters. The XGBoost is the
best performing humidity model, which results in a RMSE= 1.46%, r2 = 0.92 on the test dataset for 2–3 pm
session and RMSE= 1.29%, r2 = 0.89 on the test dataset for the 5–6 pm session.

To better understand the key predictors for air temperature and RH, we ran Monte Carlo cross-validation
(Xu and Liang 2001, Chakraborty et al 2021) with the model run 50 times with random training and
validation splits and evaluated the input features with permutation feature importance scores in the air
temperature model and ‘Gain’ scores in the humidity model.

2.7. Heat stress calculation—Humidex
To get an estimate of the human physiological response to heat, we use the Humidex, an operational metric
of moist heat stress (Masterton and Richardson 1979). Humidex is calculated for each pixel using the
estimates of air temperature (T) and RH from the ML models. First, we calculate dew point temperature
(Td) from the following equation:

Td =
243.04×

{
ln
(
RH
100

)
+ 17.625×T

243.04+T

}
17.625−

{
ln
(
RH
100

)
+ 17.625×T

243.04+T

} . (1)

Then Humidex is computed from:

Humidex= Td + 0.5555 ×
(
6.11× e

5417.753×
(

1
273.16−

1
273.15+Td

)
− 10

)
. (2)

Note that Humidex is a unitless proxy for how hot it feels under shade, and results should be interpreted
keeping this caveat in mind.
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2.8. Air temperature, humidity, and Humidex prediction
After model evaluation, we re-trained the model with all of the citizen-collected data to generate the final
model. The original input variable layers have different spatial resolutions. NDVI and NDBI from Sentinel-2,
in addition to the land cover data, are 10 m spatial resolution, while the LST layers are 30 m spatial resolution
(though these are resampled from the native 100 m resolution). To produce the predicted air temperature
and humidity layers for the whole study area and retain the information from the LULC dataset, we chose
10 m as our target resolution. We resampled LST layers from 30 m to 10 m using the rasterio (version 1.0.21)
package in Python. We then used the final model with the input variables that cover the whole study area at
10 m spatial resolution as inputs to predict the air temperature and RH. We also used the predicted air
temperature and RH to calculate the Humidex as a proxy to simulate pedestrians’ thermal comfort under
shade. Finally, the predicted air temperature, RH, and Humidex results were converted into GeoTIFFs with
the rasterio (version 1.0.21) package in Python.

2.9. Sociodemographic analysis
To explore disparities by sociodemographic group in Chapel Hill, replicating similar analyses in previous
studies (Chakraborty et al 2019, Benz and Burney 2021, Hsu et al 2021) that used primarily LST, we
extracted census tract and block group demographic data for Chapel Hill from the 2020 ACS 5 year Data
Profile (US Census Bureau 2020). Since some areas of Chapel Hill’s jurisdictional limits cover census tracts in
other counties, we included additional census tracts in this analysis that overlap, which explains why our
urban extent slightly differs from Chapel Hill’s own administrative boundaries (supplementary figure S4).
Median household income and race, according to the U.S. Census’s categorizations of White, Black, Asian,
Pacific Islander, Native American, and Other were extracted. For examining racial disparities, we use census
tracts, the smallest level of aggregation for which the race data are available. To examine income-based
disparities, we use census block groups.

The observed LST and predicted air temperature, humidity, and Humidex are aggregated to the census
tracts and block groups. Associations between income and the heat exposure metrics are examined using
Pearson’s correlations in R language. To examine race-based disparity, we calculated population-weighted
heat exposures for each census group, following the method in Hsu et al (2021).

3. Results

3.1. Local-scale air temperature and humidity
Although recorded weather station data from the NC State Climate Office Chapel Hill weather monitoring
station showed measured air temperature maximum of 33 ◦C and a minimum air temperature of 30 ◦C for
28 August 2021 (North Carolina State Climate Office, NC State University n.d.) our citizen volunteers
mapped higher air temperatures in all five neighborhoods, ranging from 33.3 ◦C to 42.6 ◦C in the 2–3 pm
session, and 29.9 ◦C to 39.2 ◦C in the 5–6 pm session (figure S5). The highest air temperatures were measured
during the early afternoon session in the Franklin St. (38.7± 2.0 ◦C) and University Place (39.1± 1.4 ◦C)
neighborhoods, which feature a high proportion of asphalt parking lots and pavement, compared to
surrounding areas and other neighborhoods. Other weather conditions for that day include average 79%
humidity and average 3.4 mph wind speed (North Carolina State Climate Office, NC State University n.d.).

