
1. Introduction
Urbanization is the most tangible local-scale impact of humans on the Earth's surface and the surface climate 
(Jia et al., 2020; Kalnay & Cai, 2003). Urbanization-associated perturbations in land use/land cover (LULC) can 
substantially alter the micro-climate of cities via re-adjustment of the surface energy balance. Specifically, urban 
regions are observed to be warmer (based on temperature measured at 2 meter) and drier (based on moisture 
mixing ratio at 2 meter) than peripheral rural areas, commonly referred in the literature as Urban Heat Island 
(UHI) (e.g., Oke and Cleugh., 1991) and Urban Dry Island (UQI) (Oke & Cleugh, 1987), respectively. Along 
with LULC changes, urbanization is also associated with increases in the heat generated by anthropogenic ac-
tivities or anthropogenic heat flux (AHF) into the urban atmosphere. Notably, the global urban population has 
crossed ∼4 billion (half of the total global population) and is expected to reach up to ∼7 billion, accounting for 
two-third of the total global population, by 2050 (Ritchie & Max, 2018). The human body's ability to dissipate 
metabolic heat through evaporative cooling (sweating) and heat conduction is inversely proportional to the ambi-
ent temperature and humidity (Sherwood & Huber, 2010). Consequently, urbanization-induced perturbations in 
micro-climate can substantially affect a large portion of the global population in the near future via urban-induced 
heat stress intensity (UHSI) and its associated economic impacts (Estrada et al., 2017; Frumkin, 2002; Laaidi 
et al., 2012; Tan et al., 2010).

Previous modeling studies concluded that background warming under heatwaves amplify the urban-rural tem-
perature differences (Wouters et al., 2017). While such findings were corroborated by nearby weather station 

Abstract The impact of heat on human health is well-recognized, with excess heat stress in urban areas 
(urban heat stress intensity, UHSI) adversely affecting rapidly growing urban populations. However, the 
physical associations of UHSI with urban heat island (UHI), urban-induced change in moisture (UQI) and 
background temperature are not well understood. Multi-year convection-permitting simulations over the 
US show that UHI effect peaks during nighttime (2–5°C) but maximum UQI occurs in daytime (0.01–2 g 
kg−1), resulting in competing effects on UHSI. UHI dynamics dominate the diurnal variations in UHSI with 
intensified urban-induced human discomfort during nighttime (3–5 hr day−1). UHSI is very sensitive to the 
background temperature, especially over the southeastern US, with distinct nightime UHSI amplification of 
∼0.5 hr day−1 degree−1 rise in the background temperature. Spatial variability of UHSI is also dominated by the 
UHI with possible constrains from background moisture availability.

Plain Language Summary While urbanization increases the temperature of urban regions 
compared to rural regions, it also decreases the moisture in the urban air. Thus, urbanization can have 
heterogeneous effect on heat stress (a net effect of ambient temperature and moisture) on warmer days. In this 
study, we employed convection-permitting simulations for six consecutive summer seasons over the US to 
examine the spatiotemporal variability of urban-induced heat stress and its variation on relatively warmer days. 
We show that the heat stress is distinctly greater over the urban regions compared to surrounding rural regions 
in Eastern US and specifically over southeastern US. Moreover, this urban effect on heat stress grows stronger 
on warmer periods, specifically during nighttime, while the association can be opposite during daytime due to 
the dominant moisture effect. Quantitatively, urbanization can increase heat caution hours by 3–5 hr day−1 and 
its sensitivity to background temperature is ∼0.5 hr day−1 degree−1 over many US cities.
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observations, these studies mostly analyzed single events for single cities such as Baltimore (Li & Bou-Zeid, 2013; 
Li & Bou-Zeid, 2014; Li et al., 2015) and New York (Li et al., 2015; Ramamurthy & Bou-Zeid, 2017; Schatz 
& Kucharik,  2015; Tewari et  al.,  2019); so how generalizable those results are is not clear. Recently, Zhao 
et al.  (2018) found that UHI enhancement during heatwave conditions is significant and distinct over Eastern 
US (EUS). However, they used coarsely resolved offline land surface model (LSM) simulations in their study. 
Using observational data over 54 US cities, Scott et al. (2018) found that the UHI intensity tends to decrease 
with increasing temperature in many US cities, while a few studies reported no synergistic associations between 
UHI and high temperature days over cities like Philadelphia (Ramamurthy & Bou-Zeid, 2017), Oklahoma City 
(Basara et al., 2008) and Singapore (Chew et al., 2021). Thus, the sensitivity of UHI to background temperature 
(T) is still highly uncertain.

