
1. Introduction
The urban heat island (UHI) can make urban lands warm up faster than the global average (Liu et al., 2022). 
The UHI and its trends hold important implications for eco-environments (Sarrat et al., 2006), climate change 
adaptation (Kleerekoper et  al.,  2012), energy consumption (Santamouris,  2014), and public health (Masselot 
et al., 2023), with urban heat-related deaths projected to surpass 0.1 million per year by 2050 (WHO, 2014). 
Accurate quantifications of UHI trends and associated drivers across global cities are critical steps toward under-
standing required urban heat mitigation and alleviating their potential negative effects.

There are generally two major UHI types (Oke et al., 2017), the surface UHI (Is), defined as urban-rural contrast 
in land surface temperature (LST), and the canopy UHI (Ic), described as urban-rural contrast in surface air 
temperature (SAT). While the Is and Ic differ conceptually and numerically, these two counterparts are well 
connected through urban land−atmosphere interactions (Venter et al., 2021). Satellite-based Is provides neces-
sary and comprehensive LST estimates over both urban and rural surfaces (Peng et al., 2012), but these esti-
mates are not sufficient to characterize heat stress within urban canopies, especially during daytime (Chakraborty 
et al., 2022). By contrast, the Ic is generally more relevant to thermal comfort perceived by urban residents (Luo 
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& Lau, 2021). Thus, simultaneous investigations of global Is and Ic trends are critical for better assessing global 
urban climate change and designing more appropriate urban heat mitigation strategies.

The ubiquitous nature of satellite LST observations has led to a recent explosion of examinations of Is trends even 
at the global scale (Chakraborty & Lee, 2019; Chen et al., 2021; Si et al., 2022; Yao et al., 2019). By comparison, 
the monitoring of Ic trends often relies on SAT measurements from representative weather stations over urban and 
rural lands (Levermore et al., 2018; Li et al., 2018; Varquez & Kanda, 2018; Wang & Shu, 2020). However, tradi-
tional weather stations are often sparsely and unevenly distributed across cities worldwide (Rohde et al., 2013); 
recently emerging crowdsourced data can deliver high-density SAT measurements, but such data are unable to 
provide long-term measurements required for Ic trend estimation (Meier et al., 2017). It is therefore not an easy 
task to obtain long-term and spatially dense urban and rural SAT measurements required for accurately estimating 
Ic trends across an adequate number of cities worldwide. Despite such difficulties, few attempts have estimated 
the global Ic trends by properly selecting available urban stations (Varquez & Kanda, 2018). However, these esti-
mated Ic trends may be highly sensitive to the site selection due to the high heterogeneity of urban surfaces; they 
may also be substantially influenced by the insufficient representation of global cities due to the uneven distribu-
tion of stations worldwide. Furthermore, their obtained global Ic trends are not directly comparable to previously 
quantified global Is trends, mostly due to the discrepancies in study period, study area, and urban-rural delinea-
tions. To address these issues, a recent pioneering research compared the Is and Ic trends over 200-plus megacities 
in mainland China based on spatially continuous SAT products estimated from satellite LST, in situ SAT, and 
other highly related variables (Yao et al., 2021). However, these estimated Is and Ic trends may be overestimated 
due to the inclusion of newly urbanized surfaces in the urban delineation, because these newly urbanized surfaces 
possess very rapid warming trends when being converted from natural to urban lands during the study period (Liu 
et al., 2022; Luo & Lau, 2021). More importantly, it remains unknown whether these regional conclusions can 
be extended to broader climatic and geographic regions. Therefore, the differences in the relative magnitude of Is 
and Ic trends across global cities remain largely vague.

The UHI trends are expected to be jointly regulated by surface properties (SFP; e.g., vegetation coverage), back-
ground climate (BGC; e.g., surface air temperature), and overall urban metrics (OUM, e.g., city size), together 
with their changes over time (Du et al., 2021; Oke et al., 2017; Peng et al., 2012; Venter et al., 2021). Neverthe-
less, the differences in the major determinants of Is and Ic trends have not yet been investigated simultaneously 
even at regional scales. Case studies that separately investigated global Is or Ic trends through statistical analyses 
have illustrated that the global Is trends are well correlated with the trends of urban-rural contrast in vegetation 
coverage during the daytime while related to those in surface albedo at night (Chakraborty & Lee, 2019; Si 
et al., 2022; Yao et al., 2019); and the global Ic trends are correlated with vegetation coverage and wind speed, 
among other factors (Varquez & Kanda, 2018). However, the conclusions of these two types of studies cannot be 
directly compared due to their different study criteria. Besides, the chosen variables used for previous attribution 
analysis are relatively limited, and the associated methods (e.g., linear correlation analysis) may be insufficient to 
characterize the contrasting drivers between global Is and Ic trends. Therefore, a comprehensive comparison of the 
drivers between global Is and Ic trends, especially using the same sample and uniform criteria, remains lacking.