Volunteer-collected RH ranged from 30% to 58.9% in the 2–3 pm session and 33.8%–58.2% for the
5–6 pm session (figure S5). Although the RH ranges are similar between the two time periods, we still
observed differences in the humidity distribution between hubs. Franklin St. (38.6± 3.4%) and University
Place (38.5± 4.4%) are neighborhoods with the lowest recorded RH. The Meadowmont neighborhood,
located in the southeast area of Chapel Hill, has relatively high humidity in both time periods (48.7± 2.3%
for the 2–3 pm session; and 44.2± 2.3% in the 5–6 pm session), which may be related to high vegetation and
tree coverage in the neighborhood. Chapel Hill North showed the largest differences in humidity between the
2–3 pm session (39.37± 3.23%) and 5–6 pm session (47.25± 6.09%), but this difference is likely due to the
fact that not enough volunteers showed up to map both routes (see figure S1), and so different routes were
mapped. Volunteers mapped the built-up and parking lots during the 2–3 pm session, while they mapped
more residential areas with high tree coverage during the 5–6 pm session (see figures S1(c) and (d)). We
further discuss the limitations of this difference in the Discussion.

3.2. Predictors of air temperature and RH
Figure 1 shows the importance scores of all features in the air temperature and RH models for the 2–3 pm
session. The permutation feature importance indicates how much the model depends on each input feature
determined by how much the model score decreases when a certain feature is removed. The gain value
represents the fractional contribution of each input feature to the model calculated by taking each feature’s
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Figure 1. Permutation feature importance scores for air temperature (left) and for RH (right) models (based on the 50 random
training and validation splits).

contribution (improvement in accuracy) for each tree. A higher value in both permutation feature
importance or the gain value indicates a higher importance of this feature for generating a prediction. The
Landsat 8 two-month averaged LST is the top ranking predictor for both the air temperature and RH
models. The next most important features include the Landsat 8 LST data closest to the citizen-science data
collection date. NDVI and NDBI also have high contributions to both the air temperature and humidity
models. Among all five land cover/ land use dummy variables, whether an area is classified as the ‘tree’ land
cover class has the most predictive effect in the air temperature models.

Our recorded RH and air temperature show strong negative correlation (figure S3), which is consistent
with expectations. We provide measured RH, absolute humidity (calculated from our measured air
temperature and RH), and dew point temperature (Tdew) in supplementary tables S7–S9, which show that
RH is indeed determined by air temperature, while absolute humidity is less dependent on air temperature.

3.3. Modeled air temperature, humidity, and Humidex
Figure 2 shows predicted air temperature, RH, and Humidex for the 2–3 pm and 5–6 pm sessions in our
study area. Overall, we found the 2–3 pm session is hotter and drier than the 5–6 pm session, with the
predicted mean air temperature as 35.8± 0.7 ◦C for 2–3 pm sessions and 31.9± 1.9 ◦C for 5–6 pm sessions;
the predicted mean RH as 38.6± 1.5% for 2–3 pm sessions and 56.7± 1% for 5–6 pm sessions. Also we
found different patterns of the heat distribution between the 2–3 pm and 5–6 pm sessions. The 2–3 pm
session tends to be more uniformly hot over the study area, where 90% of the area’s predicted air
temperature ranges from 35.2 ◦C (5th percentile) to 37.3 ◦C (95th percentile) and has a standard deviation
of 0.7 ◦C. In the 5–6 pm session, the predicted air temperature varies more across the study area, with 90% of
the area ranging from 30.4 ◦C (5th percentile) to 35.5 ◦C (95th percentile) with a 1.9 ◦C standard deviation.
As a function of air temperature and RH, the Humidex shows similar patterns as predicted air temperature
and RH on both sessions. In the 2–3 pm session, the Humidex ranges from 41.7 (5th percentile) to 45.2 (95th
percentile) for 90% of the study area, with an average value of 42.9± 1.1. In the 5–6 pm session, the Humidex
varies from 38.8 (5th percentile) to 48.5 (95th percentile) for 90% of the study area, with values on average
41.6± 3.5. This summary analysis was applied to the land cover types of interest only (see figure 3(b)).

