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Abstract
Accurately capturing the impact of urban trees on temperature can help optimize urban heat
mitigation strategies. Recently, there has been widespread use of remotely sensed land surface
temperature (Ts) to quantify the cooling efficiency (CE) of urban trees. However, remotely sensed
Ts reflects emitted radiation from the surface of an object seen from the point of view of the
thermal sensor, which is not a good proxy for the air temperature (Ta) perceived by humans. The
extent to which the CEs derived from Ts reflect the true experiences of urban residents is debatable.
Therefore, this study systematically compared the Ts-based CE (CETs) with the Ta-based CE
(CETa) in 392 European urban clusters. CETs and CETa were defined as the reductions in Ts and Ta,
respectively, for every 1% increase in fractional tree cover (FTC). The results show that the increase
in FTC has a substantial impact on reducing Ts and Ta in most cities during daytime. However, at
night, the response of Ts and Ta to increased FTC appears to be much weaker and ambiguous. On
average, for European cities, daytime CETs reaches 0.075 ◦C %−1, which is significantly higher (by
an order of magnitude) than the corresponding CETa of 0.006 ◦C %−1. In contrast, the average
nighttime CETs and CETa for European cities are similar, both approximating zero. Overall, urban
trees can lower daytime temperatures, but the magnitude of their cooling effect is notably
amplified when using remotely sensed Ts estimates compared to in situ Ta measurements, which is
important to consider for accurately constraining public health benefits. Our findings provide
critical insights into the realistic efficiencies of alleviating urban heat through tree planting.

1. Introduction

The process of urbanization, marked by changes in
land cover and the release of anthropogenic heat
emissions, typically results in elevated temperatures
within urban areas, giving rise to the phenomenon
known as the urban heat island (UHI) effect (Kalnay
and Cai 2003, Grimm et al 2008, Zhang et al 2022b).
This additional urban warming can have negative
impacts on various aspects of urban environments,
including the vegetation growth, the hydrological

cycle, and the soil quality (Zhou et al 2018, Gui et al
2019, Zou et al 2021). Moreover, urban heat can pose
a risk to the well-being of urban residents, influen-
cing their indoor and outdoor thermal comfort and
even leading to added mortality (Zhou et al 2018,
Iungman et al 2023, Ren et al 2023). Therefore, urban
heat and strategies for its mitigation have garnered
increased attention in recent years (Yao et al 2018,
Zhou et al 2018, Hsu et al 2021, Tuholske et al 2021,
Chakraborty et al 2022c, Liu et al 2023, Schneider
et al 2023, Yang et al 2023). Increasing vegetation
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cover, particularly through tree planting, is a feas-
ible and commonly proposed approach for alleviating
urban heat (Schwaab et al 2021, Iungman et al 2023,
Zhang et al 2023). Trees outperform other veget-
ation in terms of evapotranspiration and shading,
making them effective in reducing local temperatures
(Zhou et al 2017, Liu et al 2021, Zhang et al 2023).
Consequently, the study of the cooling effect (CE) of
trees is a prominent and actively researched topic in
the field of urban climate.

Traditionally, the cooling efficiency of trees is
quantified by directly comparing the air temperat-
ure (Ta) between areas with and without trees using
in situmeasurements (Akbari et al 1990, Richards et al
2020, Yan et al 2020, Zhang et al 2020). Such approach
offers the advantage of continuous, long-term obser-
vations and yields results that align closely with
human perception (Goldblatt et al 2021). However,
in situ measurements of the thermal environment
(e.g. weather stations or mobile transects) are usually
characterized by spatial discontinuities and limited
coverage, making them too costly for extensive large-
scale analyses (Peters et al 2010, Loughner et al 2012,
Wang et al 2012, 2018, Jiao et al 2017, Richards et al
2020, Wujeska-Klause and Pfautsch 2020, Yan et al
2020, Zhang et al 2020,Meili et al 2021).With the pro-
liferation of satellite observations, remotely sensed
land surface temperature (Ts) has been often used for
quantifying the CE of urban trees due to its advant-
ages of spatial continuity (Wang et al 2019, 2020, Yang
et al 2022). Nevertheless, it is crucial to acknowledge
that a distinction exists between remotely sensed
Ts observations and in situ Ta measurements (Jin
and Dickinson 2010, Jin 2012, Zhang et al 2014,
Chakraborty et al 2017, Janatian et al 2017, Goldblatt
et al 2021, Venter et al 2021, Naserikia et al 2023).

