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Abstract
Agrowing literature documents the effects of heat stress on prematuremortality and other adverse
health outcomes. Urban heat islands (UHI) can exacerbate these adverse impacts in cities by
amplifying heat exposure during the day and inhibiting the body’s ability to recover at night. Since the
UHI intensity varies not only across, but alsowithin cities, intra-city variationmay lead to differential
impact of urban heat stress on different demographic groups. To examine these differential impacts,
we combine satellite observations with census data to evaluate the relationship between distributions
of bothUHI and income at the neighborhood scale for 25 cities around theworld.Wefind that in
most (72%) cases, poorer neighborhoods experience elevated heat exposure, an incidental
consequence of the intra-city distribution of income in cities. Thisfinding suggests that policymakers
should consider designing city-specificUHI reduction strategies tomitigate its impacts on themost
socioeconomically vulnerable populationswhomay be less equipped to adapt to environmental
stressors. Since the strongest contributor of intra-urbanUHI variability among the physical
characteristics considered in this study is a neighborhood’s vegetation density, increasing green space
in lower incomeneighborhoods is one strategy urban policymakers can adopt to ameliorate some of
UHI’s inequitable burden on economically disadvantaged residents.

1. Introduction

Replacement of natural land cover with built-up
structures, coupled with dense human activity,
increases the local temperature in cities compared to
the background climate—a phenomenon known as
the urban heat island (UHI) effect (Oke 1982). When
combined with increasing global mean temperatures
and heatwaves, the UHI effect exacerbates human
health risk (Milan and Creutzig 2015, Tewari et al
2019). Since over two-thirds of the global population
will reside in urban areas by 2050, heat stress in urban
areas will impact a disproportionate fraction of us in
the future (Gerland et al 2014).

Extreme heat can have pronounced and poten-
tially dramatic public health implications, including

heat stroke, dehydration, and exacerbation of existing
medical conditions, like cardiovascular and cere-
brovascular disease, diabetes, chronic obstructive pul-
monary disease, pneumonia and asthma, and
increased mortality (Tan et al 2010, Shahmohamadi
et al 2011, Heaviside et al 2017). Heat waves also lead
to physical and mental stress, as well as increased sus-
ceptibility to food and vector-borne infectious diseases
(Shahmohamadi et al 2011).

The associated health impacts of the UHI effect
can have differentiated impacts across populations.
Certain urban residents, particularly those of lower
socioeconomic status, with pre-existing health con-
ditions, or living in dense urban areas, have been
found to be exposed to higher levels of UHI and its
negative health outcomes (Solecki et al 2005,
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Jenerette et al 2007). Case studies in China, Japan, the
United States, and Europe suggest that socio-
economic vulnerability is associated with UHI expo-
sure, extreme heat morbidity or mortality (Robine
et al 2008, Wilhelmi and Hayden 2010, Gronlund
2014, Hsiang et al 2017, Nayak et al 2018).

Most studies on socioeconomic disparities in heat
exposure are predominantly based on LST—a mea-
sure that is heavily influenced by geography, season-
ality and background conditions (Lindley et al 2006)—
and focuses on heat wave events at a regional scale
without consideration of persistent heat exposure due
to the UHI effect, except for individual cities (Solecki
et al 2005, Jenerette et al 2007, Tomlinson et al 2011).
In fact, most UHI studies have been conducted for
limited case studies with a focus on wealthier cities in
more developed contexts. Given the wide variety of
measurement techniques used in existing UHI studies,
comparing results between cities to understand what
factors influence the distribution of UHI’s impacts
and how UHI mitigation interventions perform is
challenging.

As an initial step towards filling this gap, we pro-
vide the first multi-city analysis of the association
between surface UHI distribution and neighborhood-
scale income data by combining satellite remote sen-
sing with census data. Importantly, we consider a
range of cities from different geographic regions and
levels of economic development to see whether
observed effects arewidespread or unique to particular
types of cities. This paper is organized as follows:
section 2 elaborates the methodology used in this
study, section 3 discusses the results and section 4 dis-
cusses the implications for policy and decision-
making.

2.Methodology

2.1. Selected cities
We selected 25 cities from the Urban Environment
and Social Inclusion Index (UESI; Hsu et al 2018) data
set. These cities are located in climate zones and
countries representing a variety of economic develop-
ment levels and environmental circumstances. From
the 32 cities in the UESI we chose only those for which
neighborhood-scale income data are available. Conse-
quently, they should not be considered a random
sample (e.g. the cities selectedmay bemore established
compared to new or emerging cities), and our results
should be interpreted with that caveat in mind. None-
theless, this set of cities is useful both for illustrating
the approach we developed to provide measures of
inequalities in urban heat distribution within and
between cities, and for providing an initial under-
standing of these equity impacts across the globe.
Table S1 is available online at stacks.iop.org/ERL/14/
105003/mmedia and provides descriptive statistics for
each city.