3.4. Land cover analysis
Based on the ESA Worldcover 2020 data, which may not necessarily be precisely attuned to capture all of the
variation of land cover within an urban area, our study area has seven land cover types: 82.8% of the total
area is classified as Trees, followed by 9.8% Built-up area and 6.2% Grassland. The remaining 1.2% of the
area is classified as Barren or sparse vegetation, Open water, Cropland, and Herbaceous wetland, which our
volunteers did not sample and we therefore did not include in our final analysis (see figure 3(b) and table 4).
In table 4, we determined predicted 2–3 pm air temperature by land cover classes, and calculated each land
cover class’s air temperature difference from the Tree cover class, since it has the coolest predicted air
temperature compared to other land cover classes. On average the Built-up area is 1.2 ◦C hotter than
tree-covered areas and Grassland is 0.7 ◦C hotter. Figure 3(a) shows the mean air temperature differences
from the tree class. Half of the study area is hotter than the mean air temperature of the Tree class, with
31.5% of the total area less than 1 ◦C hotter; 13.3% area 1 ◦C–2 ◦C hotter; and only 2% area 2 ◦C hotter.
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Figure 2.Maps of predicted air temperature, RH, and Humidex of the study area (10 m spatial resolution). (a1) predicted air
temperature of 2–3 pm session; (b1) predicted RH of 2–3 pm session; (c1) Humidex of 2–3 pm session; (a2) predicted air
temperature of 5–6 pm session; (b2) predicted RH of 5–6 pm session; (c2) Humidex of 5–6 pm session.

Figure 3.Maps of predicted air temperature differences (◦C) and land cover (10 m spatial resolution). (a) Air temperature
differences (◦C) from mean air temperature of the area covered by trees; (b) land cover types from ESAWorldcover 2020.

Table 4. Descriptive statistics of predicted air temperature by land cover and the mean differences from the tree land cover class.

Land cover Count Area % Min (◦C) Mean (◦C) Median (◦C) Max (◦C) St. dev. (◦C) Difference (◦C)

Trees 724 863 82.8% 34.3 35.8 35.6 38.9 0.6 0.0
Built-up 85 920 9.8% 34.5 37.0 37.1 38.9 0.8 1.2
Grassland 53 978 6.2% 35.0 36.5 36.3 38.9 0.6 0.7
Barren/sparse vegetation 6585 0.8% 34.4 37.1 37.1 39.0 1.0 1.3

Note: all land cover data is from ESA Worldcover 2020 (Zanaga et al 2022).

3.5. Sociodemographic analysis by census tracts
While some obvious spatial patterns in heat, greenness, race, and income can be observed by census tract
(figure 5), we did not find substantial differences in the exposure heat metrics between these different racial
demographic groups (supplementary table 11), except a minor difference in LST between White and Black
(32.4 ◦C versus 33.2 ◦C). The hottest census tracts (in figure 5, those with the highest average Humidex) are
found in the downtown area of Chapel Hill, which also has the lowest NDVI (a proxy for tree cover and
greenness). These census tracts correspond with the University of Chapel Hill and Franklin Street
neighborhoods, which have high student populations and explains why these areas have the lowest income
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per capita (Krizek 1995). According to the 2020 ACS Census, 76% of Chapel Hill residents identify as White,
13% as Asian, 10% as Black, and less than 2% as Native American or Other (see table S12).

4. Discussion

This study provides a replicable method for modeling spatially-resolved air temperature, humidity, and
moist heat stress over an urban area and engages citizens to gather air temperature and humidity data, which
are used to train the models. Since high-resolution, individual-scale air temperature, humidity and heat
stress data are difficult and costly to monitor, this study sought to develop an approach using low-cost,
consumer-grade sensors combined with satellite remote sensing data and ML to map urban heat over various
land-cover classes to understand intra-urban spatial variability of heat at a relatively high resolution (10 m).
We anticipate that our approach can be replicated with reasonable confidence by others, as the Pocketlab
sensors we employed are consumer-grade and accessible for purchase, and the satellite-remote sensing data
and land-cover data used as predictive variables in our model are publicly available free of charge. Compared
to other methods of local or ‘hyperlocal’ heat and weather monitoring, such as the use of crowdsourced
private weather stations (Venter et al 2020), the method we employed can potentially capture more
intra-urban variability, since measurement routes can be customized and designed, whereas the use of
private monitoring station data is subject to individual users’ locations and potential sampling biases and are
generally fixed. Private, crowdsourced monitoring stations, however, have the ability to take repeated
measurements over a longer time period with minimal human intervention.