In line with the concept of urban heat island intensity (Katavoutas & Founda, 2019) introduced the term UHSI 
(Urban Heat Stress Intensity) and compared bioclimatic indices between urban and non-urban sites during heat-
wave and non-heatwave periods to demonstrate potential associations between heatwaves and the UHSI. How-
ever, our understanding of the sensitivity of UHSI to ambient temperature rise is limited. Changes from rural 
to urban surface cover have both temperature (UHI) and moisture (UQI) effects, which can be closely coupled. 
Increase in temperature induces vapor pressure deficit and reduces evapotranspiration at the urban core, thereby 
increasing the urban-induced dryness or UQI (Hao et al., 2018). Similarly, UQI intensification may reduce cloud 
formation over the urban core (relative to rural regions), thus increasing the UHI (Du et al., 2019). However, UHI 
and UQI have competing effects on UHSI. Keeping all other factors constant, heat stress increases with increasing 
UHI values but decreases with increasing UQI values (Fischer et al., 2012). Therefore, urban-induced drying can 
offset the heat stress enhancement due to UHI (Wang & Gong, 2010; Yang et al., 2019). Notably, urban-rural 
differences in vegetation type and background climate can also affect UHI and UQI intensities (Chakraborty 
et al., 2017; Manoli et al., 2020; Zhao et al., 2018).

In 2020, ∼83% of the total population in the US lived in cities and urban areas. The larger of these cities are 
mostly concentrated over EUS (east of 105°W). Here, using a high-resolution convection-permitting regional 
modeling framework and satellite data, we investigate the spatiotemporal characteristics of UHSI and examine 
its sensitivity to background temperature in this region. Further, we illustrate the relative role of UHI and UQI on 
UHSI and UHSI-T associations.

2. Model Setup and Numerical Experiments
The Weather Research and Forecasting (WRF) model Version 3.8.1 (Skamarock & Klemp, 2008) was used to per-
form high resolution simulations, with the model domain (approximate 23.3°N–48.9°N and 66.2°W–108.2°W) 
centered on EUS (Figure S1 in Supporting Information S1). A single domain with 799 × 685 grid points is 
configured at convection-permitting scale of 4 km resolution with 64 vertical layers (approximately 90 m verti-
cal resolution near the surface). Initial and boundary conditions, including sea surface temperature, are derived 
from North American Regional Reanalysis https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/
north-american-regional-reanalysis-narr data (Mesinger et  al.,  2006). Data nudging or assimilation was not 
applied. The Noah LSM (Chen & Dudhia,  2001), coupled with a singer-layer urban canopy model (Kusaka 
et al., 2001) (Kusaka & Kimura, 2004), was used to represent land surface processes. Additional model physics 
include the Thompson microphysics scheme (Thompson et al., 2008), the Rapid Radiative Transfer Model for 
longwave radiation (Mlawer et  al.,  1997), the Goddard shortwave radiation scheme (Chou & Suarez,  1994), 
the Mellor-Yamada-Janjić (Janjić  (2001) planetary boundary layer scheme, and the Eta surface layer scheme 
(Janjić, 1994, 2001).

