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The Urban Environment and Social Inclusion Index (UESI) creates a new spatial

framework to measure progress toward Sustainable Development Goal 11 (SDG-11).

SDG-11 aims for cities to be both sustainable and inclusive by 2030 and conceptualizes

this goal in spatially-explicit ways. Few data sources or indices, however, measure its

progress in both a comprehensive (global coverage) and detailed (intra-city) manner.

To address this gap, we use publicly-available datasets including detailed census

data, satellite remote sensing, and crowdsourced data that provide global coverage

and regular temporal resolution to develop spatially-explicit indicators to measure

neighborhood-level environmental performance in 164 global cities. The UESI framework

includes 10 indicators that assess air pollution, urban tree cover, public transit access,

and urban heat at the neighborhood scale, and water stress and carbon dioxide

emissions from fossil fuels at the city-level. We also present a new method for

quantifying distributional equity to measure how evenly or unevenly cities are distributing

environmental benefits and burdens across neighborhoods. We find that the majority

of the UESI cities disproportionately burden lower-income communities with higher

shares of environmental burdens and lower shares of environmental benefits. This finding

holds true even in cities that perform highly on environmental indicators. In light of the

challenging, rapidly evolving urban contexts, the UESI framework serves as a way of

addressing some of the central challenges—data standardization, data gathering, and

data localization—around the SDGs.

Keywords: sustainable development goals, new urban agenda, equity, cities, indices, spatial data, social inclusion

INTRODUCTION

Although the United Nations adopted the Sustainable Development Goals (SDGs) in 2015 and
the New Urban Agenda (NUA) in 2016, little progress has been made in achieving targets for
sustainable and inclusive urbanization. Part of the current failure to meet these goals is due to the
challenge of measuring progress toward them. While around 234 SDG indicators impact cities or
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directly link to urban policies (United Nations Human
Settlement Programme, 2018), scarce data exists for cities to track
progress toward them. Few existing indicators and indices are
well-matched for cities to adapt as tools or benchmarks, with even
fewer addressing SDG-11’s requirement for cities to be equitable
and inclusive (Thomas et al., in press). These gaps reflect what
Klopp and Petretta (2017) identify as the three main challenges
of measuring progress toward SDG-11, including: (1) the poor
availability of standardized, open, and comparable data; (2) the
lack of strong data collection institutions to support monitoring
at the city scale; and (3) “localization,” or the uptake and context-
specific applications of the SDGs by diverse actors in widely
different cities.

In many ways, these challenges are interlinked. The lack of
standardized, open, and comparable data often stems from a
lack of strong data institutions at the city scale. This challenge
is particularly true in fast-growing, under-resourced cities in
developing and emerging economies, where data is especially
crucial in guiding planning and service provision decisions.
Data gaps frequently reflect the mismatch between the costs
of monitoring progress toward the SDGs and the “generally
overstretched and under-resourced local authorities in most
parts of the world,” even in wealthy, developed economies
(Wong, 2006; Simon and Arfvidsson, 2015; Arfvidsson et al.,
2017). Traditional data collection has often been driven
by national statistical agencies, rather than from city-scale
institutions, through household surveys that are frequently
expensive to conduct, of uneven quality, prone to political
manipulation, and overlook especially vulnerable and difficult-
to-reach populations (Wong, 2006; United Nations Economic
and Social Council, 2019). Where cities do collect data, the
process of translating it into standardized metrics or indicators
is often complicated by the need for coordination among
different city agencies. Measuring progress toward SDG target
11.6, which aims to reduce urban waste, for instance, could
require collaboration between one agency responsible for the
collection and transportation of solid waste, and a separate
agency responsible for treating it (Valencia et al., 2019).

This lack of local capacity makes it challenging to produce
the new forms of data needed to measure progress toward the
SDGs. At least 10 out of the 15 SDG-11 indicators require
new monitoring approaches and tools for collecting, analyzing
and using information (United Nations Human Settlement
Programme, 2018), exacerbating these difficulties. For instance,
Indicator 11.7.1 seeks to measure the “average share of the built-
up area of cities that is open space for public use for all, by
sex, age, and persons with disabilities,” requiring a combination
of spatial data (to measure the extent of a cities’ built-up area
and its share of open space) and detailed data measuring public
use of and access to open space. Since these indicators often
require spatial or territorial analysis, new systems for reporting,
and the collection and computation of data at the local level,
they are challenging for even the most advanced countries to
monitor (United Nations Human Settlement Programme, 2018).
There is a risk that the capacity needed to develop monitoring
frameworks, build technical and institutional capacity, and foster
an enabling environment to generate reliable data could further

limit and bias urban data collection toward better-resourced
countries, creating data gaps in the lower-income cities where
urban populations are expected to grow most rapidly (United
Nations Human Settlement Programme, 2018). A reliance on
proxies (United Nations Human Settlement Programme, 2018)
or on global-scale data may fail to capture local conditions and
intra-city differences, limiting these indicators’ value to urban
policymakers (Simon et al., 2016; Watson, 2016; Robin and
Acuto, 2018; Valencia et al., 2019).

The challenges of localizing data can also inhibit efforts to
measure global progress toward SDG-11. Cities often prioritize
information most useful for local politics and administration,
which can vary significantly from the data that is most useful
for better understanding and characterizing urban sustainability.
Cities often select and modify SDG indicators, or incorporate
the SDG indicators into their existing monitoring programs
according to their needs (Simon and Arfvidsson, 2015). This self-
selection can create a tension between the indicators that aremost
useful and relevant to a city, and the data consistency needed
to compare and aggregate progress toward global goals. One
study piloting the proposed SDG-11 indicators across the cities
of Bangalore, Cape Town, Gothenburg, Greater Manchester, and
Kisumu found that each city struggled to access sufficient data
to track the indicators, and all proposed changes to make the
indicators more locally relevant (Simon and Arfvidsson, 2015),
sacrificing comparability between cities’ efforts to track progress
toward SDG-11.