This study contributes to an emerging area of scholarship on estimating intra-urban variability in
microclimate using ML (Venter et al 2020, Hanoon et al 2021, Chen et al 2023). Moreover, it is also one of the
first to use these methods to predict the spatial variability of RH, and thus estimates of ambient moist heat
stress. We find that, when combined with other ancillary information, satellite-derived LST can be a strong
predictor of ambient air temperature, even though using LST directly as a proxy for urban heat exposure may
be misleading (Chakraborty et al 2022, Turner et al 2022). Overall, since our ML model identified LST from
both the Landsat two-month average and the closest time period as being the variables contributing the
most predictive power to our model, this means that the air temperature variability is embedded within LST
variability, as reflected in the feature importance scores (figure 2). The resulting datasets and maps can be
utilized within various decision making contexts, from individuals determining where to live or urban
planners and policymakers developing urban heat mitigation measures to protect citizens. We discuss some
of our key findings and their implications for policy as well as some of the study’s limitations.

4.1. Local-scale heat exposure and stress
Our findings here show that individuals may be exposed to higher levels of heat and heat stress than what
weather station data provide, and this heat varies according to land cover type and throughout the day. With
our volunteer-collected data, we found citizen-measured air temperatures ranged from 33.3 ◦C to
42.6 ◦C—on average higher than what local weather monitoring stations recorded for the day of data
collection (32.2 ◦C–32.4 ◦C from 2–3 pm; and 32.5 ◦C–33.1 ◦C from 5–6 pm) (North Carolina State Climate
Office, NC State University n.d.). According to weather.gov, the highest recorded air temperature in Chapel
Hill, NC is 105 ◦F or 40.5 ◦C. We observed multiple instances of citizen-measured air temperature readings
higher than 40 ◦C or 104 ◦F, which the NWS classifies as ‘extreme caution’ (32 ◦C–41 ◦C), and several
readings that fall into the NWS’s ‘danger’ zone (41 ◦C–54 ◦C). As illustrated in figure 4, which displays
differences in predicted air temperature and humidity in our five mapped neighborhoods, the hottest areas,
Franklin St. (average predicted air temperature 36.1± 0.79 ◦C during the 2–3 pm session) and University
Place (36.4± 1.0 ◦C during the 2–3 pm session), tended to intersect with census tracts that had the lowest
greenness or NDVI (mean 0.54 for Franklin Street and 0.46 for University Place, compared to 0.61 for
Southern Village) and the least amount of classified tree land cover class (less than 0.5 for Franklin Street and
0.65 for University Place, compared to 0.88 for Chapel Hill North and 0.85 for Southern Village). The
Franklin Street area is also located within census tracts that have the highest average built-up area (average
0.51, compared to 0.09 in Chapel Hill North). The Franklin Street area corresponds with the census tracts
with the highest average Humidex values out of all neighborhoods (figure 5), likely due to its relative lack of
tree cover and greater built extent compared to other areas of Chapel Hill.

4.2. Sociodemographic patterns
We did not find substantial variation in air temperature, humidity or heat stress by racial demographic, as
other studies have found for different samples (Harlan et al 2006, Wong et al 2016, Voelkel et al 2018,
Chakraborty et al 2019, Benz and Burney 2021, Hsu et al 2021), probably because the majority of census
tracts in Chapel Hill are predominantly White (figure S6). In our analysis, the lowest income areas also
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Figure 4. Distributions of predicted air temperature (top panel) and RH (bottom panel) for five neighborhoods mapped in
Chapel Hill.