Accurate simulations of urban-induced micro-meteorological perturbations require accurate urban land classifica-
tions and AHF emissions. Traditionally, the default Moderate Resolution Imaging Spectroradiometer (MODIS)-
based LULC types are used in the Noah land surface module. We modified the Noah module to add three more ur-
ban LULC subcategories: commercial, high-intensity residential, and low-intensity residential (Chen et al., 2014; 
Yang et al., 2019) to capture more realistically the variability in urban characteristics in EUS. Further, the LSM 
was modified to add AHF directly to the sensible heat flux term in the LSM to represent the dynamic AHF in the 
simulation using the spatially heterogeneous global data set from (Lee et al., 2014).

https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-american-regional-reanalysis-narr
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Two experiments were performed with the above physics schemes. The control simulation (CNTL) incorporates 
the urbanization effect with realistic urban land use and AHF. The sensitivity experiment (NO_URB) is identical 
to the CNTL experiment except that urban grids are replaced by the dominant land cover type in the background/
nearby rural grids, and AHF is not considered. Both experiments were conducted for six consecutive spring-sum-
mer seasons (April–August: 2008–2013). As our study focuses on summertime urban heat stress, we only analyze 
and present results of June-July-August (JJA) in each year.

Urbanization effect on UHI and UQI is estimated from the difference of 2-m temperature and water vapor mixing 
ratio, respectively, between CNTL and NO_URB runs. The enhancement in thermal discomfort due to urbaniza-
tion is calculated using a heat index, HI (Steadman, 1971), which is defined as

�� = −42.379 + 2.04901523�� + 10.14333127�� − 0.22475541���� − 6.83783

× 10−3� 2
� − 5.481717 × 10−2��2 + 1.22874 × 10−3� 2

��� + 8.5282

× 10−4����2 − 1.99 × 10−6� 2
���

2 (1)

where, TF and RH denote air temperature (in degrees Fahrenheit) and relative humidity (in %), respectively. Note 
that we use RH instead of specific humidity in Equation 1, as per the technical definition of HI (https://www.wpc.
ncep.noaa.gov/html/heatindex_equation.shtml). The difference in 2-m HI between CNTL and NO_URB provides 
an estimate of UHSI due to urbanization (Equation 2). Generally, HI is used as a metric to classify heat extreme 
scenarios. Specifically, HI of 27–32°C is flagged as “heat caution” as fatigue and cramps can develop due to 
extended exposure. Similarly, HI of 32–41°C is flagged as “heat extreme period” as such exposure can even lead 
to heat stroke. Finally, HI ≥ 42°C is flagged as “danger and extreme danger” as heat stroke becomes probable and 
imminent. Conservatively, Heat caution hours (HCH) in a day (i.e., number of hours when HI ≥ 27°C) is used 
for our analysis. Similar to Equation 2, the difference in the number of heat caution hours (ΔHCH) is used in 
our study to denote the increased exposure time of humans to potential UHSI (Equation 3). Further, the separate 
contributions of urban-induced changes in Temperature and moisture on the enhancement in HCH are calculated 
using Equations 4 and 5, respectively.

UHSI = HICNTL − HINo_URB (2)

ΔHCH = HCHCNTL − HCHNo_URB (3)

ΔHCH(T) = HCH(TFCNTL,RHCNTL) − HCH(TFNo_URB,RHCNTL) (4)

ΔHCH(RH) = HCH(TFCNTL,RHCNTL) − HCH(TFCNTL,RHNo_URB) (5)

3. Model Evaluation at City Scale
The model simulated UHI values at surface (UHIsurface) are first evaluated against satellite-derived estimates of 
mean summer (JJA) UHIsurface from MODIS overpasses (4 times a day). To calculate UHIsurface from MODIS, the 
mean Land Surface Temperature (LST) over the city is subtracted from the mean LST of a normalized buffered 
region (which is approximately equal to the area of the city) around the city (see Chakraborty et al., 2021). For 
consistency, corresponding UHIsurface values are calculated using the same methodology for the WRF CNTL run 
and averaged over the 6-year simulation period.