The differences between Ts and Ta are primar-
ily evident in two aspects. Firstly, Ts and Ta vary in
magnitude and spatial distributions, originating from
factors like radiation, heat transfer, and storage pro-
cesses (Mutiibwa et al 2015, Cao et al 2021). Solar
radiation absorbed by surface materials with high
emissivity results in a significant increase in surface
temperature, whereas air, with its lower emissivity, is
less efficient at absorbing and radiating energy (Harde
2013, Li et al 2013). Heat transfer via conduction
and convection contributes to temperature interac-
tion, but the efficiency of this process is limited by air’s
low thermal conductivity (Zhou et al 2012, Lu et al
2014). The higher thermal capacity of surface mater-
ials enables them to absorb more heat during the day
compared to air, thereby amplifying temperature dis-
crepancies between the surface and the surrounding
air (Mohajerani et al 2017). Secondly, Ts and Ta rep-
resent different components of the environment, with
distinct impacts on human comfort. Ts is typically
not directly experienced by urban pedestrians since
we do not come into direct contact with the surfaces
using our bare skin (Goldblatt et al 2021, Haeri et al

2023). Moreover, Ts measurements often relate to
elevated locations like rooftops, walls, and the top of
tree canopies, areas not frequented by humans for
daily activities (Vanos et al 2016, Battisti et al 2018,
Haeri et al 2023). As a result, the CE of trees derived
through Ts may not appropriately capture the public
health impacts on urban inhabitants, which are typ-
ically more aligned with the Ta perceived by humans
(Novick and Katul 2020, Chakraborty et al 2022c).

Although multiple numerical modeling studies
have estimated the CE of urban trees (Krayenhoff
et al 2021), observational estimates are much rarer
(Ziter et al 2019, Chakraborty et al 2022c), partly due
to the dearth of dense Ta measurements within cit-
ies (Zaitchik and Tuholske 2021). As a result, many
researchers have quantified the CE of urban trees
using remotely sensed Ts observations and con-
sidered the slope of Ts versus tree cover fraction
to quantify CE (Wang et al 2019, 2020, Chinchilla
et al 2021, Schwaab et al 2021, Zhou et al 2021,
Chakraborty et al 2022a, Zhao et al 2023a). Since Ts

and Ta are different, we would also expect substantial
differences in Ta-based CE (CETa) and Ts-based CE
(CETs). Knowledge about how CETs deviates from
CETa is critical for gaining a more physiologically-
relevant understanding of the role played by trees in
shaping the urban thermal environment. However,
there is still a lack of large-scale and quantitat-
ive assessments of the relationship and difference
between CETs and CETa. The study by Chakraborty
et al (2022a) is the only relevant one, but it utilizes a
vegetation index instead of tree cover fraction, with
the two being not directly comparable (Zeng et al
2023).

Hence, by using spatiotemporally matched in situ
Ta and remotely sensed Ts datasets, we calculated
CETa and CETs, respectively, in 392 European urban
clusters. Subsequently, we conducted a comparative
analysis of the differences between CETa and CETs in
terms of spatial distribution and day-night contrast.
The results of this study can deepen our understand-
ing of the cooling benefits of urban trees and help
inform heat stress mitigation strategies.

2. Data andmethods

2.1. Data selection and processing
The fractional tree cover (FTC) was obtained from
the Copernicus Global Land Service (CGLS) data-
set (2019). Based on over 20 000 random samples,
Buchhorn et al (2020) reported that the CGLS data-
set had an overall accuracy of better than 80% for
all land-cover types and a global average absolute
error of 9% for the FTC (Buchhorn et al 2020). The
surface water was derived from the global surface
water data produced by the Joint Research Centre
(Pekel et al 2016), which provides annual maximum
surface water extents. Surface elevation information
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Figure 1. Spatial patterns and frequency distributions of the daytime cooling efficiency (CE) of urban trees across European
urban clusters. CETs and CETa represent the CE estimated from surface temperature and the CE estimated from air temperature,
respectively. The observational times are∼13:30 for AQUA and∼10:30 for TERRA, respectively. The air temperature
corresponds to overpassing time of the overlaying MODIS pixels.

was obtained from Global 30 Arc-Second Elevation
(GTOPO30) dataset.