2.2.Data processing
We process and extract the neighborhood-level satel-
lite measurements using the Google Earth Engine
platform (Gorelick et al 2017). Two categories of
variables are generated for each neighborhood: (1)
UHI intensity and (2) three factors or urban-rural
differentials for the physical characteristics of cities
that are associated with the UHI effect. For each city,
the year of the satellite data extracted corresponds to
the most recently available data for population and
income (table S1). Neighborhoods smaller than the
satellite product resolution (1 km×1 km) are
excluded, since no unique observations can be
extracted for these.

The UHI intensity is defined as the area-averaged
differential in land surface temperature (LST) between
neighborhood i and a rural reference r as measured by
the NASA AQUA satellite’s moderate resolution ima-
ging spectroradiometer (MODIS) sensor

UHI LST LST .i i r= -

The rural reference includes all non-urban land
pixels within city boundaries, as classified in the Eur-
opean Space Agency Climate Change Initiative land
cover data (Bontemps et al 2013). This methodology is
an extension of the Simplified Urban Extent algo-
rithm, previously used to estimate surface UHI inten-
sity at a global scale (Chakraborty and Lee 2019). We
only include pixels with an uncertainty of less than
3 °C (Wan and Dozier 1996). The average elevation of
each city, as well as its rural reference are extracted
from the GMTED product (Danielson and Gesch
2011) and shown in table S1.

We calculate proxies for three factors that mod-
ulate the UHI: vegetation density, degree of urbaniza-
tion, and shortwave reflectivity (Peng et al 2011).
Similar to UHI, we construct these variables for each
neighborhood by calculating area-averaged differ-
entials between each neighborhood and its city’s rural
reference. The normalized difference vegetation index
(NDVI)—a standard index for greenness—reflects the
fact that live green vegetation absorbs most of the
radiation in the red band (which can be utilized for
photosynthesis), and reflects most of the radiation in
the near infrared (Rouse et al 1974).

The vegetation differentialΔNDVIi is given by:

NDVI
NIR RED

NIR RED

NIR RED

NIR RED
.i

i i

i i

r r

r r

D =
-
+

-
-
+

Here, NIR and RED are the surface reflectances in
the near infrared and red (bands 2 and 1) of the 500 m
resolution MODIS Aqua Surface Reflectance 8-Day
product (MYD09A1.006).

The normalized difference built-up index (NDBI)
is a proxy for the degree of urbanization, capturing the
fact that urban areas reflect more in the shortwave
infrared band than in the near infrared (Zha et al
2003). The urban built-up differentialΔNDBIi is:
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Here, SWIR is the surface reflectance in the shortwave
infrared band (band 6) ofMYD09A1.006.We use only
the highest quality pixels, based on band-specific
quality control flags that correct for, among other
things, cloud contamination, high solar zenith angle,
and detector noise.

The surface albedo is the reflectivity of a surface in
the shortwave wavelength range, a critical factor con-
trolling local temperature. The albedo differentialΔαi

is the difference in total reflectivity between a neigh-
borhood and the rural reference. Total reflectivity is
the weighted average between black sky albedo (BSA)
and white sky albedo (WSA), where the weight k is the
ratio of diffuse fraction of solar radiation for the pixel
of interest (Qu et al 2015). For each neighborhood

k kWSA WSA BSA BSA 1 .i i r i raD = - + - -[ ] [ ][ ]

We calculate k for the grid that houses a city’s cen-
troid using the 15-year mean (2003–2017) of the
NCEP/NCAR reanalysis data (Kistler et al 2001).
Observations of WSA and BSA are from the MODIS
16-Day Albedo product (MCD43A3.006) at 500 m
resolution and are quality controlled to reduce cloud
contamination. Singapore and Jakarta, however,
experience significant cloud contamination, prevent-
ing data extraction for the reference pixels. For these
cities, we include lower-quality and cloud-con-
taminated data.