The simulated daily mean summer UHIsurface compares well with observed values over most of the cities in 
southern half of EUS (Latitudes < 37°N) with magnitudes ∼0.5–3.5°C (Figures 1a and 1b). The UHIsurface over 
northern half of EUS ranges between ∼1.5 and ∼4°C in the satellite observation. In comparison, the simulated 
UHIsurface mostly ranges between ∼2.5 to and ∼4.5°C over northern EUS. In general, the simulated UHIsurface over 
some big cities are overestimated compared to satellite observations. For example, the MODIS-derived mean 
UHIsurface over New York and Atlanta is ∼1.5°C lower than the corresponding simulated mean values. Note that 
satellite observations have missing data and uncertainties under partially cloudy conditions, which may induce 
biases to this evaluation (Chakraborty et al., 2020). However, the spatial pattern in daily mean UHIsurface over EUS 
is well captured by the simulation. The UHIsurface generally decreases from northeast to southwest of the EUS 
domain in both observations and the simulation.

https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
https://www.wpc.ncep.noaa.gov/html/heatindex_equation.shtml
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The simulated daily mean 2-m temperature (Figure 1c) and diurnal temperature range (DTR) (Figure 1d) for each 
city, calculated as the difference between midday (1100–1400 LTC) and midnight (2100–0200 LTC) values based 
on hourly data from CNTL, are evaluated using correlation coefficients (R) against corresponding PRISM observa-
tions (Daly et al., 2007). During summer, the mean daily temperature varies between ∼24 and ∼35°C in EUS cities. 
There is a good correspondence between the simulation and PRISM data (R = 0.9), but biases of ∼2–3°C are obvi-
ous, similar to biases (∼2°C) found in other studies using WRF (Li & Bou-Zeid, 2014; Tewari et al., 2019). Warm 
and dry biases over central and eastern US have been longstanding and well-documented issues in weather and 
climate models (Lin et al., 2017; Ma et al., 2018; Morcrette et al., 2018; Qian et al., 2020). Since, these large-scale 
biases are present in both CNTL and NO_URB, their effect on modeling UHI, UQI, and UHSI should be negligible.

Figure 1. Panel a shows the 6-year summer June-July-August (JJA) mean values of CNTL-simulated UHIsurface over city clusters of Eastern US (EUS). City clusters 
are defined as continuous nightlight-informed urban grids defined in the CNTL experiment and the size of the filled circles represents the population in city clusters. 
The temperature values over all the urban grids in a city (as shown in Figure S1 in Supporting Information S1) are averaged to report the city specific value. Panel b 
is the same as panel a, but for the corresponding 6-year summer mean values of Moderate Resolution Imaging Spectroradiometer derived UHIsurface. Panel c compares 
the Weather Research and Forecasting-simulated 6-year summer (JJA) mean values of daily mean air temperature (T2) with collocated observed values from PRISM 
(Parameter-elevation Relationships on Independent Slopes Model) data set using scatterplot. Panel d is the same as Panel c, but for the diurnal temperature range over 
city clusters of EUS.
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Comparison of the simulated and observed DTR shows that the mean thermal climate is well-reproduced at city 
scale (R ∼0.8 and very low biases). Further, ability of the model to reproduce the daily variability over each city 
is evaluated between the modeled and observed daily air temperature values over each city (Figure S2a in Sup-
porting Information S1). Similar analysis is also presented for the daily minimum and maximum temperatures, 
separately (Figures S2b–S2c in Supporting Information S1). Note that both city-scale minimum and maximum 
temperatures are overestimated by the CNTL runs over EUS (Figure not shown), resulting in negligible differ-
ences between simulated and observed DTR. Overall, the model satisfactorily reproduces the daily variability of 
near surface thermal environment (R ∼0.6–0.8), irrespective of the location of the city. Comparison of the daily 
variability of simulated RH against that of ERA reanalysis also shows reasonable agreement (R ∼0.7) (Figure S2d 
in Supporting Information S1). Further, the ERA5-Land reanalysis-based HI is computed and compared against 
the daily mean HI in the CNTL simulation over the cities in EUS (Figure S3 in Supporting Information S1). It can 
be seen that the spatio-temporal variability of the simulated HI matches quite well (R > 0.7) with the reanalysis 
product for most of the EUS cities. However, a small offset is present in magnitude which could be attributed to 
the discrepancy in urban representation and resolution (with ERA5-Land being coarser) between the two data 
sets. In summary, despite biases in the simulated values, the model captures the spatio-temporal variability of 
temperature, moisture and heat index reasonably well.