Variation in cities’ data and data collection methods further
inhibits city-to-city comparability in assessing SDG-11. For
instance, while information about Vehicle Miles Traveled and
public transit access is readily available for Atlanta, it is not
readily accessible in Delhi (Boyer et al., 2015). Cities navigate
the process of adapting indicators and data sources to local
contexts not just with the SDGs, but also in their approaches
to utilizing a complex array of urban indicators and smart city
and data information (Hezri and Hasan, 2004; Hollands, 2008;
Klopp and Petretta, 2017). Thomas et al. (in press) assessed
40 urban sustainability indices and 484 indicators, finding 37
separate indicators monitoring urban waste management and
very few spatially-explicit measures that would allow for cities
to assess SDG-11’s equity-related indicators (e.g., ensuring equal
access to green space). Despite a proliferation of indices and
data sources, comparable measures of cities’ progress toward
sustainable development milestones remain elusive. Even the
definition of what defines “urban” areas or the “city” vary
considerably across different municipalities, countries, indices,
and analyses, adding uncertainty to the comparison of indicators
(United Nations Human Settlement Programme, 2018).

To address the shortcomings in existing urban environmental
sustainability indexes and indicators, we introduce the Urban
Environment and Social Inclusion Index (UESI), a new spatial
framework that measures more than 160 cities’ progress toward
SDG-11’s goal to “make cities and human settlements inclusive,
safe, resilient, and sustainable.” The Index defines social inclusion
according to SDG-11’s charge for urban areas to be “sustainable
and inclusive,” ensuring equal access to sustainable transit,
green space, and reducing impacts of pollution for all citizens.
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It measures the distributional equity of the environmental
indicators as an enabling condition for efforts to facilitate greater
social inclusion across global cities.

The UESI includes spatially-explicit indicators to measure
neighborhood-level environmental performance in the following
issue categories: air pollution, urban tree cover, public transit
access, and Urban Heat Island. At the city-level, we include
indicators for water stress and climate mitigation. We also
present a new method for quantifying distributional equity
to determine how evenly or unevenly environmental benefits
and burdens are distributed across urban neighborhoods.
We use publicly-available spatial datasets that provide global
coverage and regular temporal resolution to allow for consistent
measurement and comparability between cities. While these
data are not without their own uncertainties, they provide a
first step in addressing some of the challenges—data collection,
standardization and localization—toward tracking progress
toward the SDGs.

This paper is organized as follows: a methods and materials
section describes the methodology informing the UESI; a results
section describes the UESI’s key findings; and the discussion
section describes the UESI’s applicability to the challenges around
urban sustainability data collection and monitoring.

MATERIALS AND METHODS

This section describes the methods that inform the UESI,
including: (1) defining social inclusion through a lens of
distribution equity; (2) boundary definitions; (3) city selection;
(4) indicator selection; (5) indicator computation; and (6)
measuring distributional equity through an Environmental
Concentration Index.

Developing a Spatially-Explicit Measure of
Distributional Equity
While SDG-11 aims to establish a goal for cities to be “inclusive”
as well as “sustainable,” it- as well as other SDGs that reference
inclusivity- does not articulate a concrete definition for what
inclusivity means. Many SDG-11 targets, however, highlight
the importance of measuring performance across demographic
groups (see Table 2). Targets 11.1, 11.2, and 11.7 aim to “ensure”
or “provide” access to housing, public transport, and urban green
spaces, across demographic categories “with special attention
to the needs of those in vulnerable situations,” (Target 11.2)
such as “women and children, older persons and persons
with disabilities” (Target 11.7). Target 11.B connects urban
climate action and inclusion. Inclusion, in other words, is often
measured through the lens of equity, and focus in particular
on distributional or outcome-based equity, which Reckien et al.
(2017) define as “the consequences of a policy, action or
developmental trend [e.g., equity in the distribution of costs and
benefits or in privileges and burdens between women and men,
between households, between urban districts (including peri-
urban districts), or between generations of urban residents].”
Gellers and Cheatham (2018), in a review of all 169 SDG targets
found that one-third resonate with distributive justice.

We adopt this framework of distributional equity to quantify
the “inclusivity” dimension of cities’ progress toward SDG-
11’s environmental targets. While this approach to assess
distributional equity has its roots in the United States’
environmental justice movement (Schlosberg, 2004; Walker,
2009), we made an intentional decision to use the term “social
inclusion,” as opposed to “environmental justice,” for several
reasons. Because “environmental justice” originated in the U.S.
and the Global North, the term has specific connotations and
interpretations, particularly with regards to race and ethnicity.
When we initially scoped our indicator framework with several
dozen experts, practitioners, and stakeholders, the feedback
we received, particularly from colleagues outside of a North
American context, was to avoid the explicit use of “environmental
justice” because of its potential colonialist (see Agyeman and
Evans, 2004; Álvarez and Coolsaet, 2020) interpretation, where
scholars have been criticized for inappropriately transposing
Western ideas and interpretations of “environmental justice”
in the global South. Because we aimed for the index to be
as inclusive and accepted as broadly as possible, particularly
outside of Western contexts, we intentionally avoided this
term to prevent alienating global audiences that may view
“environmental justice” as a U.S.-specific issue without relevance
or meaning for them. Adapting SDG-11’s use of “inclusion,”
therefore, which has been adopted by the UN SDGs and national
governments, we were seeking to be inclusive ourselves.

Because social inclusion entails many dimensions (e.g.,
representation in decision-making processes, identified in SDG-
11 Target 11.3), several of which we are unable to adequately
quantify at this point of time, we acknowledge that the UESI
is still narrowly limited in its primary interpretation of social
inclusion as one of distributional equity. However, sacrificing
depth for breadth and global comparability, our approach allows
for tracking global progress toward SDG-11’s environmental
targets with an explicit distributional equity component. We do
not claim to be comprehensive in being able to measure all of
SDG-11’s targets andmultiple dimensions of “inclusivity;” rather,
we aim to provide a starting point for cities to benchmark and
track performance over time using globally consistent, available
data that are comparable between contexts.

Boundary Definitions
To develop a consistent indicator framework and indicators that
compare cities’ performance on SDG-11, a common definition
of what constitutes the physical boundaries of a “city” or
“urban area” is necessary. A few common definitions of urban
boundaries exist in the literature (Seto et al., 2014, p. 930):
(1) administrative boundaries, which are generally political or
territorial boundaries defined by governments; (2) functional
boundaries, defined as “connections or interactions between
areas, such as economic activity, per capita income or commuting
zone”; and (3) morphological boundaries delineated from the
structure or form of the built environment, land use, or
land cover.