While many others factors, like anthropogenic
heat flux, longwave trapping by urban canyons, aero-
sols, etc can modulate the UHI (Taha 1997, Zhao et al
2014, Li et al 2018), two of the factors considered in
this study account for the vast majority of UHImitiga-
tion measures; green roofs and green spaces modulate
NDVI, while white roofs and reflective pavements
alter α (Rizwan et al 2008, Zhao et al 2017). The third
factor, NDBI, is the UHI’s most direct cause since it is
a proxy for the degree of urbanization. The advantage
of using urban-rural differentials instead of absolute
values, e.g. ΔNDBI versus NDBI, is the recognition
that these different cities are located in distinct back-
ground climate zones. Using these differentials stan-
dardizes the impacts of urbanization and imposes soft
limits on what mitigation efforts cities can reasonably
achieve through reducing any deviations from the
unperturbed state of the land cover.

We merge the satellite-derived data with neigh-
borhood-scale income and population data. The pri-
mary data sources vary by country, but are typically
per capita household income or disposable income
taken from cities’ or countries’ own census databases
or surveys (Hsu et al 2018).

2.3. Evaluating equity ofUHI distributions
Weuse techniques developed in the health andwelfare
economics literature to analyze equity of UHI distri-
butions (Maguire and Sheriff 2011). Lorenz curves

(Lorenz 1905) and concentration curves (Wagstaff et al
1991) provide graphical unit-free representations of
distributional equity. Lorenz curves depict the cumu-
lative percent of the variable of interest (income or
UHI exposure) accruing to a cumulative population
percentile ranked from worst to best off. Concentra-
tion curves show the cumulative UHI exposure accru-
ing to a cumulative percentile of the population,
ranked from poorest to richest. Due to the data
resolution, our analysis abstracts from within-neigh-
borhood variability, assuming that income and envir-
onmental variables are equally distributed within each
neighborhood unit.

The closer a Lorenz or concentration curve is to a
45° line dividing the cumulative population and
income or environmental concentration axes, the
more equal a variable’s distribution. A concentration
curve lying above the 45° line would be pro-wealthy,
while one below would be pro-poor. Since concentra-
tion curves require positive values of the environ-
mental variables, we normalize UHI intensity and city
physical characteristic values to have a minimum
value of zero.

To facilitate cross-city analysis, we also calculate
Gini coefficients and concentration indices, summary
measures of the area between the 45° line and the Lor-
enz and concentration curves, respectively. The Gini
coefficient ranges from zero to 1, with a higher value
indicating a less equal distribution. The concentration
index ranges from −1 to 1. For an undesirable out-
come such as UHI, a negative value indicates a pro-
wealthy distribution and a positive value indicates a
pro-poor distribution. Both indices provide summary
measures of intra-city inequality.

3. Results

3.1. Neighborhood-scale surfaceUHI intensity
The mean daytime UHI intensity varies quite widely
between cities, from 7.19 °C for Mexico City to
0.36 °C for Johannesburg (figure 1), and shows similar
magnitudes when 10-year mean values are used
instead of the years corresponding to availability of
census data (figure S1). The cities cover the Köppen–
Geiger climate zones (Rubel and Kottek 2010)with the
major humanhabitations (CIESIN2012). The daytime
UHI values are generally higher than the nighttime
values (figures 1 and S3(d)), although they are not
strongly correlated (figure S2) since they emerge due
to different reasons—difference in evaporation, con-
vection, and shortwave reflectively between urban and
rural areas during the day and differential release of
stored heat and anthropogenic heat flux at night,
among other factors (Peng et al 2011, Zhao et al 2014,
Chakraborty et al 2017).

In estimating absolute UHI intensity, geographic
units based on physical changes associated with
urbanization are preferable to politically-defined

3

Environ. Res. Lett. 14 (2019) 105003



administrative boundaries (Chakraborty and Lee 2019),
since theymore closely relate to the physical factors driv-
ing UHI. Intra-city census tracts, for which socio-
economic data are collected and available, however, are
almost always based on administrative boundaries. We
therefore apply an administratively-defined urban
boundary with neighborhood-level divisions to examine
intra-city variation and its association with neighbor-
hood-scale income. This level of aggregation at the
neighborhood scale using administrative definitions are
also useful in decision-making and policy contexts
because they may align with zoning and other planning
instruments.