4. Daytime Versus Nighttime UHI, UQI and UHSI
Figures 2a and 2b show the midday and midnight UHI over urban clusters averaged from hourly simulated data 
over 6 summer seasons. Different scales are used in plotting the changes at midday versus midnight to display the 
spatial variability more clearly. As expected, LULC change from background to urban and AHF lead to a warmer 
environments. However, changes in the magnitude of UHI between day and night are distinct. While the summer 
mean nighttime UHI over EUS cities ranges from 1.6°C to 4.8°C, the mean daytime UHI has a much smaller 
range between −0.7°C and 1.4°C. However, the region influenced by UHI is greater (radius ∼100–200 km from 
city center in northern cities) during the turbulent daytime compared to nighttime (not shown). The simulated 
changes in midday and midnight UQI are shown in Figures 2c and 2d. In general, urbanization reduces moisture 
regardless of the time of day. However, in contrast to the diurnal pattern of UHI, the daytime urban-induced dry-
ness (negative UQI values) is greater than nighttime over all cities. During midday, the mean dryness at city cores 
ranges from 0.0 to 2.1 g kg−1, but at night, the values are less than 0.8 g kg1.

During daytime, the net radiation, and thus the available energy at the surface (which is dissipated as latent 
heat + sensible heat), is much greater than at night. Changing the natural surface cover to urban changes the parti-
tioning of the surface available energy, as latent heat flux is reduced drastically with reduction in vegetation cover. 
As latent heat release is negligible during nighttime (Figures S4a–S4b in Supporting Information S1), the greater 
magnitude of UQI in daytime compared to nighttime is expected. Consequently, with urban land cover, a larger 
fraction of available energy at the surface is partitioned into sensible heat flux and ground heat storage. The en-
hancement in sensible heat triggers the UHI during daytime (Figures S4c–S4d in Supporting Information S1), but 
the enhancement in ground heat storage increases the heat emission at night and is the cause of the UHI peaking 
at nighttime (Varquez & Kanda, 2018). This thermal inertia of storing daytime heat and releasing it slowly during 
nighttime also enhances the daily minimum temperature (Varquez & Kanda, 2018). Although the enhancement in 
daily maximum temperature (during daytime) due to urbanization is also evident, many confounding factors such 
as turbulence and boundary layer convection reduce its magnitude compared to the nighttime UHI. Thus, urban-
ization also causes a distinct decrease in the DTR over all the cities (Figure S4e in Supporting Information S1).

Spatial heterogeneity in the UHI and UQI magnitudes over EUS is evident irrespective of the time of the day. 
While variability in the size of cities is indicated by the size of the circles in Figure 2, it appears that the mag-
nitude of the UHI and UQI is a stronger function of the geographical location rather than the city size. In short, 
from northeastern US to southwestern or southeastern US, the UHI and UQI values change more obviously 
while within a region, there is less variability in the UHI and UQI despite the large variability in the city size. 
This indicates a role of the background climate/solar radiation. For quantification, we divide our study area into 
three sub-regions, namely Northern EUS (hereafter EUSNorth), Southwestern EUS (EUSSW) and Southeastern 
EUS (EUSSE) and analyzed them separately (Table S1 and Figure S5 in Supporting Information S1). These re-
gions closely follow the background climate zones. Magnitudes of the UHI and UQI are greatest over EUSNorth, 
followed by EUSSW and EUSSE. This is mainly because latent heat reduction and sensible heat enhancement are 
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Figure 2. Spatiotemporal variability of simulated 6-year summer mean values of (a) midnight urban heat island (UHI), (b) midday UHI, (c) midnight UQI, (d) midday 
UQI, (e) midnight urban heat stress intensity (UHSI) and (f) midday UHSI over Eastern US cities. The size of the circle represents the size of the city cluster by 
population. For the midday and midnight composites, we averaged the hourly outputs between 1100 and 1400 local time and 2100–0200 local time, respectively.
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maximum over EUSNorth (from forest and cropland to urban), followed by EUSSE (from forest, savanna, and crop-
land to urban) and EUSSW (from savanna and shrub to urban). The differences among the 3 subregions are seen 
for both midday and midnight periods. The latent heat reduction and sensible heat enhancement are maximum 
over EUSNorth and minimum over the EUSSE. Interestingly, over the cities in EUSSW like Houston and Dallas, sen-
sible heat is reduced due to urbanization compared to the background with minimal changes in latent heat flux, 
which would explain the negative daytime UHI. Reduction in sensible heat and little change in latent heat suggest 
that the reduction in the UHI is due to the reduction in available energy, which may be related to changes in cloud 
cover and ground storage. Notably, due to the greater thermal inertia of the urban materials, the mean 6-year UHI 
over these cities are positive at nighttime despite the negative UHI during daytime.