Because the UESI’s primary audience is policymakers,
we use administrative boundaries for neighborhoods
and the urban boundary defined by the governments

Frontiers in Sustainable Cities | www.frontiersin.org 3 December 2020 | Volume 2 | Article 556484

https://www.frontiersin.org/journals/sustainable-cities
https://www.frontiersin.org
https://www.frontiersin.org/journals/sustainable-cities#articles


Hsu et al. UESI: Measuring What Matters

FIGURE 1 | UESI cities by population size.

themselves (see Supplementary Figure 5 for a comparison
of political/administrative boundaries as used in the UESI vs.
morphological boundaries, which are primarily used in remote
sensing analyses). How governments define neighborhoods
themselves also varies and has implications for comparing
environmental performance between and across neighborhoods.
Neighborhood sizes vary considerably between cities (see
Supplementary Figure 6). Beijing, along with other Asian cities
for example, has much larger than average-sized neighborhoods
(1024.76 ± 76 km2 compared to 28.26 ± 21 km2 average
neighborhood size for other cities; See Supplementary Figure 7).
We acknowledge that there are differences in how cities define
a “neighborhood” and that the multitude of definitions have
implications for spatial analysis (Spielman and Logan, 2012).
In the UESI, we define “neighborhood” to mean a sub-urban
administratively defined unit within a city containing roughly
similar populations (see Supplementary Figure 1) and similar
areas. Shapefiles of the metropolitan area are used to disaggregate
data at the neighborhood level. These shapefiles may come from
the cities themselves or from other online data repositories. In
some cases, data that are more granular than the neighborhood
scale (e.g., block-level) are available, but to be as consistent
as possible across cities, we selected for similar levels of
neighborhood aggregation.

We filtered out neighborhoods from our analysis that are
primarily “non-urban” and could skew the comparison and
interpretation of the results. In some cities, administratively-
defined urban boundaries do not exclusively include urban
areas (e.g., built environments with a density of population) but
include sparsely populated rural sections or conservation areas.
A city like Beijing, for example, which includes peri-urban areas
in its city boundary, may have lower public transit scores and
higher tree cover scores than a city that has municipal boundaries
that are closer to a city’s central districts. The filtering process
was conducted based on a combination of land-cover (e.g., urban
vs. non-urban cover as determined through satellite land cover

classification), population and income to identify primarily non-
urban neighborhoods. In total we filtered 23 neighborhoods from
UESI cities that included Las Vegas, Oslo, Panama City, and Salt
Lake City.

City Selection
We evaluate 164 cities from all continents (excluding Antarctica)
that contain over 11,278 neighborhoods. We include a range of
cities located in developing and developed countries, levels of
development (see Supplementary Figure 2) a mix of capital and
non-capital cities, and cities representing a range of different
population sizes. We also include a range of “global cities”
(Sassen, 2010) and second-tier cities (i.e., non-state capital or
major cities in the United States) to represent a diversity of
cities around the world. For some countries, particularly in
Latin America, the Middle East, and Sub-Saharan Africa, data
availability poses the largest limiting factor for city inclusion.
Figure 1 summarizes the location and population size of the cities
included in the UESI.

To be included in the UESI, the following data are needed:
(1) georeferenced shapefile of the city’s neighborhoods; (2)
recent neighborhood-level population data for the city; and (3)
recent income per capita data in local currency (and/or US
dollar) at the neighborhood level. This data was collected for
as many cities as possible through desk research of publicly
available data sources (e.g., census or city open data portals)
and expert consultation. In some cities, neighborhood-level
income data was not available. If census or statistical data for
income is unavailable, we use a globally generated dataset of
Gross Domestic Product (GDP) data (Kummu et al., 2018) as
a proxy for neighborhood-level income. While not equivalent,
both measures—income and productivity—reflect an aspect of
the wealth that is distributed across cities. We classify cities as
Tier 1 (neighborhood-level income per capita data is available)
and Tier II (GDP per capita data from Kummu et al. (2018) is
used as a proxy for neighborhood-level income per capita data).
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TABLE 1 | Mapping the UESI’s indicators according to related Sustainable Development Goal targets and indicators.

Sustainable development goal indicators UESI indicators

SDG 3: Ensure healthy lives and promote well-being for all at all ages

3.9.1 Mortality rate attributed to household and ambient air pollution

• Average Exposure to fine particulate matter (PM2.5)

• Average Exposure to Nitrogen Dioxide

• PM2.5 Exceedance

SDG-6: Ensure availability and sustainable management of water and

sanitation for all

6.4.2 Level of water stress: freshwater withdrawal as a proportion of

available freshwater resources

• Water Stress (city-wide)

SDG-10: Reduce inequality within and among countries

10.2.1 Proportion of people living below 50 per cent of median income, by

age, sex and persons with disabilities

• We include measures of city-scale Gini indexes to show the inequality of

income distribution within cities

SDG-11: Make cities and human settlements inclusive, safe, resilient and

sustainable

11.2.1 Proportion of population that has convenient access to public

transport, by sex, age and persons with disabilities

11.6.2 Annual mean levels of fine particulate matter (e.g., PM2.5 and PM10 )

in cities (population weighted)

11.7.1. Average share of the built-up area of cities that is open space for

public use for all, by sex, age and persons with disabilities

• Average Exposure to fine particulate matter (PM2.5)

• Average Exposure to Nitrogen Dioxide

• PM2.5 Exceedance

• Proximity to Public Transit

• Public Transit Coverage

• Urban Heat Island Intensity

• Tree Canopy Cover Loss

• Tree Cover Per Capita

In addition to the measures of environmental performance above, we

calculated for each one of these environmental indicators a corresponding

Environmental Concentration Index (see Section “Measuring distributional

equity through an Environmental Concentration Index”), which measures the

degree to which these environmental benefits or burdens (i.e., Average

exposure to fine particulate matter and Urban Heat Island Intensity) are

distributed across neighborhoods within a city

SDG-13: Take urgent action to combat climate change and its impacts

13.1.3: Number of countries that have communicated the establishment or

operationalization of an integrated policy/strategy/plan which increases their

ability to adapt to the adverse impacts of climate change, and foster climate

resilience and low greenhouse gas emissions development in a manner that

does not threaten food production

• Urban Heat Island Intensity

• Trend in Carbon Dioxide Emissions (city-wide)

Sources: UN Sustainable Development Knowledge Platform and authors. All indicators can be spatially disaggregated to the neighborhood level unless they are indicated as a “city-wide”

indicator.

Cities’ categorization is listed in the data available for download
at datadrivenlab.org/urban.

A comparison of the Tier I and Tier II data sources for
income (see Supplementary Figures 3, 4) suggests that there is
no consistent relationship between cities’ census-derived income
per capita and GDP per capita data from Kummu et al.
(2018). While we find no systematic bias between the census-
and satellite-derived proxies for income, the lack of consistent
association suggests that the results for the Tier II cities have
higher uncertainty, which can be reduced when census data
become available.