3.2. Neighborhood-scale income andUHI intensity
3.2.1. Income andUHI Inequality
The Lorenz curves show that UHI is not equally
distributed within most cities. Figures S4 and S5
indicate that for only four cities in our sample—
Atlanta, Barcelona, Johannesburg, and Sao Paulo—is
daytime or nighttime UHI more equally distributed
than income (the UHI Lorenz curve is closer to the 45°
line). The Lorenz curves contain no information
regarding how the UHI burden is allocated across
income groups. The UHI intensity concentration
curves in figure 2, however, reveal that about half the

cities (Atlanta, Berlin, Buenos Aires, Copenhagen,
Jakarta, Johannesburg, Los Angeles, Melbourne, Mex-
ico City, Montreal, Tokyo, and Vancouver) have a
noticeably pro-wealthy UHI intensity distribution,
which means that the greater UHI burden falls on the
poor. Of these, Berlin, Buenos Aires, Copenhagen,
Jakarta, Los Angeles, andVancouver’s UHI concentra-
tion curves clearly show a disproportionate impact on
the lowest income-earners. Eight cities (Atlanta,
Amsterdam, Barcelona, Chicago, Detroit, New York,
Seoul, and Singapore) lack an observable systematic
UHI bias with respect to neighborhood income, while
the remaining six cities (Beijing, Bangkok, London,
Manila, Paris, and Sao Paulo) have a pro-poor
distribution.

3.2.2. Typologies of UHI and income inequality
To summarize these results for cross-city comparison,
in figure 3 we classify each city into one of four
typologies (Hsu et al 2018) by comparing where cities
fall with respect to four quadrants formed by the
Concentration Index (x-axis) and Gini Index (y-axis).
44% of the cities of the sample are located in the top
left quadrant (Quadrant 1), where inequality in UHI
distribution is allocated to lower income districts: a
‘pro-wealthy’ condition—and could compound the

Figure 1.Daytime surfaceUHI intensity of the cities considered. ThemeanUHI intensity of each city is given by the points, while the
error bars represent the standard deviation across different neighborhoods of the city (i.e. variability of theUHIwithin cities). The
color of the point represents the background climate zone the city is situated in and the gray vertical line is for aUHI value of 0 °C.The
data are extracted for the same year as the available income data.
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existing, albeit relatively low, income inequality within
each city. Lower-income residents in these citiesmight
lack the capacity to cope with increased temperature
associated with the UHI. 28% of the cities are located
in the bottom left quadrant (Quadrant 3) where
unequal UHI distribution compounds the relatively
high income inequality. On the other hand, 20%of the
cities are located in the top right quadrant (Quadrant
2), where UHI intensity is more heavily allocated to
the wealthiest citizens, creating what could be call a
‘pro-poor’ situation, where increased UHI affects
citizens that may be less vulnerable. Finally, 8% of the
cities (London and Sao Paulo) are in the bottom right
quadrant (Quadrant 4) where UHI inequality is
affecting the more affluent citizens and there is
relatively high income inequality. Among the cities,
Johannesburg stands out due to having the highest
income inequality in the sample, as well as a relatively
high inequality ofUHI intensity.

3.3. Physical characteristics of cities and their
impact onUHI intensity
To identify implications of potential policy interven-
tions for addressing inequities in theUHI distribution,
we consider the distribution ofΔNDVI,ΔNDBI, and
Δα for the cities. Cities usually have lower vegetation
compared to rural areas due to replacement of
vegetated land with built-up structures, which means
NDVI and NDBI are inversely correlated (figure S6).
Therefore,ΔNDVI is generally negative (figure S3(c)),
meaning greenness and surface vegetation are reduced
due to urbanization. We observed the highest differ-
ence between urban and rural land cover within the
city for Paris and Barcelona and the lowest for Detroit
and Singapore. Similarly, ΔNDBI shows positive
values and is highest for Sao Paulo and lowest in Los
Angeles. There is not a clear trend for Δα between
cities since urban land cover can have a higher or lower
α (Taha 1997). In general, white surfaces like concrete

Figure 2.Environmental concentration (EC) curves ofUHI (blue) and Lorenz curves (red) for each city in the study. An EC curve
above the 45 equity line indicates thatUHI intensity ismore heavily allocated to the less affluent districts. If the EC curve is located
below the 45 equity line, UHI ismore intense in thewealthier areas of the city.
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have a higher α than vegetation, meaning they reflect
more sunlight; urban areas also have darker surfaces,
like asphalt pavements, which reflect very little solar
radiation. The relation between urban and ruralα also
depends on the background vegetation in the urban
area, with darker vegetation being less reflective than
lighter vegetation. Overall, these complexities lead
to a mixed association between neighborhood-scale
ΔNDVI andΔα (figure S7).