The growing popularity of Citizen Weather
Stations (CWSs) in urban areas in recent years has
facilitated the crowdsourcing of intensive meteor-
ological observations. Venter et al (2021) obtained
hourly Ta data for July 2019 from all available CWS
provided by Netatmo in Europe (Chakraborty et al
2022b). The CWS Ta data underwent additional
cleaning processing to remove stations with poor
data quality or significant missing data (Venter et al
2021). This led to the final selection of 75 293 CWS
stations, distributed across 931 European urban
clusters. The boundaries of urban clusters were
derived from the Global Human Settlement Layer
dataset using the clustering method proposed by
Venter et al (2021).

Daily Ts data for the European urban clusters
during July 2019 were collected from the MODIS
products (MOD11A1 and MYD11A1). These Ts

data were preprocessed into clear-sky pixels with an
average Ts error less than or equal to 3 K. MODIS
satellites collected data every day around 1:30, 10:30,
13:30, and 22:30 local time to provide daytime and
nighttime Ts observations. To obtain the hour-by-
hour Ts values, the MODIS transit time from local
solar time was converted to UTC local time by
subtracting the longitude of the MODIS grid and
dividing by 15, according to the MODIS user guide
(Wan 2006). The time zones of each urban cluster
were then accounted for and combined with day-
light saving time to offset the UTC of each city.
This resulted in Ts readings with specific hourly
timestamps that could be synchronized with the
hourly CWS dataset (Venter et al 2021, Chakraborty
et al 2022b).

The Ts pixels were paired with the treated
CWS Ta stations based on coordinates and
time (Chakraborty et al 2022c). Subsequently, we
calculated the median values of Ts and Ta at each
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Figure 2. Spatial patterns and frequency distributions of the nighttime cooling efficiency (CE) of urban trees across European
urban clusters. CETs and CETa represent the CE estimated from surface temperature and the CE estimated from air temperature,
respectively. The observational times are∼1:30 for AQUA and∼22:30 for TERRA, respectively. The air temperature corresponds
to overpassing time of the overlaying MODIS pixels.

station for the study period separately. We chose the
median rather than the mean to avoid the effects of
extreme temperatures. Then, we extracted inform-
ation about tree cover fraction, elevation, and the
presence of surface water for each station. In each
urban clusters, we removed stations covered by sur-
face water or influenced by topographic relief (out
of the range of mean elevation ± 100 m) (Cao et al
2016, Li et al 2022). In addition, we removed urban
clusters with too few stations (<20) to ensure the sta-
bility of the regressionmodel for calculating the CE of
urban trees. The above processes reduced the number
of available stations to 40 364. Ultimately, a total of
392 urban clusters were included in this study (figure
1). It should be emphasized that the MOD11A1 Ts

had data gaps during nighttime due to cloud con-
tamination and quality degradation, resulting in an
insufficient number of observations (<20) in some
urban clusters. Therefore, we calculated the CE cor-

responding to the MOD11A1 nighttime Ts (∼22:30)
only for the 232 urban clusters (figure 2).

2.2. Calculation of cooling efficiency of urban trees
In this study, we employed a univariate linear regres-
sion model to calculate the CETs and CETa for each
urban cluster. In this model, we considered FTC as
the independent variable, and either Ts or Ta as
the dependent variable. We computed the regres-
sion coefficients and used the opposite of these
coefficients as the CE of urban trees, denoted as
CETs = −△Ts/△FTC and CETa = −△Ta/△FTC.
CETs and CETa represent the reduction in Ts and Ta,
respectively, for each 1% increase in the percentage of
urban trees, and measure the CE of urban trees with
respect to Ts and Ta (Wang et al 2019, 2020, Cheng
et al 2022, Yang et al 2022). If CETs is higher than
CETa, it suggests a higher estimated CE of urban trees
based on Ts compared to Ta, and vice versa.
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Figure 3. Comparisons of the cooling efficiencies of urban trees estimated from surface temperature (CETs) with that estimated
from air temperature (CETa). The p-values are from significance t-tests between CETs and CETa. If the p-value is less than 0.05, it
is considered a statistically significant difference between CETs and CETa. The lines and dots in the boxes represent median and
mean values of trees’ cooling efficiency, respectively. The error bars indicate 95% confidence intervals. The observational times are
∼13:30 and∼1:30 for AQUA, and∼10:30 and∼22:30 for TERRA. The air temperature measurements corresponding to
overlaying MODIS pixels are used for daytime and nighttime overpasses.