Figures 2e and 2f depict the urbanization-induced midday and midnight mean UHSI, which depends on changes 
in both temperature and moisture. As expected from our discussion of UHI and UQI, urbanization leads to larger 
increase of the UHSI at nighttime (1.9–4.9°C) compared to daytime (−0.8–0.5oC). The impact of UHI seems to 
dominate the diurnal pattern of UHSI intensity over EUS. Nonetheless, about half of the cities in southern EUS 
feel more comfortable during daytime (UHSI decreases with background temperature), indicating a non-linear 
dependence of UHSI on UHI and UQI during daytime. Urbanization increases the air temperature in urban areas, 
but it also decreases the moisture availability and the peak intensities of these effects are not synchronized during 
the day.

As UHI and UQI have opposite effect on UHSI, the duration of UHI and UQI during the day has important im-
plications. On average, the duration or number of hours in a day with positive UHI, negative UQI and positive 
UHSI is ∼15–22 hr day−1 (Figures S6a–S6c in Supporting Information S1) over most of the cities in EUS. To 
better understand this, their diurnal variability is also analyzed (Figures S6d–S6f in Supporting Information S1). 
While UHI peaks during nighttime, UQI intensities are higher during daytime (Figures S6d–S6e in Supporting 
Information S1). In southwestern EUS, negative UHI combined with low UQI intensity during the day result 
in negative UHSI values in daytime (Figure S6f in Supporting Information S1). Thus, differences of the UHSI 
hours among cities are determined by the net diurnal variability in the intensity of UHI and UQI, which depends 
on the background climate. Overall, the influence of UHI on UHSI is stronger than the influence of UQI, except 
for daytime in EUSSE.

5. Sensitivity of UHI, UQI and UHSI to Background Temperature
Here, we examine the sensitivity of UHI, UQI, and UHSI to the ambient air temperature, with a focus on how 
they vary between hotter and cooler days. Figures 3a and 3b display the linear regression slope between the sim-
ulated UHI and the background air temperature for midnight and midday, respectively, for each city cluster. The 
background temperature is obtained from the NO_URB simulation. A robust positive regression slope between 
the background temperature and the UHI intensity is notable during nighttime, suggesting that UHI effect tends 
to be stronger on hotter summer nights. Specifically, the nighttime UHI can rise by 0.1–0.4°C for each degree rise 
in ambient temperature. However, spatial variations in the magnitudes of the UHI-T slope are also evident, with a 
pattern opposite to that of UHI (Table S1 in Supporting Information S1). That is, the slope of UHI-T in EUSNorth 
(e.g., Chicago, New York) (<0.2) is smaller than that in EUSSE and EUSSW during midnight (mostly >0.2), while 
the UHI is strongest in EUSNorth. For example, an enhancement of 4–5°C in background temperature can lead to 
∼0.25–1°C rise in UHI values over northern US but ∼1–1.75°C rise in UHI values over the southern US. This 
suggests that the regional differences in night-time UHI values between southern EUS and northern EUS (i.e., 
∼1–1.5°C as seen in Figure 2) diminishes on above normal hot days in EUS.