We examine the associations between neighbor-
hood-scale daytime surfaceUHI and theΔα,ΔNDVI,
andΔNDBI for each city (figure 4). In general, we see a
negative correlation between UHI and ΔNDVI, since
more vegetated neighborhoods have higher evapora-
tive cooling, and thus, lower surface temperatures, as
demonstrated at various scales (Rizwan et al 2008,
Peng et al 2011, Chakraborty et al 2017, Chakraborty
and Lee 2019). A few cities, like Buenos Aires, Copen-
hagen, Melbourne, and Tokyo do show slight positive
relationships between UHI and ΔNDVI. These are
coastal cities, where the sea breeze front also mod-
ulates local temperature, and thus the UHI intensity
(Hu and Xue 2016). All else equal, green space is
replaced by built-up structures in urban areas. Thus,
we observe a positive association between UHI and
ΔNDBI. Finally, there is a positive correlation
between daytime UHI and Δα, as also seen in Peng
et al (2011), although this relationship is complicated

due to individual city characteristics and the correla-
tion betweenΔα andΔNDVI. For instance, cities for
which UHI is negatively correlated withΔα also have
strong positive correlations betweenUHI andΔNDVI
(figure S7). Since the urban-rural differentials used
here are the absolute values of the physical character-
istics of a neighborhood offset by a constant rural
reference, the associations would remain same even if
the absolute values of the physical characteristics had
been used instead.

4.Discussion

This study provides the first quantitative analysis of
the UHI effect’s unequal distributional impacts at the
neighborhood level across multiple cities. With the
adoption of the 2030 United Nations Sustainable
Development Goals 11 (SDG-11), there is broad
recognition in global policy agendas for sustainable
and inclusive urban growth that minimizes inequality
(UnitedNations 2017). There are sparse data available,
however, for urban policymakers to understand
whether they are on track to achieving SDG-11 (Hsu
et al 2018). By analyzing the UHI through the lens of
distributional equity, we demonstrate that existing
inequality is associated not only with a city’s income
distribution, but also with environmental stressors
like urban heat. These hidden inequalities—where

Figure 3. Four-quadrant plot of daytimeUHI concentration andGini indices for cities in the study. The quadrant threshold (i.e.
x-intercept) for the concentration index is 0, while the y-intercept for the incomeGini is themeanGini of the sample cities (0.17). The
size of the points represent themagnitude of daytimeUHI intensity in degrees Celsius.
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lower-income residents are exposed disproportio-
nately to greater UHI—go unaccounted for in many
scientific studies and policy considerations (Wilhelmi
and Hayden 2010, Chan et al 2012, Gronlund 2014,
Nayak et al 2018).

Despite some cities boasting strong environmental
track records and performance (Hsu et al 2018), these
results suggest that cities still have room to improve
with respect to designing focused policy interventions
that address distributional equity and alleviate envir-
onmental inequalities (EEA 2018, Nayak et al 2018).
High per capita income cities with relatively equal
income distributions and low absolute levels of UHI
effects, such as Copenhagen, Berlin, or Vancouver,
nonetheless have a UHI distribution that falls more
heavily on the less affluent. On the contrary, many
cities in developing countries have a UHI burden that
is less ‘pro-rich’ although the absolute intensity of the
effect is relatively high.

Our results also indicate that UHI exposure is
associated with a city’s development pattern (figures
S3 and 5(b)) and the drivers that affect the spatial dis-
tribution of residents (Brueckner and Fansler 1983,
Cullen and Levitt 1996, Marcińczak et al 2016). For
instance, the highest levels of UHI distribution
inequity are located in countries like Brazil, the United
States, and South Africa—countries with high income
segregation within cities (OECD 2018). Similarly, sev-
eral aspects of urban development, such as housing
market, connectivity to main commercial districts,
and access to amenities affect whether more affluent
citizens live in the city center—where UHI intensity is
generally higher due to the physical mechanisms

involved in its formation (i.e. higher degree of urbani-
zation, lower vegetation cover, higher anthropogenic
heat flux, more built-up structures with higher ther-
mal mass, etc)—or in the suburbs where UHI is less
intense (Glaeser et al 2008, OECD 2018). For instance,
the majority of the cities with extreme urban heat
exposure in poorer neighborhoods (UHI concentra-
tion index<−0.1), namely Buenos Aires, Vancouver,
Copenhagen, and Los Angeles, are coastal cities, with
higher income neighborhoods situated along the
waterfront, leaving poorer residents in city centers
where UHI intensities are highest. Clustering cities
according to their location in the four-quadrant typol-
ogy (figure S8) illustrates these patterns in cities’ UHI
versus income inequality distribution, shedding light
on possible policy solutions that could be shared
between cities in similar clusters.