Indicator Selection
Several principles guided the selection of indicators for the UESI.
Since the Index’s goal was to enable policymakers to assess
progress toward SDG-11, the indicators and framework align
with the targets and indicators articulated by SDG-11, as well
as other relevant SDGs, to the extent possible given existing
data sources. Table 1maps the linkages between the SDG targets
and indicators and the UESI indicators. In addition to these
environmental indicators, the UESI also includes indicators that
measure distributional equity (the Environmental Concentration
Index and Gini Coefficient, described in greater detail in the

Developing a spatially-explicit measure of distributional equity
section), for spatially-explicit indicators with data available at the
neighborhood scale.

Indicator selection also aimed to complement existing urban
environmental sustainability indicators (Thomas et al., in press)
Based on this review, we adopted the following principles
to guide our selection of data and indicators to include in
the UESI:

1) Fill the gaps in existing tools and indicators to measure
progress toward SDG-11 and the other SDGs.

2) Because people do not experience cities uni-dimensionally,
incorporate spatially explicit data as much as possible, to
examine patterns, trends, and differences in environmental
performance within and between urban areas.

3) Spatially explicit data also enables the UESI’s analysis and
focus on the socioeconomic drivers and distribution of
environmental performance.

4) The UESI measures outcomes, rather than process, where
possible, to enable urban stakeholders to identify and address
how environmental performance varies across different
urban locations.

5) Select transparent and reproducible datasets, methodologies,
frameworks, and indicators, in order to ensure transparency
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TABLE 2 | Summary of UESI environmental indicators, definitions, and targets.

Issue category Indicator name What it measures Target

Air Average exposure to PM2.5

(fine particulate matter in

micrograms per cubic meter

(µg/m3 )

Population weighted exposure to PM2.5 in micrograms per cubic meter 10 µg/m3

Average exceedance of fine

particulate matter (PM2.5)

targets

Average percentage of the population whose exposure to PM2.5 is above

the interim World Health Organization health targets of 10, 15, 25, and 35

µg/m3

0

Average exposure to nitrogen

dioxide (NO2)

Average exposure to NO2 in parts per million (ppm) 1st percentile of UESI cities

Climate Urban heat island intensity UHI intensity measures the annual mean difference in daytime and nighttime

surface temperatures between urban land cover and non-urban land cover

within the city, in degrees Celsius (◦C) for 2016

5th percentile of UESI cities

Trend in carbon dioxide

emissions

Mean annual trend in fossil fuel carbon dioxide (CO2) emissions of a city

during the time-period 2000–15. The unit of measurement for the raw data

is percentage reduction in CO2 per year in comparison to the baseline

emissions in the year 2000

95th percentile of UESI cities

Water Water stress The annual ratio of surface water withdrawn, relative to the total annual

natural availability of surface water available, in key sub basins of interest

Below 0.4 ratio of annual

surface water use: annual

surface water availability

Transportation Proximity to public transit The mean distance in kilometers required for residents to reach a public

transit metro stop. The mean distance required for residents to reach a

public transit stop is weighted by the neighborhood’s residential population

density

1.2 km

Public transit coverage The ratio of area within walking distance to a public transportation (bus or

metro) stop for an urban neighborhood

80 percent (the 50th

percentile for UESI cities)

Tree cover Tree cover loss The total area of urban tree loss from 2001 to 2016, benchmarked against

the tree cover baseline extent in 2000

0 km2

Tree cover per Capita The tree cover available in an urban neighborhood 15 m2/per person

and enable individuals and institutions to access or
adapt the UESI’s approach to their own research or
policy questions.

These principles guided the creation of a preliminary list of
UESI issue areas and indicators. We conducted an expert peer
review process with stakeholders including academic researchers,
urban planners, practitioners, and city representatives, to identify
the most salient urban environmental issues that city planners
and managers aim to track. Based on their feedback, these
issue areas and indicators were further iterated, and included
in the UESI based on data coverage and availability. Table 2
summarizes the indicators, definitions, and targets. More detailed
descriptions of the data sources and methodology underlying
each indicator are available in the Supplementary Materials and
online at datadrivenlab.org/urban.

Indicator Computation
The spatially-explicit indicators were calculated using Google
Earth Engine, a cloud-computing platform for global scale
geospatial analysis (Gorelick et al., 2017). This platform enabled
us to leverage Google’s computational capacity to process
global data, and create a replicable workflow for incorporating
additional cities in the future.

Indicators are shown in multiple formats on the UESI’s
online platform (datadrivenlab.org/urban). The platform shares
both raw values in native units to provide a detailed view of
each neighborhood’s and city’s performance, and values that
are normalized using a “proximity-to-target” method where 0
indicates the low performance benchmark and 100 indicates
achievement of the target. The proximity-to-target method
measures how close or far neighborhoods and cities are
to achieving an identified target, such as high performance
benchmarks set by national or international policy goals
or established scientific thresholds. In cases where a clear
policy benchmark is absent, a high-performance benchmark
is determined through an analysis of the best-performing
neighborhoods or cities (e.g., the 95th percentile of the range
of data). For more details about the targets for each indicator,
see the UESI’s online platform (datadrivenlab.org/urban) or the
Supplementary Materials.

The proximity-to-target values are intended to facilitate
the comparison of city and neighborhoods’ performance
across different indicators. They are not intended to rank
or score cities, which often define their administrative
boundaries in dramatically different ways, face different
kinds of challenges (e.g., population expansion vs. population
reduction; the challenges of infrastructure creation vs. the
challenges of the high-emitting modes locked-in by pre-existing
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infrastructure), and have access to varying financial and
technical resources.

Measuring Distributional Equity Through
an Environmental Concentration Index
The UESI measures how environmental burdens vary across
neighborhoods of different income and population levels within
cities to capture if and how environmental performance varies
according to where residents live and how much income they
earn. While many factors, including age, gender, employment,
education level, andminority/ethnicity status, can also contribute
to social vulnerability and affect distributional equity, scarce
data is available to comprehensively measure, across global
cities, and granularly, at the neighborhood level (Data-Driven
EnviroLab, 2020). To assess distributional equity, we draw
on the existing literature and tools analyzing the distribution
of environmental and socioeconomic outcomes (Padilla and
Serrano, 2006; Cantore and Padilla, 2007; Groot, 2010; Maguire
and Sheriff, 2011a,b; Sheriff and Maguire, 2013), and develop
both numeric and graphical representations of the distribution
of income and environmental outcomes.