Figure 3b displays the linear regression slope between the simulated UQI intensity and the corresponding 2-m 
air temperature for midday. A robust negative regression slope between the background temperature and the UQI 
intensity is seen across the EUS. This means urban-induced dryness tends to be stronger on hotter days. Specif-
ically, the dryness of mid and large cities can increase by 0.1–0.2 g kg−1 degree−1 rise in temperature, which is 
∼10–20% enhancement (Figure 2d shows a range of ∼0.1–2 g kg−1 for the mean UQI values). This enhancement 
of UQI is the result of a larger rural-urban contrast in LH on hotter days than cooler days as higher VPD on hotter 
days increases LH in rural area while LH is limited by available water in the urban surface. Spatially, the slopes 
of UQI-T over the cities located in EUSNorth are relatively greater than that over cities in the southern EUS. This 
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is contrary to the spatial pattern of the slopes of UHI-T. The spatial pattern and sign of the UQI-T slopes at night 
are similar to that during midday, but the intensity is comparatively smaller (Figure not shown).

Figures 3c and 3d shows the regression slopes of UHSI and the background T during midnight and midday, 
respectively. UHSI and T are positively correlated during nighttime but negatively related during daytime. The 
enhancement in UHSI with T during nighttime is expected because of the positive UHI-T slope. Interestingly, 
negative UHSI-T slope values during daytime mean that under heatwave conditions, UHSI does not increase 
during daytime. This is mainly because the UHI-T slope values during daytime are insignificant (Table S1 in 
Supporting Information S1), but strong enhancement in UQI (Figure 3b) during hotter days reduces UHSI during 
daytime. Overall, these findings clearly show the dominant impact of the UHI-T relationship on how UHSI varies 

Figure 3. Spatial variability of the slope of regression between background temperature (from NO_URB) and (a) midnight urban heat island, (b) midday UQI, (c) 
midnight urban heat stress intensity (UHSI) and (d) midday UHSI over Eastern US cities. The size of the circles represent the size of the city cluster and unfilled circles 
indicate insignificant slope values. The midday and midnight composites are obtained using hourly outputs between 1100 and 1400 local time and 2100–0200 local 
time, respectively.
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with the background temperature. The spatial variations in the UHSI-T slope during nighttime follow that of the 
UHI-T slope, that is, larger slope over EUSSE and EUSSW compared to EUSNorth. Consequently, for each degree 
rise in the background temperature, UHSI enhancement is greater (∼10%) in the southern cities (Figures  3c 
and 3d) than the northern cities (Table S1 in Supporting Information S1).

6. Heat Caution Hours
To quantify how urbanization induced heat stress impacts public health, we estimate ΔHCH in a day (i.e., change 
in the number of hours when HI ≥ 27°C) based on the model simulations. The HCH increases by 2–7 hr day−1 due 
to urbanization (Figure 4a). Interestingly, the largest enhancements are seen over cities in EUSSE (4–7 hr day−1). 
Cities in EUSNorth and EUSSW can see HCH enhancements of 2–4 hr day−1. Under hotter conditions, HCH tends 

Figure 4. Changes in heat caution hours (ΔHCH) (a) due to urbanization effect and (b) the slope of linear regression between ΔHCH and ambient temperature. Panel 
(c) illustrates the changes in HCH due only to urban-induced moisture perturbations and (d) only to urban-induced temperature changes.
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to further increase by ∼0.25–0.75 hr day−1 degree−1 rise In background temperature, mainly over EUSNorth and 
EUSSE (Figure 4b). But the impact of urbanization on HCH is mostly insignificant over cities in EUSSW.

To better understand the urbanization-induced changes in HCH, we isolate the impact of UHI and UQI on ΔHCH 
based on Equations 4 and 5, respectively. As expected, changes in HCH due to temperature and moisture show dif-
ferent signs, and in term of the magnitude, temperature effects are 3–5 times greater than that due to moisture (Fig-
ures 4c and 4d). Through changes in moisture, urbanization has a negative effect on ΔHCH for ∼0.3–0.6 hr day−1  
(Figure 4c). But, temperature changes due to urbanization have a positive effect on ΔHCH by ∼3–7 hr day−1 
(Figure 4d). Thus, the variabilities in UHSI and ΔHCH are mainly dominated by the temperature enhancement 
associated with urbanization (Figure 4d). Moreover, the spatial distribution of the 6-year mean ΔHCH purely due 
to temperature changes matches very well with the spatial pattern of the urbanization-induced ΔHCH (Figure 4a). 
However, there are subtle evidence of a strong influence of background moisture on the spatial variability of 
ΔHCH. Among the EUSSE cities, the spatial pattern of the ΔHCH-T slope (Figure 4b) shows relatively larger 
slope over cities near the coast. For example, HCH rises by ∼0.75 hr day−1 degree−1 rise in background tempera-
ture for cities in Florida but only ∼0.5 hr day−1 degree−1 rise in Atlanta.