To address these gaps, here we compare the Is and Ic trends across 5,643 cities worldwide spanning diverse 
climatic and geographical contexts, using spatially continuous MODIS LST observations and SAT estimates 
(2003–2020). We further choose 16 variables including BGC, SFP, and OUM factors, and compare their contri-
butions to global Is and Ic trends using random forest (RF) models. We believe this study can deepen our under-
standing of urban thermal environmental dynamics in the context of rapid urbanization and global climate change.

2. Material and Methods
2.1. Study Area and Data

We chose 5,643 cities worldwide (each with the urban area >10 km 2 in the year 2000) for this study (Figure 
S1 and Text S1 in Supporting Information S1). We employed the MODIS data, SAT data, reanalysis data, and 
auxiliary data from 2003 to 2020 to assist analysis (Table S1 in Supporting Information S1). The 8-day LST data 
(MYD11A2; 1 km) were used to calculate the Is trend. Here we used the Aqua-based LST mainly because the 
Aqua overpass times are relatively close to those of the daily maximum and minimum SATs (Oke et al., 2017). 
The 16-day enhanced vegetation index (EVI; MOD13A2; 1 km), 16-day white sky albedo (WSA; MCD43A3; 
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500 m), and daily aerosol optical depth (AOD; MCD19A2; 1 km) were employed to investigate the drivers of 
UHI trends. The yearly land cover type data (MCD12Q1; 500 m) were used to help delineate urban and rural 
surfaces. The daily maximum and minimum SAT data with a spatial resolution of 1 km were obtained from 
Zhang et al. (2022) and were used to calculate the Ic trend. These SATs were estimated from LST observations, 
topography, and in situ measurements from >100,000 weather stations, and they have been shown to have higher 
accuracy compared to other global datasets. The monthly SAT, precipitation (PREP), and shortwave net radia-
tion (RAD) from ERA5-Land reanalysis products (0.1°; Muñoz Sabater, 2019) were employed to investigate the 
impacts from BGC on UHI trends. The global urban boundary data from Li et al. (2020) were used for urban and 
rural delineation. The global impervious surface data (Global artificial impervious area (GAIA) data set; 30 m; 
Gong et al., 2020) were applied to examine the impacts of ISP on UHI trends. The population data (GPWv411 
data set; 30 arc sec; Doxsey-Whitfield et al., 2015) were used to group global cities as well as to investigate their 
impacts on UHI trends. All satellite data were resampled to 1 km to match the spatial resolution of LST product.

2.2. Delineation of Urban and Rural Areas

Cities can experience significant urban expansion on decadal timescales (Liu et al., 2020). It is therefore neces-
sary to control for changes in both urban and rural surfaces to allow a fair comparison of UHI intensities over 
years (Oke et al., 2017). To reduce the impacts from urban expansion on the calculation of UHI intensity trends, 
we defined urban surfaces as the pixels within the urban boundary in 2000, and delineated the rural surround-
ings as the ring areas between the 10-km and 100-km buffer zones outside the urban boundary in 2018 (Luo 
& Lau, 2018; Yao et al., 2019). The overlap of neighboring buffer zones was considered as rural surfaces for 
multiple urban areas (Yao et al., 2019). The pixels labeled as “water”, “snow and ice”, and “permanent wetlands” 
were further eliminated (Lai et al., 2018). Here we employed the urban boundary in 2018 to generate buffer zones 
mainly to characterize the rural background more accurately. We excluded surfaces within the 10  km buffer 
zone of urban area mainly because the inclusion of surfaces very close to the urban area may underestimate the 
UHI intensity (Zhou et al., 2015). A closer sensitivity analysis further demonstrated that both the patterns and 
magnitudes of global UHI trends rarely change with different buffer zone sizes (Figures S2 and S3 in Supporting 
Information S1).