Based on this environmental inequality literature (Maguire
and Sheriff, 2011a,b; Sheriff and Maguire, 2013), our primary
methodological innovation is the estimation of distributional
equity in urban environmental burdens and benefits through
what we refer to as an Environmental Concentration Index
or ECI. The ECI is a summary measure of the distribution
of environmental benefits (i.e., sustainable transit access
or tree cover) or burdens (i.e., air pollution or urban
heat island intensity) across neighborhoods within a city.
Like a Gini coefficient, which measures income inequality
within a population (Springer-Verlag, 2008), we calculate
the ECI as a summary measure of the inequality in the
distribution of the positive/negative environmental incomes
across neighborhoods within each city for each of our five
spatially-explicit indicators. For example, we not only measure
UHI intensity by neighborhood, we also measure its distribution
across neighborhoods according to income to develop a UHI
Environmental Concentration Index. The determination of
income distribution within cities through a Gini coefficient then
allows us to compare how environmental indicators may be more
or less equally distributed compared to income within each city.

Specifically, the ECI and Gini coefficients are determined by
calculating the area under Lorenz curves (Lorenz, 1905) for
income distribution or concentration curves (Wagstaff et al.,
1991) for environmental outcomes, as ordered by per capita
income in each neighborhood. The curves display the cumulative
proportion of a variable of interest (either income or an
environmental outcome), accruing to a cumulative population
percentile ranked from worst off (lowest per capita income) to
best off (highest per capita income). A 45 degree “line of perfect
equity” represents a completely equal distribution between the
variable of interest (e.g., income or environmental burden) and
the cumulative population. A greater distance from this 45 degree
line represents a more unequal distribution of the variable in
question. Concentration curves above this 45-degree line indicate

that the environmental variable is more heavily allocated to those
lower income, while curves below this line indicate that the
variable is more heavily allocated to those with a higher income
(see Figure 2).

The ECI and Gini coefficients are then determined by
measuring the area between the 45-degree line of perfect equity
and the Lorenz and concentration curves, respectively:

1) ECI= 1- 2∗AUCenv
2) Gini= 1- 2∗AUCinc

The concentration index value can range from−1 (i.e, the
environmental burden is allocated to the poorest) to 1 (i.e., the
environmental burden is allocated to the wealthiest) (Maguire
and Sheriff, 2011b). The Gini coefficient, which is calculated
by applying the same formula to the Lorenz curve (Equation
2), ranges from zero to 1, with a higher value indicating a less
equal distribution.

Since concentration curves require positive values of the
environmental variables, we normalize environmental indicators
to have a minimum value of zero. We also distinguish between
“positive” and “negative” environmental outcomes to indicate
whether the indicator is a benefit or burden. For example, if the
concentration curve for Tree Cover is below the line of equity,
we interpret it to mean that wealthier populations within the
city have greater access to tree cover. For the other indicators
that are negative environmental outcomes, such as air quality,
UHI, or distance to public transit, the interpretation of the
environmental concentration curve below the line of equity
wouldmean wealthier populations are burdened by the indicator.
The specific interpretations of the concentration curves for
different indicators follow below:

• PM2.5 Equity: Cumulative proportion of total exposure to
fine particulate matter (PM2.5) concentration for the entire
population (Negative Environmental Outcome)

• NO2 Equity: Cumulative proportion of total exposure
to nitrogen dioxide (NO2) concentration for the entire
population (Negative Environmental Outcome)

• UHI Equity: Cumulative proportion of total exposure to urban
heat island (UHI) Intensity for the entire population (Negative
Environmental Outcome)

• Tree Cover Equity: Cumulative proportion of the total
Tree Cover per capita for the entire population (Positive
Environmental Outcome)

• Distance to Public Transit Equity: Cumulative proportion of
total distance to nearest public transportation station for the
entire population (Negative Environmental Outcome).

Together, these measures assess how equally income and an
environmental outcome are distributed within a city. We
developed this approach to quantifying equity because existing
examples of quantitative metrics assessing environmental
outcomes, including Padilla and Serrano’s (2006) use of the
Kakwani Index, and the Atkinson and Kolm-Pollack inequality
indices (Maguire and Sheriff, 2011a), are more challenging in
their interpretation and can be challenging for decision-makers
to make sense of. Concentration indices calculated from the
“area under the curve” is more straightforward and an accepted
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FIGURE 2 | Example of the distribution of the Lorenz Curve (Red), measuring income, and the UHI Intensity and NO2 Exposure Concentration Curves (Blue) for the

city of Johannesburg. The UHI Exposure Concentration Curve’s position above the 45◦ line of perfect equity indicates that UHI Intensity is concentrated in the

low-income populations in the city. By contrast, the NO2 Concentration Curve suggests that NO2 exposure is only slightly more concentrated in high-income

populations, since it is still within a marginal distance from the line of perfect equity. The Lorenz Curve indicates that there is an important inequality in the distribution

of income, due to the distance of the curve from the 45◦ line of perfect equity.

strategy for measuring inequality, particularly around health-
related outcomes (Kakwani et al., 1997; Elgar et al., 2016; Oakes
and Kaufman, 2017; Costa-Font et al., 2018).

RESULTS

Overall Findings
We find that cities are not distributing environmental burdens
and benefits equally among urban residents. In the majority
of UESI cities−95 out of 164 or 58 percent—lower-income
neighborhoods bear a disproportionate share of environmental
burdens: poor air quality, greater exposure to urban heat, and
a lack of access to tree cover and public transit. Figure 3

illustrates this relationship between environmental performance
on the UESI’s five spatially-explicit indicators and their equity
counterparts. Cities toward the top of Figure 3 perform better
on environmental issues, while cities toward the bottom of the
chart performmore poorly. Along the horizontal axis, the farther
away cities are from the center of the figure, the more unequally
environmental burdens are distributed. In cities toward the
right-hand side of the figure, wealthier neighborhoods are more
heavily burdened, while in cities toward the left-hand side of the
figure, poorer neighborhoods are more heavily burdened. Most
cities (95 or 58 percent) fall into the two left-hand quadrants
of the figure, which indicate cities whose environmental
burdens are concentrated in less wealthy neighborhoods. This
is the case even for the 66 cities in the upper left-hand
quadrant of the figure, including Seattle, WA, Melbourne, and
Copenhagen: they score above average on the environmental
indicators, but their position in the upper left-hand quadrant
indicates that a disproportionate share of environmental
benefits flow to wealthier communities. This result suggests

that strong environmental performance and equity are not
necessarily connected: better environmental performance does
not necessarily lead to a more equitable environment.

