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Section S1: Aggregation of 1km raw U-Surf data to coarser resolutions 

The aggregation of urban canopy parameters (UCPs) from 1km to coarser resolutions requires careful consideration 

of the physical properties and conservation principles of different parameters. As shown in Table S1, we have 

classified UCPs into two categories, area-based conservative and non-conservative. We employed direct spatial 

averaging for urban percentage. For conservative parameters – roof and pervious fraction – which are inherently 

weighted by area, we used their urban percentages as weights to aggregate. We implemented a facet-fraction 

weighted averaging method for all the non-conservative parameters to ensure physically meaningful aggregation. 

For example, when aggregating roof or impervious canyon floor emissivity, we used the respective facet areal 

fractions (roof or impervious canyon floor fraction) with respect to the 1 km grid as their weights. This way ensures 

that the contribution of each parameter to the coarser resolution is proportional to its actual surface coverage. 

 

The aggregation of canyon height-to-width ratio (H/W) is slightly more complex as it is derived from multiple 

primary parameters. We evaluated two potential aggregation methods: ‘aggregating first’ and ‘aggregating after’ (Li 

et al., 2024a), both using urban density (urban percentage × roof fraction) as weights. The former is to aggregate the 

primary input parameters (e.g., building height, roof fraction) to the target resolution before calculating H/W. The 

latter calculates H/W at the original 1km resolution before spatial aggregation. Our analysis revealed that the 

‘aggregating after’ method generally produces slightly higher values and preserves more spatial variation compared 

to the ‘aggregating first’ method (Figure S27). In addition, the ‘aggregating after’ method better maintains the non-

linear relationships between input and output parameters and hence preserves local canyon characteristics during the 

upscaling process. This choice aligns with the recommendations from previous studies (e.g., (Dai et al., 2019; 

Shangguan et al., 2014)) and helps prevent the smoothing of local variations in the ‘aggregating first’ method. 

Therefore, in the published dataset with this study we choose the ‘aggregating after’ method to aggregate H/W to 

coarser resolutions (0.125° and 1°). 
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Section S2: Uncertainty propagation in data synthesis and processing 

In our uncertainty assessment, we employed Monte Carlo simulation approach that assumes the uncertainties from 

different data products are independent. For each simulation, we introduced normally distributed perturbations based 

on the documented uncertainties of individual data sources (Table 3) to evaluate how these variations affect our 1km 

output parameters. Most input datasets provided only RMSE values as their uncertainty metric, thus we adopted a 

conservative approach by approximating the standard deviation with RMSE (𝑅𝑀𝑆𝐸! = 𝑏𝑖𝑎𝑠! + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒, thus 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 ≤ 𝑅𝑀𝑆𝐸) in these cases, thereby ensuring our uncertainty estimates remain conservative. 

 

For most input datasets, we could directly obtain uncertainty values from original literature or calculate them 

through simple averaging. However, the uncertainty estimation for the Sentinel-2 blue-sky albedo product required 

additional steps. We estimate the uncertainty of the Sentinel-2 blue-sky albedo by examining the RMSE of black-

sky albedo 𝛼"#$%& and white-sky albedo 𝛼'()*+. According to Lin et al. (2022), the average uncertainty of the 

unevenly and uniformly distributed urban areas gives 𝜎"#$%& = 0.0185 and 𝜎'()*+ = 0.0205, respectively. We then 

calculated the blue-sky albedo 𝛼"#,+ as (1 − 𝐷)𝛼"#$%& +𝐷𝛼'()*+, where 𝐷 is the diffuse skylight ratio and is 

assigned the commonly used value of 0.3 here based on the BaRAD2019 dataset from (Chakraborty and Lee, 2021). 