3. Results

During daytime, both CETs and CETa show posit-
ive values in most urban clusters, indicating the pre-
vailing cooling effect exerted by urban trees on local
temperatures (figure 1). Statistically, over 90% urban
clusters exhibit positive daytime CETs, whereas the
corresponding percentage for daytime CETa stands
at approximately 60% (figure 1). Besides, higher
values of CETs and CETa are mostly concentrated
in western Europe and south-central Europe. On
average for all urban clusters, CETs reaches 0.075
[0.069, 0.082] ◦C %−1 (95% confidence intervals in
parentheses, hereafter) and 0.055 [0.049, 0.061] ◦C
%−1 at local times ∼13:30 and ∼10:30, respectively
(figure 3). These mean values of CETs are signific-
antly (p < 0.001, t-test) higher than corresponding
averages of CETa, which are 0.006 [0.001, 0.010] ◦C
%−1 and 0.003 [−0.001, 0.008] ◦C %−1, respectively
(figure 3). These results indicate that the daytime CE
of urban trees quantified from Ts differs from that
estimated from Ta, which is further supported by the
weak correlation between CETs and CETa across all
urban clusters (figure 4).

At night, CETa is found to be positive in over 70%
urban clusters, while CETs does not exhibit a fixed
positive or negative tendency (figure 2). In addition,
higher values of CETs and CETa are concentrated in
western Europe and south-central Europe. On aver-
age for all urban clusters, CETs reaches 0.018 [0.015,
0.022] ◦C%−1 and−0.004 [−0.007,−0.002] ◦C%−1

at local times∼13:30 and∼10:30, respectively (figure
3). The mean values of these CETs did not differ sig-
nificantly from the corresponding averages for CETa,
which are 0.018 [0.014, 0.021] ◦C %−1 and 0.008
[0.005, 0.011] ◦C %−1, respectively (figure 3). These

results indicate that the nighttime CE of urban trees
quantified using Ts has a higher similarity to that
estimated from Ta compared to the daytime results.
This finding is further supported by the observation
that the distribution of CETs and CETa aligns more
closely with the 1:1 line during nighttime than dur-
ing daytime (figure 4).

To provide a more intuitive representation of
the difference between CETs and CETa, we selected
six prototypical urban clusters (Berlin, Paris, Reims
Budapest, Bratislava, and Wien) with different cli-
mates, tree species, and city sizes for closer examina-
tion (figure 5). It can be seen that both daytimeTs and
Ta show almost a consistent decreasing trend with
increasing FTC, suggesting that trees can play a role
in reducing urban localized temperatures. However,
Ts typically exhibits a greater range of spatial vari-
ability relative to Ta, and the extent of temperature
change triggered by an equivalent percentage increase
in FTC is more pronounced for Ts compared to Ta.
This discrepancy in the response of Ts and Ta to
increased FTC ultimately leads to the observed differ-
ence between CETs and CETa.

4. Discussion

4.1. Spatiotemporal difference in the cooling
efficiencies estimated from Ts and Ta
The findings suggest a noticeable CE of urban trees
during daytime, and the impact of trees on redu-
cing Ts is found to be substantially more than that
on Ta. Trees release water vapor through small pores
called stomata in their leaves, also known as tran-
spiration (Pirasteh-Anosheh et al 2016). As this water
evaporates, it absorbs heat from the surroundings,
lowering the temperature of the surface, which in
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Figure 4. Correlations between the cooling efficiencies of urban trees estimated from surface temperature (CETs) and those
estimated from air temperature (CETa). The observational times are∼13:30 and∼1:30 for AQUA, and∼10:30 and∼22:30 for
TERRA. The air temperature measurements corresponding to overlaying MODIS pixels are used for daytime and nighttime
overpasses.

turn impacts the near surface (Gunawardena et al
2017). Evapotranspiration occurs in the immediate
vicinity of the ground, where trees draw up water
from the soil and release water vapor through sto-
mata in their leaves (Berry et al 2010). This close
proximity to the surface means that the CE is more
directly felt at ground level (Armson et al 2012).
While water vapor released through evapotranspir-
ation does influence Ta, the impact is somewhat
diluted as it mixes with the larger volume of the atmo-
sphere (Gunawardena et al 2017). Therefore, the CE
for Ta is not as concentrated as it is at the surface.
Second, trees provide shade by blocking sunlight from
reaching the ground, which reduces the amount of
solar radiation absorbed by the Earth’s surface, lead-
ing to a substantial CE (Coutts et al 2016). On the
other hand, Ta is influenced by a variety of factors,
including the absorption of solar radiation by the
atmosphere, conduction, convection, and radiation
(Raman et al 2014). While shading by trees can have