Figure 5.Maps of heat (Humidex), population, median age, greenness (NDVI), median income, and race by census tract in
Chapel Hill for the 2–3 pm session. The Humidex and NDVI are both unitless.

correspond to census tracts with a significant proportion of the population between ages 20–24: the Franklin
Street census tracts have more than 43% of the population in this demographic, compared to census tracts in
the Chapel Hill North neighborhood, with only around 5% of the population in this age bracket (figure 5).
Since the University of North Carolina at Chapel Hill surrounds the Franklin Street neighborhood, the high
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percentage of people aged 20–24 living in these census tracts makes sense and explains the relatively lower
income compared to neighboring census tracts.

While RH shows an inverse relationship with air temperature (figure S3), which is expected within urban
areas due to urbanization-induced drying (Oke et al 2017, Chakraborty et al 2022), relative importance of
humidity for human heat risk is still an active area of research (Sherwood 2018). Finally, heat stress also
depends on wind speed, solar radiation, etc., which can be modified by urban morphology, shading
structures, etc. (Fitria et al 2019, Kleerekoper et al 2012, Li 2021, Steeneveld et al 2011, Yuan et al 2020).
These factors should be considered in future studies to better understand the heterogeneity of heat stress
within urban environments.

4.3. Policy implications for mitigating andmanaging urban heat
The resulting air temperature, humidity, and heat stress maps and datasets can be used to inform urban heat
mitigation planning and policy. Identification of urban heat hotspots, combined with sociodemographic
data, can help identify potential vulnerable communities and areas for targeted intervention. Our findings
that tree-covered areas, aside from water bodies, are the coolest, with built-up urban areas and grasslands
(e.g. parks or unshaded greenspaces) 1.2 ◦C and 0.7 ◦C warmer, respectively, is in line with previous studies
(Zhang et al 2014, Aram et al 2019, Ziter et al 2019, Aboelata et al 2020) that suggest albedo management and
tree planting or green space development could help mitigate heat. Since the hottest areas of Chapel Hill are
coincident with the highest population density, lowest greenness, and lowest income, policymakers could use
the data and maps we produced here to develop strategies to increase green space, tree cover, and shade in
particularly hot areas. Cities are starting to incorporate insights derived from high-resolution heat mapping
into urban planning decisions. For example, in the case of Raleigh, NC, data collected from a July 2021
NOAA heat mapping campaign led to a city council vote to reallocate $70 000 into a pavement rejuvenation
project to coat more than 150 000 yards of roadway with titanium dioxide to make it more reflective (Retana
2022, The City Council of the City of Raleigh 2002). This project specifically aims to increase the reflectivity
of existing pavements to cool the air above it and surrounding areas, although researchers note an increased
risk for night-time drivers since titanium-coated pavements can be more reflective (Cheela et al 2021).
Additionally, high-albedo surfaces like coated sidewalks could also lead to an increased heat load during
daytime for pedestrians due to increased mean radiant air temperature, which strongly affects daytime heat
stress (Schneider et al 2023).

4.4. Limitations
Several limitations need to be kept in mind when contextualizing the results of the study. The first set of
limitations relate to the sensors themselves. The PocketLab sensors have their own sources of error. What
each sensor measures is representative of a fetch or source area, the extent of which depends on several
factors, including atmospheric stability and measurement height (Oke 2007). The height:fetch ratio can vary
between 1:10 for extremely unstable conditions i.e. a sensor at 1 m height gets information from a 10 m
region upwind of the sensor, to over 1:500 for very stable conditions. Since the combination of the summer
daytime period and urban roughness elements would lead to more unstable conditions (Bowne and Ball
1970), we expect the height:fetch ratio to be between 1:50–1:100. The citizen measurements would therefore
likely represent a fetch of between 75 to 150 m during the study period, with most of the collected
information coming from regions closest to the sensor. Even so, here we estimate gridded air temperatures at
10 m to also take advantage of the 10 m land cover dataset, which is a feature in our ML models. Overall, the
attribution of measurements from a larger fetch to a smaller area would reduce expected variability.
Essentially, when considering only this error, our gridded dataset provides more conservative estimates of
near-surface heterogeneity in air temperature and RH at 10 m resolution.