Thus, 𝜎"#$%& = >(1 − 𝐷)!𝛼"#$%&! +𝐷!𝛼'()*+! = 0.0154. 
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Figure S1. The thirty-three regions used to constrain the global variability of urban surface properties (Jackson et al., 2010). 
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Figure S2. The four urban density classes used to attribute thermal parameters in U-Surf: TBD (red), HD (orange), MD 
(yellow), LD (green), based on the canyon height-to-width ratio percentiles from J2010 for the purpose of assigning thermal 
parameters as described in section 2.2.3 of the main text. The lower plots illustrate this classification in four selected cities: (A) 
Denver, U.S., (B) New York City, U.S., (C) Beijing, China, (D) Greater Melbourne, Australia.  
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Figure S3. Distributions of thermal properties. Red bars represent default CLMU values (discrete, 33 regions, 3 density classes), 
and blue bars show the raw new U-Surf values (continuous, 1km). Values of thermal properties are derived based on Oleson and 
Feddema, (2020). 
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Figure S4. Roof fraction at 1 km-resolution in: (a) China, (b) CONUS, (c) Delhi, India – roof fraction (left) and population 
density (2022) (right; data source: Esri India, 2024), (d) Delhi, India—building footprints used to derive roof fraction (left) and 
slum locations (2011) (right; data source: OpenCity - Urban Data Portal, 2024; Delhi Public Geoportal, 2024). All roof fraction 
maps share the same color scale. The satellite images are from Google Earth Engine (Gorelick et al., 2017) and © Esri. 
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Figure S5. Comparison between CLMU, including (a) Tall Building District (TBD), (b) High Density (HD), (c) Medium 
Density (MD) (discrete values), and (d) U-Surf roof emissivity (1km resolution) at global scale. Note that (a-c) CLMU 
parameters share a common colorbar at the bottom left and (d) U-Surf parameter uses a separate one (bottom right) for visualization 
purposes. 
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Figure S6. Same as S5, but for impervious canyon floor emissivity. 
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Figure S7. Same as S5, but for pervious canyon floor emissivity. Note that the emissivity is set to be 0.95 everywhere to represent 
a typical value for vegetation using a bulk parameterization scheme (Oleson et al., 2010). 
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Figure S8. Same as S5, but for wall emissivity. 
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Figure S9. Same as S5, but for roof albedo. 
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Figure S10. Same as S5, but for impervious canyon floor albedo. 
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Figure S11. Same as S5, but for pervious canyon floor albedo. Note that the albedo is set to be 0.08 everywhere to represent a 
typical value for vegetation using a bulk parameterization scheme (Oleson et al., 2010). 
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Figure S12. Same as S5, but for wall albedo. 
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Figure S13. Same as S5, but for roof fraction. 

 

 

 

 

 

 



 17 

 

 

 

 

 

Figure S14. Same as S5, but for pervious fraction of the canyon floor. 
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Figure S15. Same as S5, but for roof height [meter]. 
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Figure S16. Same as S5, but for height of wind in canyon [meter]. 
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Figure S17. Same as S5, but for canyon height-to-width ratio. 
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Figure S18. Same as S5, but for roof thickness [meter]. 
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Figure S19. Same as S18, but for wall thickness [meter]. 
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Figure S20. Same as S18, but for roof thermal conductivity [𝑾/𝒎 ⋅ 𝑲]. Note that there are 10 distinct layers for roofs and walls, 
each comes with a different value for thermal conductivity and volumetric heat capacity that depends on the material of each layer. 
The maps only show the value of the first layer for visualization purposes. 
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Figure S21. Same as S20, but for impervious canyon floor thermal conductivity [𝑾/𝒎 ⋅ 𝑲]. 
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Figure S22. Same as S20, but for wall thermal conductivity [𝑾/𝒎 ⋅ 𝑲]. 
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Figure S23. Same as S20, but for roof volumetric heat capacity [𝑱/𝒎𝟑 ⋅ 𝑲]. 
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Figure S24. Same as S20, but for impervious volumetric heat capacity [𝑱/𝒎𝟑 ⋅ 𝑲]. 
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Figure S25. Same as S20, but for wall volumetric heat capacity [𝑱/𝒎𝟑 ⋅ 𝑲]. 
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Figure S26. AC adoption rate adapted from Li et al. (2024b). Note that the AC adoption rate was collected at national and sub-
national level, the gridded dataset used to generate the 1km-resolution map is area-weighted averages of the three density types at 
𝟎. 𝟗𝟑𝟕𝟓° × 𝟏. 𝟐𝟓° (latitude × longitude). 
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Figure S27. Comparison between ‘aggregating fist’ and ‘aggregating after’ method for aggregating 𝑯/𝑾 from 1km to 1o 
in selected regions/countries. 
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Figure S28. Spatial distribution of 5-year average canopy urban heat island (UHI) intensity [K] in China. The panels show 

(a) annual, (b) summer (JJA), and (c) winter (DJF) averages simulated by CESM2 using default urban canopy parameters (UCPs) 

(top row), U-Surf parameters (middle row), and their difference (U-Surf minus default, bottom row). Negative values in the 

difference plots indicate weaker UHI intensity with U-Surf parameters. 

 

 

 

 

 



 32 

 
 
 
 
 
 
 
 
 
 
 
 

Table S1. Conservativeness of urban surface property parameters under spatial aggregation. 