7. Discussions and Summary
For cities in EUS, peak UHI has a range of ∼2.5–4°C and the corresponding peak urban-induced dryness has a 
range of ∼0.5–2 g kg−1. While the UHI peaks during nighttime, the diurnal peak of UQI occurs during daytime. 
UHSI is strongly enhanced by increases in the background temperature. Quantitatively, the urban-induced heat 
stress exposure can increase by ∼3–5 hr day−1 over EUS cities. In rural areas, the surface energy partitioning 
shifts toward greater evaporative fraction under hotter conditions, but in urban areas, this shift is suppressed by 
the lack of vegetation and surface moisture. This mechanism largely explains the positive UHI-T (and thus the 
positive UHSI-T) relationship. In addition to enhancing the UHSI, increases in background temperature also 
lengthen the duration of heat caution hours. Therefore, urbanization affects both the magnitude and duration of 
heat stress. Importantly, the UHSI-T relationship has strong spatial-diurnal variability, with the steepest enhance-
ment in UHSI per degree rise in temperature simulated over EUSSE during nighttime. Our study highlights the 
importance of considering both UHI and UQI for understanding the diurnal variability in urban heat stress over 
EUS. As UHSI is enhanced under hotter and wetter conditions, enhancement in the urban-induced dryness can 
partially negate the rise in daytime UHSI during heatwaves.

Understanding the impacts of urbanization is increasingly relevant as global and regional urban extent increases 
with time. Traditionally, there are two types of observational analysis of urban-induced thermal changes–one in 
which urbanization effects are estimated based on the differences in temperature distribution over urban and rural 
sites and another based on comparison of the trends of temperature observed over urban and rural sites. The first 
approach provides an understanding of the spatial characteristics of UHI specific to the contemporary phase of 
urban expansion and the approach is similar to estimating UHIsurface using MODIS data (Figure 1a). The second 
approach represents the cumulative effect of urbanization on temperature, which is influenced by the sensitivity 
of UHI to climate variability. Recently, Krayenhoff et al. (2018) and Guo et al. (2019) highlighted the non-linear 
(or even opposing) interactions between urbanization and global-warming induced future temperature changes. 
Hence sensitivity of UHI, UQI, and UHSI to background temperature variations in the current climate should not 
be interpreted as how the impacts of urbanization respond to future global warming. Furthermore, our approach 
of comparing model simulations with and without the urban grids is different from the two approaches used in 
observational analysis. Thus, the simulated magnitudes of UHI/UQI and UHSI are expected to show differences 
from estimations by satellites or other previous observational studies.

Besides differences in the analysis methods, uncertainties in the physical parameterizations, the limitations of 
night-light based urban definitions and representation of sub-grid land processes could also contribute to biases 
in theo simulations. The well-known dry and warm biases in central and eastern US associated with biases in the 
large-scale circulation may also influence the simulation of urbanization effects. As the role of UQI is shown to 
be significant in understanding the UHSI-T relationship, the lack of detailed bio-physical and plant physiological 
processes in our model could also contribute to some uncertainties.

Despite the model biases mentioned above, our analysis builds a robust baseline for understanding the sensitivity 
of UHSI to background temperature in US. As urban-induced moisture and temperature changes can affect UHSI 
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differently at different times of the day, which also depend on the background climate, future mitigation strategies 
should be informed by detailed and city-specific analysis and modeling.

Data Availability Statement
The scripts for Figures, model data, code and scripts are available at https://portal.nersc.gov/project/m2645/pnnl/
GRL2021_UHI/
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