some influence on the Ta by reducing the amount of
solar radiation reaching the ground, the atmosphere
itself is less directly affected by shading compared to
the surface (Rahman et al 2017). Therefore, the shade
provided by trees has a more direct impact on the Ts

than on the Ta. However, we should note here that
the Ts underneath the tree can be markedly different
from the Ts measured by satellites, whose view of the
ground can be partially blocked by those trees. Third,
trees play a pivotal role in creating microclimates
by regulating soil moisture in their immediate sur-
roundings (Pramova et al 2012). Adequate soil mois-
ture contributes to a cooler surface, and the impact
of soil moisture regulation is particularly signific-
ant at the surface level, where trees interact with the
ground (Lagergren and Lindroth 2002). In summary,
the creation of microclimates by trees involves a com-
bination of factors, including the evapotranspiration
process, soil moisture control, and shade provision.
While these factors also influence Ta, their immediate
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Figure 5. Changes of daytime surface temperature (Ts) and air temperature (Ta) along fractional tree cover (FTC) gradients,
taking Berlin, Paris, Reims Budapest, Bratislava, and Wien as examples. These urban clusters are situated in various climate zones,
including temperate and cold zones, and feature different dominant tree species, such as coniferous and broadleaf trees.

and more pronounced effects are often observed at
the surface level where the vegetation interacts intim-
ately with the ground.

However, the CE of urban trees on nighttime
temperatures is very limited in most cities. During
the night, in the absence of sunlight for photosyn-
thesis, trees generally close their stomata (Domec
et al 2012). As a consequence of stomatal closure,
metabolic activities in the leaves, including transpir-
ation, slow down or cease (Dawson et al 2007). This
reduction in transpiration leads to a notable decrease
in the CE facilitated by this process (Zheng et al
2021). In addition, trees, especially deciduous ones,
typically have a lower albedo, which results in more
energy absorption during the day (Hami et al 2019).
The additional absorbed energy is then released at
night, thereby offsetting the cooling benefits that trees
typically provide (Peng et al 2014, Li et al 2015).
Furthermore, in urban environments, tall and dense
trees can influence the dissipation of heat from vari-
ous structures. The obstruction of airflow may con-
tribute to heat retention in certain areas, especially
during calm nights (Cleugh 1998, Zhao et al 2023b).
The factors mentioned above, to some extent, offer
a plausible explanation for the reduced CE of trees

at night. This also underscores the complex inter-
play of various factors in shaping the overall thermal
behavior of urban environments influenced by tree
cover.

We have identified notable variations in the
CE of urban trees across different cities. Firstly,
the daytime CE is found to be higher in western
Europe compared to central Europe (figure 1). This
difference may be attributed to variations in tree
species. Western Europe is dominated by oaks from
broadleaf forests (https://inventaire-forestier.ign.fr/
spip.php?rubrique86), while central Europe is dom-
inated by spruce and pine from coniferous forests
(Holzwarth et al 2020). Characteristics of urban trees,
such as leaf structure, color, size, and density, dir-
ectly influence their effects on the surrounding envir-
onment and the observed CE (Liu et al 2019, Wang
et al 2021). Secondly, a relatively higher CE is also
observed in south-central Europe, characterized by
a hotter and drier environment. This may be attrib-
uted to the nonlinear physiological response of urban
trees to meteorological conditions, which generally
manifests itself as an increase in evapotranspiration
rates with increasing temperature and decreasing
humidity (Wang et al 2019, 2020, Yang et al 2022).
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Besides, the role of urban trees inmoderating temper-
ature is also influenced by their spatial configurations,
with densely and continuously distributed trees tend-
ing to providemore cooling benefits (Zhou et al 2017,
Fan et al 2019). This may provide a plausible explan-
ation for the significantly higher CE in some well-
greened cities, such as Ludenscheid and Sodertalje
(figure 1).