Category Parameter 
Facet type 

Roof Impervious canyon floor Pervious canyon floor Wall 

Radiative 
Emissivity N N N N 

Albedo N N N N 

Morphological 

Fraction* Y - Y - 

Building height N - - - 

Canyon height-to-width ratio N - - - 

Thermal 

Thickness N - - N 

Volumetric heat capacity N N - N 

Thermal conductivity N N - N 
Y: conservative parameters; N: non-conservative parameters; -: not applicable. * Urban percentage is another fractional (conservative) parameter. 
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Table S2. Selected countries/regions to demonstrate the uncertainty propagation. 

Continent North America South America Europe Asia Oceania Africa 

Country United 
States Mexico Argentina Bolivia France Poland China Malaysia Australia Nigeria 

Koppen 
climate 
zone* 

- BSh Cfa Aw Cfb Dfb - Af Bwh Aw 

Varying 
Hot 

semi-
arid 

Humid 
subtropical 

Tropical 
savanna 

Temperate 
oceanic 

Warm 
summer 

continental 
Varying Tropical 

rainforest 
Hot 

desert 
Topical 
savanna 

* The table only shows the predominant Koppen climate zone if any. 
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Table S3. Thematic validation results at 21 Urban-PLUMBER sites. 

Site City Country Roof fraction 
MAE 

Pervious fraction 
MAE 

Building height 
MAE (m) 

Canyon height-to-
width ratio MAE 

AU-Preston Melbourne Australia 0.110 0.370 0.929 0.124 

AU-Surreyhills Melbourne Australia 0.061 0.015 4.407 0.204 

CA-Sunset Vancouver Canada 0.030 0.111 1.664 0.159 

FI-Kumpula Helsinki Finland 0.005 0.005 0.887 0.013 

FI-Torni Helsinki Finland 0.165 0.112 4.220 0.582 

FR-Capitole Toulouse France 0.014 0.046 2.224 0.446 

GR-HECKOR Crete Greece 0.025 0.023 1.484 0.855 

JP-Yoyogi Tokyo Japan 0.065 0.180 16.354 0.816 

KR-Jungnang Seoul South Korea 0.397 0.014 2.900 0.441 

KR-Ochang Ochang South Korea 0.022 0.271 12.600 0.056 

MX-Escandon Mexico 
City Mexico 0.042 0.180 2.562 1.019 

NL-Amsterdam Amsterdam Netherlands 0.111 0.194 3.780 0.240 

PL-Lipowa Lodz Poland 0.052 0.101 21.590 0.316 

PL-Narutowicza Lodz Poland 0.059 0.078 1.008 0.358 

SG-
TelokKurau06 - Singapore 0.160 0.118 15.737 1.493 

UK-
KingsCollege London United 

Kingdom 0.120 0.016 1.652 0.696 

UK-Swindon Swindon United 
Kingdom 0.049 0.054 2.446 0.010 

US-Baltimore Baltimore United States 0.044 0.002 7.239 0.082 

US-
Minneapolis1 Minnesota United States 0.050 0.047 6.436 0.057 

US-
Minneapolis2 Minnesota United States 0.060 0.114 6.436 0.057 

US-
WestPhoenix Arizona United States 0.050 0.561 7.716 0.113 

Average   0.081 0.124 5.918 0.387 
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Table S4. Thematic validation results at 17 WSF-3D sites. 

Site Country Roof fraction 
MAE 

Roof fraction 
RMSE 

Building height 
MAE (m) 

Building height 
RMSE (m) 

Almaty Kazakhstan 0.054 0.070 8.150 10.586 

Amsterdam Netherlands 0.070 0.095 5.098 7.078 

Bavaria Germany 0.065 0.084 4.217 5.955 

Cartagena Colombia 0.088 0.116 8.551 11.996 

Dongying China 0.111 0.130 7.627 9.805 

Gyeonggi South Korea 0.067 0.083 6.029 8.378 

Indianapolis United 
States 0.045 0.067 5.000 7.264 

Kigali Rwanda 0.062 0.084 6.475 9.823 

Lipa Philippines 0.094 0.104 5.274 6.542 

Munich Germany 0.053 0.069 5.587 7.626 

Nairobi Kenya 0.058 0.082 12.445 17.714 

NewYork United 
States 0.076 0.105 11.653 14.889 

Niamey Niger 0.112 0.133 10.636 14.473 

Seoul South Korea 0.113 0.124 11.210 13.386 

Tanauan Philippines 0.092 0.104 4.881 5.675 

Vienna Austria 0.063 0.082 6.614 8.872 

Washington United 
States 0.072 0.094 7.132 8.276 

Average  0.076 0.096 7.446 9.902 
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