In some cities, particularly those in major emerging
economies like China and India, wealthier populations are
burdened with environmental pollution, as indicated by their
position in the bottom right-hand quadrant. For these 39
cities, mostly located in rapidly developing and urbanizing
countries, wealthier populations are often concentrated in denser
or more centrally located neighborhoods, as opposed to poorer
populations that tend to be located in more rural areas on the
outskirts of cities. For instance, a cluster of Chinese cities in
the lower right-hand quadrant may reflect wealthy residents’
preference to reside in or near central business districts, which
often have higher levels of air pollution in addition to greater
access to employment and education opportunities and other
urban amenities. These cities all score poorly on PM2.5 and NO2

indicators, receiving proximity-to-target scores<20, and in some
cases, at or near zero, despite stronger scores on other metrics.

The upper right-hand quadrant, which captures cities
that both perform well on environmental indicators and do
not burden lower-income neighborhoods with environmental
pollution, includes just 12 percent (24 cities) of all cities. These
cities span a range of different geographies: European andAfrican
cities (seven cities in each region) are most common in this
quadrant, followed by North American cities (four cities), South
American cities (three cities), and cities located in Oceania (two
cities), and Asia (one city). They also include a wide range of
different population sizes and densities, although these results
reflect a range of different approaches to defining municipal
administrative boundaries. The cities in this quadrant include
Darwin, Australia, with a population of just over 100,000, as
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FIGURE 3 | A four-quadrant plot examining the relationship between environmental performance (measured by average z-score of a city’s performance on the five

spatially-explicit indicators) and equity (measured by average environmental concentration index values on the five spatially-explicit indicators).

well as London, with 8.8 million people. No megacities (defined
as urban areas with over 10 million people) are included in
this quadrant. The mean and median population (1.7 million;
1.2 million) and population density (4,977 people/km2; 4,833
people/km2) for the 24 cities in this quadrant do not vary widely
from the mean and median population (3.4 million; 1.4 million)
and population density (4,818 people/km2; 3,637 people/km2)
values for all 164 UESI cities. Seventeen of the cities in this
quadrant are Tier II cities, whose neighborhood-level income
data was extracted from spatial GDP per capita data (Kummu
et al., 2018), rather than from census-level data.

Trends Across Indicators
Cities’ average performance on individual environmental
indicators varies widely (see Figure 4). The PM2.5 air quality
indicator reveals that 86 percent of people living in UESI cities
breathe air that does not meet the World Health Organization’s
(WHO) guidelines for safe exposure to fine particulate pollution,
indicating low overall performance. However, 57 cities, including
Oslo, Vancouver, Wellington, Anchorage, and Portland, achieve
the WHO thresholds across all of the neighborhoods within
their administrative boundaries. In terms of Proximity to Public
Transit, Athens, Barcelona, Lisbon, San Francisco, and Paris have
neighborhoods with an average walking distance of<200 meters,
while cities such as Chongqing, Dalian, Maputo, or Houston

require residents to walk an average distance of 5 kilometers (just
over three miles) to reach a public transit station. The Water
Stress indicator also encompasses a wide range of scores; while
the majority of cities rely on sources that are not stressed (and
therefore score 100 on the proximity to target calculations), many
rely on water supplies that are overextended. Cities’ performance
on Urban Heat Island Intensity and Tree Cover show less range
in terms of cities’ performance, and cities score particularly well
on the Tree Cover per Capita indicator, with many exceeding the
UN Habitat’s goal of 15 square meters per capita goal (United
Nations Human Settlement Programme, 2016).

The trends in fossil fuel CO2 emissions show wide variation
at the city-level. The cities with highest mean annual percentage
reduction in CO2 emissions during 2000–15 in comparison to
the baseline emissions in the 2000 are Athens (2.8%), Paris
(2.2%), Reykjavik (1.6%), Porto (2.0%), and London (1.3%).
These cities, therefore, score close to 100 on this indicator.
At the other end of the spectrum, cities such as Kabul
(47%), Luanda (46.7%), Chengdu (21.4%), Shanghai (20.7%),
and Phnom Penh (19.6%) witnessed the highest mean annual
percentage increase in CO2 emissions during this period and
score close to 0 on this indicator. Cities that had approximately
the same absolute emissions in 2015 as in 2000—such as
Houston, Phoenix, Tokyo, and Kiev—scored about 75 on
this indicator.
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FIGURE 4 | Summary proximity-to-target scores for environmental metrics captured by the UESI.

Regional trends also appear across several issue areas. On
public transport, for instance, Tokyo, Porto, and Paris emerge as
leaders, while U.S. and Chinese cities account for a large share
of the 10 bottom-scoring cities. In terms of air quality, several
cities in the South Pacific (Hobart, Toowoomba, and Cairns in
Australia, and Wellington in New Zealand) are top performers;
while developing country cities such as New Delhi and several
cities in China (Tianjin, Zhenjiang, and Shanghai) dominate the
bottom rung. North American cities tend to perform well on tree
cover, particularly the Canadian cities of Toronto and Vancouver
and the US cities of Milwaukee and Portland. In the case of CO2

emissions, European cities had the highest reduction in emissions
during 2000–15, while Asian cities, especially in China and India,
had the highest increase in emissions during this period.

Overall, however, the picture of environmental performance
is sobering. Less than half of UESI cities (72 cities) have average
access to public transit within walking distance (1.2 kilometers
or 0.75 miles, the distance an average city resident is willing
to walk to a metro stop). In just 35 cities, residents are within
walking distance of a public transit station no matter what
neighborhood they find themselves in. For most other cities,
access to public transit varies dramatically across different parts
of the city. Nearly a quarter of UESI cities are water stressed,
relying on overextended water supplies. The UESI cities with
the greatest level of demand on their water supply include the
U.S. city of Charlotte; the Indian cities of Kolkata and Chennai;
Fortaleza, Brazil; Santiago, Chile; and Tel Aviv, Israel, each of

which relies on water sources where almost the entire available
water supply is withdrawn each year for urban, agricultural, and
industry use. Similarly, 106 of the 169 UESI cities witnessed an
increase in carbon dioxide emissions during 2000–15. UESI cities
also lost over 3,340 square kilometers of urban tree cover from
2001 to 2016—an area more than four times the size of New York
City. Cities in developing countries, such as Tunis, Phnom Penh,
Vientiane, and Casablanca, have some of the lowest scores, which
may reflect their rapid growth, as vegetated areas are converted
into new developments and infrastructure.