4.2. Significance and implications
This study finds that the estimated daytime CE of
urban trees, based on Ta, is much lower than that
based on Ts, which is in line with field-level estim-
ates for general afforestation (Novick and Katul 2020)
and multi-city estimates based on vegetation index
(Chakraborty et al 2022c). Many recent multi-city
studies have primarily utilized Ts instead of Ta to
assess the cooling efficiency of trees (Wang et al 2019,
2020, Chinchilla et al 2021, Schwaab et al 2021, Zhou
et al 2021, Cheng et al 2022, Chakraborty et al 2022a,
Zhao et al 2023a). However, Ta is more closely related
to temperatures perceived by humans thanTs. Hence,
the current Ts-based CE might inflate the cooling
effectiveness of tree planting and thus overestimate
their public health benefits. This could potentially
foster an excessively optimistic perspective regarding
the cooling advantages associated with urban trees
(Venter et al 2021, Chakraborty et al 2022c, Wang
et al 2023a). It should be noted that increased FTC
seems to be associated with a more efficient cooling
of temperatures in western and south-central Europe.
Therefore, emphasizing the increase of tree cover
in these regions could be crucial for mitigating the
adverse effects of high temperatures on human well-
being. However, overall, it appears that the increase
in tree cover in most parts of Europe is not signific-
antly associated with a reduction in Ta. Particularly
at night, there is even evidence of a warming effect of
tree cover in some cities. Consequently, relying solely
on increasing tree cover may not be sufficient for alle-
viating urban heat stress, and a more comprehens-
ive approach may be necessary. Policymakers should
consider implementing additional measures to effect-
ively address urban heat. Feasible practical meas-
ures may involve enhancing surface albedo through
the adoption of lighter roofing and paving materials,
alongwith reducing human-generated heat emissions
through promoting energy-saving lifestyles (Hayes
et al 2022).

While we focus on urban vegetation impacts on
Ta and Ts in the present study, there are other aspects
of heat exposure within cities that should be kept in
mind. Of note, urban trees can also increase humid-
ity through transpiration (Meili et al 2020), which, in
turn, can increase moist heat stress, all else remain-
ing equal (Ho et al 2016, Chakraborty et al 2022c).
While Ts should not directly be used as a proxy for
heat stress, Ts has been successfully used as input
to data-driven models to estimate urban Ta (Venter

et al 2020, Zhang et al 2022a) and even humidity
(Wang et al 2023b). Trees can also provide shading,
which during midday, can have a dominant impact
on reducing overall heat loading (Middel et al 2021).
However, Ta is only indirectly related to shading
and satellites cannot sufficiently resolve shading from
trees since they are primarily observing the top of
the tree canopy. A recent study (Li et al 2023) over
Philadelphia, USA estimated mean radiant temperat-
ure (Tmrt), a metric for thermal discomfort that also
accounts for radiant heat, and found that satellite-
derived Ts showed medium associations with Tmrt. A
future direction may be to examine quantitative dif-
ferences and similarities between the CE for Ts and
Tmrt.

4.3. Limitations and future studies
The present study has certain limitations that should
be kept in mind. First, it is important to note that
the study area is limited to Europe, and therefore our
findings cannot be generalized to other climate zones
globally. Second, this study only considers data from
the summermonth of July, overlooking seasonal vari-
ations in vegetation activity, which are temperature-
dependent. It is crucial to conduct in-depth invest-
igations into the similarities and differences in CE
quantified using Ts and Ta for other seasons to cap-
ture the full spectrum of potential variations. Third,
there is a discrepancy in the spatial continuity and
scale between satellite Ts observations and in situ Ta

measurements, and amore detailed analysis consider-
ing variations at different spatial scales could provide
additional insights. Fourth, there are sampling biases
in the CWS data which are difficult to correct for.
The most prominent bias is that CWS are typically
placed in residential areas, rather than in commer-
cial districts, which tend to experience higher tem-
peratures (as indicated by Ts) (Hulley et al 2019,
Chakraborty et al 2022c). This means that when util-
izing CWS data, we might systematically overlook
non-residential areas where pedestrians could still
face higher-than-expected heat stress. To ensure the
accurate utilization of CWS in urban research, it is
essential to improve the metadata for the sensor loca-
tions. Furthermore, there is a pressing need for more
robust quality control measures. To address the afore-
mentioned limitations, future investigations should
incorporate large-scale, multi-seasonal and multi-
scale analyses from multiple data sources, to sup-
port more robust constrains on the physiologically-
relevant cooling efficiency of urban trees.

Data availability statements

The data that support the findings of this study are
openly available. The CWS air temperature measure-
ments and corresponding MODIS land surface tem-
perature observations are available at https://github.
com/TC25/Europe_CWS. The CGLS fractional tree
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cover data can be downloaded from https://zenodo.
org/records/3939050. The JCR global surface water
data can be accessed from https://global-surface-
water.appspot.com/download. The Global 30 Arc-
Second Elevation data is available from www.usgs.
gov/centers/eros/science/usgs-eros-archive-digital-
elevation-global-30-arc-second-elevation-gtopo30.
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