Second, the PocketLab sensors report absolute accuracy (3% for RH and 0.5 ◦C for air temperature), but
the actual measurements in a non-laboratory setting (so not where these accuracies were derived) are likely
subject to higher error or deviation, as we found in our comparison with a local weather station, although the
setting for that station (i.e. abandoned airport field) is quite different from the urban areas we had volunteers
assess. As we show in tables S2, S3 and figure S2, the PocketLab sensors’ measurements for RH are more
variable compared to other research grade sensors’ data, but this difference should have less impact on our
estimates of Humidex, which is more dependent on air temperature. Third, the sensors could also be faulty
or have radiative errors, although we lack data on these specific errors. We attempted, however, to address
these issues by having multiple volunteers map the same route during each session. Fourth, the sensors we
used were only able to measure air temperature and humidity, although there are other relevant heat metrics,
such as mean radiant air temperature, which measures the total heat load on the body, considering radiation,
shade and humidity in addition to ambient air temperature. All these potential sources of errors mean that,
although variability in the urban microclimate is expected, we should be cautious about the absolute
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quantitative estimates from these measurements. As such, focusing on which neighborhoods are the warmest
(rather than how much warmer a neighborhood is) may be a more reasonable use of these and other similar
sensors. However, this is a limitation of the data source (also see next paragraph on human errors) and not
our data-driven methodological approach. One could, if funding permits, use multiple research-grade
sensors to get higher quality observations to train similar ML algorithms.

The second set of limitations are related to engaging citizens as a primary mode of data collection, since
volunteers pose another source of error. Although we provided the volunteers training before collecting
measurements, there could be some individual error introduced because most of them were first-time users
of the PocketLab sensors. For instance, when evaluating the quality of data collected, we found one user’s
recorded humidity data was extremely low while air temperature data appeared within a normal range. These
measurements were not used in our analyses. This error may be due to a temporary issue with the sensor or
an individual’s accidental blockage of the humidity sensor port. One way to evaluate the sensitivity of our
data to these possible errors, future studies could expand data collection involving more volunteers and a
larger study area. Volunteers can make mistakes due to their misinterpretation of directions or the study
parameters. Although the intention was to assign enough volunteers for each neighborhood to be mapped
twice during each session, the Chapel Hill North neighborhood was not adequately staffed, resulting in
different routes being mapped during the 2–3 pm and 5–6 pm sessions. Since our model relies on the
assumption that the input variables (e.g. land cover, LST, etc.) are related to the citizen-mapped air
temperature, this difference in mapping routes for the 2–3 and 5–6 pm models should not have affected our
model accuracy, since we also trained the models individually. Additionally, we were only able to conduct the
campaign one summer afternoon, whereas being able to collect data on multiple days would identify any
potential idiosyncrasies with the data our volunteers collected on our campaign day.

Another source of potential error is in the use of satellite data, which measures LST and surface
reflectance at the top of the canopy or foliage. For instance, satellite-derived LST over trees would only reflect
the radiative temperature of the top of the tree canopy and not the air temperature (or even LST) of the
ground surface below the canopy (Cheung et al 2021). Due to the high correlation (R2 = 0.86 for the 2–3 pm
session and R2 = 0.91 for the 5–6 pm session) between the predicted and measured air temperature using
LST as one of the inputs, we are reasonably confident in the overall variability predicted in our air
temperature estimates. Additionally, as illustrated in figure S7, when examined directly within the
assumptions of a linear model, satellite-derived LST is only weakly positively correlated (r = 0.28) with our
citizen-collected air temperature data, although its inclusion improved the predictive power of our RF
model, which accounts for many non-linearities. Although our volunteers collected data over the major
urban land-covers in our study area (see table S1), there are some areas that are relevant for heat exposure,
such as people’s backyards and water, that we could not directly observe.

5. Conclusion

In this study, we developed a method for applying satellite remote sensing and citizen-collected air and
humidity data to develop a high resolution (10 m) map of air temperature, humidity, and heat stress. We
confirm previous studies that show air temperatures are hottest for impervious, built-up urban areas and
coolest for forested, tree-covered areas. Compared to individual weather station measurements, we find
individuals are exposed to greater variability of air temperatures and heat stress, and that this exposure is
greatest during the daytime and cools off in the late afternoon, although the amount of this difference
between daytime and nighttime differs. Ultimately, this method and approach can be replicated and scaled at
a relatively low cost (or even for more expensive sensors if funding permits) and provide detailed information
for decision-makers and urban planners seeking to mitigate urban heat and its human health effects.
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