Comparing Income and Environmental
Performance
Across all of the indicators, we find that wealthier cities
receive higher-than-average scores on environmental indicators,
compared to lower-income cities. Figure 5 compares cities’ z-
scores of neighborhood income with their z-scores of average
performance on UESI indicators. We find that most of the
cities in the upper right-hand quadrant—representing above-
average income and above-average scores on environmental
indicators—are located in North America or Europe, with just
one exception: Tel Aviv. Higher-than-average income, however,
does not automatically translate into stronger environmental
performance: North American and European cities also make
up the majority of cities scoring below-average in terms of
their environmental performance, despite higher-than-average
income (represented in Figure 5’s lower right-hand quadrant).
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FIGURE 5 | A four-quadrant plot examining the relationship between environmental performance (measured by average z-score of cities’ performance on all UESI

indicators) and a z-score of logged income across all city neighborhoods.

Cities in developing countries, including Kinshasa, Lima, Beijing,
Bangkok, Jakarta, and Buenos Aires, dominate the lower left-
hand quadrant, where both UESI scores and income levels
are on average lower, with a particularly strong representation
of Asian cities. While these findings align with others (Hsu
et al., 2016; European Environmental Agency, 2018) that track a
positive relationship between income levels and environmental
performance, some outliers—such as the African cities of
Freetown and Bamako—perform higher than their economic
development levels would suggest.

Typologies of Performance
To better understand similarities and differences between
cities’ performance on SDG-11’s environmental indicators,
we conducted a cluster analysis using k-means unsupervised
classification (Hartigan andWong, 1979), which determines how
close different elements in a dataset are based on a user-defined
set of k clusters. We determined four optimal performance
clusters based on the cities’ scores on the UESI indicators that
maximized similarities and differences between performance and

avoided overlapping clusters compared to 3, 5, and 6 cluster
classifications. Figure 6 depicts these city clusters and summary
distributions through boxplot visualizations of how the clusters
compare according to morphological characteristics such as
population density, built-up index (or 1Normalized Difference
Built-up Index, representing an urban-rural differential where
higher values indicate more built-up surfaces compared to rural
areas and greenness (or 1Normalized Difference Vegetation
Index representing an urban-rural differential where positive
values indicate urban areas are greener than surrounding
rural areas) as well as GDP per capita. For more detailed
explanation of the calculation of 1NBDI and 1NDVI, see
Chakraborty et al. (2019).

The cluster analysis reveals a distinct typology of urban
environmental performance (see Supplementary Table 1 for full
list of the city cluster identifications). Cluster 1 (shaded in red
in Figures 6, 7) consists of cities that perform well on indicators
like water stress, tree cover per capita, and the transportation
indicators but perform poorly on air quality and climate change.
It includes a diverse range of cities, from cities in Latin America,
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FIGURE 6 | Typologies of urban environmental performance for the cities evaluated in the UESI.

such as Mexico City and São Paulo, but also European cities
like Paris and London. They demonstrate a range of GDP
per capita, including wealthy cities Brussels and Singapore,
and tend to be less green (as measured by NDVI) and have
higher population density than other city clusters. Cluster 3
(shaded in yellow) is comprised of cities primarily from major
emerging economies and countries in the Global South, including
Shanghai, Bangalore, Johannesburg, and Lagos. They tend to
be the lowest performing cities, particularly on the CO2 and
air pollution indicators. They have the lowest range of GDP
per capita, and include some of the least dense cities, such as
Addis Adaba, and the most dense, including Kolkata. The highest
performing cluster overall are those in Cluster 4 (shaded in blue),
which includes cities such as Stockholm, Oslo, Copenhagen, and
Zurich. These cities fare well on water stress, climate change,
tree loss, and sustainable transit, although they perform less well
on average than cities in Cluster 2 on air quality indicators.
They tend to be the wealthiest cities by GDP per capita. Cluster
2 (in green) cities tend to perform well on most of the UESI
indicators except the sustainable transit indicators, and include
car-centric cities in North America like Houston, Charleston, and
Bridgeport. They have the greatest range of greenness and are the
least population dense among the city clusters.

DISCUSSION

These findings presented in this paper represent the most
comprehensive quantitative assessment, to the authors’
knowledge, of the distribution of urban environmental

performance at the neighborhood level. The UESI’s results
indicate that very few cities are on track to meeting SDG-11’s
goal of fostering both sustainable and inclusive communities
for all of their residents. On each of the UESI’s environmental
targets, there is room to improve cities’ performance. Even
cities with strong environmental performances often fail to be
equitable and share environmental benefits inclusively. These
results correspond with other studies that have found that
residents with lower incomes or social status, living in cities
including Cairo, Alexandria (Hereher, 2010), Rio de Janeiro (de
Sherbinin and Hogan, 2011), and Dhaka (Fuchs, 2010; Khan
et al., 2011) face greater climate risks; and research indicating
that low-income residents face risks related to high population
densities (Reckien et al., 2018), low-quality buildings (United
Nations Office for Disaster Risk Reduction, 2009) and the lack
of risk-reducing infrastructure and services (Revi et al., 2014;
Reckien et al., 2017). The UESI’s broad coverage of over 160
cities demonstrates that these trends are widespread and apply
across a range of cities in different geographic and economic
circumstances, from small cities to megacities.

The UESI also demonstrates that disaggregated, spatially
explicit data is critical to measuring progress toward SDG-11.
Aggregated city-level data, in other words, can mask and obscure
differences in the lived experience of residents in different
neighborhoods. The UESI results highlight the need for cities
and local governments to actively address issues of distributional
equity as part of their environmental and development
interventions (Wachsmuth et al., 2016), to ensure benefits
and burdens are not disproportionately burdening low-income
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FIGURE 7 | Boxplot showing the distribution of mean GDP per capita and morphological characteristics such as 1NDBI (built-up index), 1NDVI (greenness index),

and population density per sq. km.

residents. The Index identifies several outliers: a small handful
of cities that achieve high environmental performance and a
distribution of environmental benefits and burdens that does
not unduly burden low-income populations. While this list
includes cities like Stockholm, which frequently appears in lists
of high-performing or “liveable” cities, it also includes Darwin,
Quito, Freetown, and other less-frequently profiled cities. The
inclusion of cities across a wide range of geographies, with
varying population sizes and population densities, suggests
strong and equitable environmental performance is possible
across many different urban forms and stages of development.
Notably, no megacities both perform well on environmental
indicators and avoid burdening lower-income neighborhoods
with environmental pollution, which may reflect the inherent

challenges of managing rapid growth with limited resources.
Future research could closely examine the drivers behind
these cities’ success and identify strategies that could also aid
other urban areas in similar contexts. The UESI’s reliance
on spatial data also creates a baseline to track how cities’
environmental performance and the equity of its distribution
across neighborhoods with different income levels evolve over
time. In addition, cities could use the equity measure as a tool
to evaluate potential urban development scenarios, to find those
that are more capable of closing the gap between wealthier and
less affluent citizens.