To address the inequality of UHI distribution,
cities have several mitigation options demonstrated
through our analysis of greenness, built-up environ-
ment, and surface reflectance. As cities develop, they
tend to reduce the availability of green space, which
decreases evaporative cooling (Taha 1997)—a side-
effect of urban growth. It is thus unsurprising that a
pro-rich distribution of NDBI is associated with a pro-
rich distribution of UHI (figure 5(a)). Assuming that
urban vegetation is desirable, i.e. a negative concentra-
tion index value is pro-poor, figure 5(b) shows that
cities with pro-poor UHI distributions tend to have
pro-poor vegetation cover distributions (figure S9).

UHI mitigation strategies may need to be targeted
at populations that have the greatest need due to their
disproportionate exposure or low capacity to cope

Figure 4.Correlation between neighborhood-scale daytime surfaceUHI and urban-rural physical characteristic differentials, namely
Δα,ΔNDVI, andΔNDBI. The values, represented by both color and size of the circles, reflect the Pearson correlation coefficient.
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with the associated health effects. There is evidence
that combiningmultiple UHImitigation strategies can
effectively negate the localized warming due to both
UHI and climate change (Zhao et al 2017). In an
increasingly urbanized future, intertwining different
UHI mitigation strategies can potentially transform
cities into havens of climate adaptation, since city-level
policy making can bypass constraints often present at
other government levels (Hoffmann 2011, Hsu et al
2015).

While the method presented in this paper is
applicable to other environmental burdens or goods,
there are limitations. Due to data availability, we are
only able to collect income as a crude proxy of neigh-
borhood-level socioeconomic status available for all
cities in the sample, although a range of other factors
(e.g. race and ethnicity) that result in inequality could
also be used if available and context-appropriate.
There may also be inconsistencies in definitions
and data-collection methods for neighborhood-
level income data between cities. Secondly, spatial
mismatches between a remotely-sensed urban
agglomeration and administrative boundaries inhibit
comparable neighborhood definitions between cities.

For instance, Tokyo and Bangkok’s administrative
boundaries only include its central districts, while Sao
Paulo and Beijing have much broader boundaries that
include rural neighborhoods that are sparsely popu-
lated. Given the objective of this paper and the data
limitations, the administrative boundaries were used.
However, with more granular socioeconomic data, a
more consistent unit of analysis may be possible in
future research.

Another limitation is our use of the Earth’s surface
temperature instead of air temperature to estimate the
UHI, since air temperature is more strongly coupled
with heat stress. Even though UHI at the surface and
near-surface air can have different seasonal and diur-
nal trends (Chakraborty et al 2017), the use of satellite-
derived LST is advantageous when studying multiple
cities since most cities do not have high resolution
measurements of air temperature. Monitoring this
intra-urban variation in air temperature is necessary to
better quantify the spatial distribution of urban heat
and its consequences for urban dwellers. Finally, this
initial analysis consists of a single snapshot in time.
For policy-making, it is important to understand
how relationships between characteristics like UHI

Figure 5. Scatterplots for daytimeUHI concentration index andΔNDBI concentration index (a) and daytimeUHI concentration
index andΔNDVI concentration index (b) for cities in the study. Pearson correlations (R), significance (p-values), and quadrant of
cities are given for each plot.
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intensity and income are shaped, both in terms of city-
wide aspects such as development patterns, but also
about individual behavioral responses. If people
demonstrate a willingness to pay for lower heat expo-
sure (Klaiber et al 2017), pro-poor investments in
vegetation enhancements in poor neighborhoods may
increase rents, potentially pricing out the intended
beneficiaries.

5. Conclusion

Cities vary significantly in their exposure to the UHI
and how the UHI is distributed across varying socio-
economic groups within their administrative bound-
aries. This spatial variability also extends to a city’s
physical characteristics. In almost all the cities con-
sidered, the presence of urban green vegetation in a
neighborhood moderates the UHI’s magnitude. In
72% of our sample cities, the UHI disproportionately
affects residents of lower socioeconomic status, an
issue that occurs for both developed and developing
cities alike. A pathway forward for addressing the UHI
should involve more careful consideration towards
equalizing the benefits of UHI and climate mitigation
strategies to spaces or citizens that are disproportio-
nately affected. Including these strategies that consider
differential and unequal impacts as a relevant element
of urban development can prevent increased exposure
as a negative externality of urban growth.
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