The UESI’s model could address some of the central
challenges—open, comparable data; institutional capacity to
support data gathering; and data localization—to monitoring
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progress toward the SDGs. Satellite data’s extensive spatial
coverage makes it possible to apply a consistent methodology
to collect data across many cities (Seto and Christensen, 2013;
Creutzig et al., 2019), helping meet the need for comparative
analyses across different cities (Seitzinger et al., 2012) to inform
decision-making (via Webb et al., 2018). Spatial data is also
well-suited to incorporating different urban characteristics—
such as the scale and rate of urbanization, and urban location,
form, function and processes (Seto et al., 2010)—into these
analyses. For instance, a close examination of the UESI’s Urban
Heat Island Intensity data indicates that urban heat island
exposure is associated with a city’s development pattern, and the
socioeconomic drivers that affect the distribution of residents
(Chakraborty et al., 2019). The creation of a spatial dataset
creates a common reference point between the urban, regional
and national actors that all shape municipal policy, and could
also enable analyses that explore the linkages between cities,
their surrounding regions, and their more far-reaching impacts,
a key and understudied area of research (Seitzinger et al., 2012;
Seto et al., 2012; Wachsmuth et al., 2016; Webb et al., 2018).
Translating that data into an accessible forum, like the UESI,
also has the potential to inform and engage urban residents,
researchers, community organizations, and other stakeholders.
Introducing new tools into the public domain can reduce
transaction costs for collaboration and spur “new innovative
forms of collective action aimed at solving complex public policy
issues, contributing to public knowledge, or replacing traditional
forms of public service provision” (Meijer et al., 2019).

Given the rapid rate of urban change underway in many
parts of the world, spatial data’s potential for frequent, consistent,
timely data collection could fill a vital need in tracking and
understanding different forms of urban development. While
utilizing and analyzing spatial data for urban decision-making
still requires local institutional capacity, a shared, global dataset
could reduce some data collection needs. A spatial framework
could also be tailored or localized to specific contexts. For
example, a city could download the UESI’s data and use it as
a template and starting point for additional datasets, to create
an approach that includes both shared global metrics and more
locally-relevant data on urban environmental performance and
city services.

Some uncertainties and data gaps may limit the UESI’s
application. The UESI defines cities according to their
administrative boundaries, which often vary significantly
(Valencia et al., 2019). São Paulo and Beijing have broad
boundaries that include sparsely populated rural neighborhoods,
for instance, while Tokyo and Bangkok’s administrative
boundaries only include their central districts. These differences
can affect how cities score on the UESI indicators and may
add uncertainty to efforts to compare cities’ approaches and
performance. As urbanization is increasingly taking place beyond
the administrative boundaries of individual municipalities,
particularly in the Global South (Seto et al., 2010; Allen et al.,
2015; Valencia, 2016; Valencia et al., 2019), accounting for urban
performance outside official boundaries, and incorporating
socioeconomic data to this analysis, will be crucial to creating a
complete assessment of urban performance.

Additionally, there are some inherent gaps and uncertainties
in the UESI’s underlying data sources. Census data providing
population and income information is often infrequently
collected, and, particularly in rapidly growing cities, may not
capture recent growth or changes or fully encompass informal
settlements. The high number of Tier II cities in Figure 3’s top-
performing quadrant−17 out of the total 24 cities—bear further
investigation into the effects of using GDP data as a proxy for
income data. These results, along with the comparative analysis
of the Tier I and II income approaches, suggest that these two
variables represent different aspects of wealth within a city, each
with its own implications in terms of distributive justice. Data
sources for several critical indicators highlighted in the SDGs,
such as measuring access to improved water and sanitation and
waste management, do not exist at a global scale or at levels
granular enough to facilitate neighborhood-by-neighborhood
comparison. This challenge is particularly true for drivers, other
than income, that can contribute to social vulnerability, such as
gender, age, education level, and race (Data-Driven EnviroLab,
2020). While these factors are vital to better understanding
local vulnerability, data tracking them remains scarce and
heterogeneous across different contexts. Some indicators may
also overlook informal processes and dynamics: for instance,
the public transit indicators focus on bus and metro stops, and
may not fully capture informal and unmapped transportation
systems prevalent in many Asian and African cities (Klopp
et al., 2015). Additionally, while the UESI focuses on the city
itself, the footprint of urban areas often extends far beyond city
boundaries (Wachsmuth et al., 2016; Frank et al., 2017). These
limitations also offer promising areas for future research, which
could explore approaches to further localizing this template, or
connecting and comparing environmental performance within
cities with an assessment of their broader resource consumption
and environmental footprint.

CONCLUSION

Less than a decade remains left to achieve the 2030 Agenda
for Sustainable Development, and initial assessments indicate
that the global community still needs to dramatically accelerate
progress toward all 17 goals, including SDG-11 (United Nations
Economic and Social Council, 2019). In many cities, where
understanding progress toward SDG-11 depends, in large
part, on understanding the distribution of environmental
performance across different demographic groups, scarce
data enables policymakers and other stakeholders to identify
their performance, target hotspots of poor performance for
intervention, and benchmark their progress against other
actors. The UESI leverages high-resolution, large-scale data
to create a comprehensive, spatially-explicit assessment of
urban environmental performance at the neighborhood scale.
By combining this data with neighborhood-level income
information, we quantify cities’ distributional in/equality,
finding that the majority of cities disproportionately burden
lower-income communities with higher shares of environmental
burdens and lower shares of environmental benefits. This
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approach to leveraging spatial data could overcome widespread
data standardization, data gathering, and data localization
challenges around the SDGs, and enable more detailed and
targeted comparisons and drivers of cities performance
on SDG-11.
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