2.3. Estimation and Comparison of Global Is and Ic Trends

For Is, we first disregarded the pixels with retrieval error larger than 3.0 K according to the quality-control band 
of MYD11A2 and then aggregated these observations into monthly composites to reduce the uncertainties arising 
from retrieval processes and cloud contaminations (Lai et al., 2018; Venter et al., 2021). For Ic, we first removed 
the SAT anomalies using 3σ rule for each pixel and similarly aggregated them into monthly composites. Is (or 
Ic) was estimated as the difference in the mean LST (or SAT) between all available urban and rural pixels (Du 
et al., 2021; Peng et al., 2012), and their long-term trends were then quantified by linearly regressing the variable 
against the year (Chakraborty & Lee, 2019; Varquez & Kanda, 2018). We compared the Is and Ic trends across 
different continents, climate zones, and cities with different sizes. It is important to note that the quantification of 
Ic trends may be impacted by the estimation error of SAT product. More discussions and cross-validations on this 
issue are provided in Text S2 in Supporting Information S1.

2.4. Comparison of the Drivers Between Global Is and Ic Trends

The drivers of absolute Is and Ic can be categorized into three groups, including the BGC factors (e.g., SAT and 
PREP), SFP factors (e.g., ISP and EVI), and OUM factors (e.g., city size) (Du et al., 2021; Peng et al., 2012; 
Venter et al., 2021). It is therefore expected that the long-term trends of Is and Ic are also regulated by these 
factors, together with their changes over time. Here we selected the explanatory factors using two criteria: (a) the 
factor has been shown to be important for explaining UHI dynamics, and (b) the factor is consistent and easily 
obtainable across global cities. We chose SAT, PREP, ΔAOD (with the prefix “Δ” denoting the urban-rural 
contrast), and RAD as the BGC factors, ΔISP, ΔEVI, and ΔWSA as the SFP factors, and urban area (Area) and 
urban population (POP) as the OUM factors. Note that the multicollinearity among variables can distort the 
estimation of the relative importance of factors (Venter et al., 2021). We therefore only reserved the variables 
with variance inflation factor <5.0 (Zuur et al., 2010), including eight variables (i.e., Area, SAT, PREP, ΔAOD, 
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RAD, ΔISP, ΔEVI, and ΔWSA; calculated as the mean value during the study period) together with their trends 
(i.e., KArea, KSAT, KPREP, KΔAOD, KRAD, KΔISP, KΔEVI, and KΔWSA). Referring to previous studies (Seto et al., 2011), 
the KArea was calculated as 100 ×  ((Areaend/Areastart) 1/n − 1) to more accurately characterize urban expansion 
processes, where Areaend and Areastart denote the urban area of the start year and end year, respectively, and n 
represents the length of study period.

We employed partial correlation analysis and RF model to compare the drivers of Is and Ic trends. The partial 
correlation coefficient was used to determine the positive or negative relationships between UHI trends and a 
certain factor while holding the other factors constant. The RF model was employed for measuring the variable 
importance (unit: %) of the chosen factors to Is and Ic trends. The overall relative importance of a certain category 
was calculated as the addition of all its subcategory variables, for example, the relative importance of OUM 
was estimated as the addition of those of Area and KArea. This study employed 80% of the samples as training 
data and the rest were used for validation. The performance of RF models was evaluated using the coefficient of 
determination (R 2). The comparison of the drivers between global Is and Ic trends was performed at both annual 
and seasonal scales.

3. Results and Discussion
3.1. Contrasting Trends Between Is and Ic

In general, the global Is trend (0.19 ± 0.006°C/decade, mean ± SE, p < 0.05) is nearly six times larger than 
the Ic trend (0.03 ± 0.002°C/decade, p < 0.05) during the day, with 70% and 67% of cities showing increasing 
trends in Is and Ic, respectively (Figures 1a–1c). At night, the Is and Ic trends are much closer, with the former 
(0.06 ± 0.004°C/decade, p < 0.05) twice the magnitude of the latter (0.03 ± 0.002°C/decade, p < 0.05). The 
proportions of cities exhibiting warming trends in nocturnal Is and Ic are 58% and 59%, respectively (Figure 1d–1f). 
These results imply a notable increasing trend in LST-based diurnal temperature range change (ΔDTRLST, i.e., 
equivalent to daytime minus nighttime Is of 0.13°C/decade, p < 0.05) yet an insignificant trend in SAT-based 
diurnal temperature range change (ΔDTRSAT, equivalent to daytime minus nighttime Ic of about 0.00°C/decade, 
p  >  0.05) in recent decades (Figure S4 in Supporting Information  S1). In terms of the urban–rural contrast 
in warming rate (Figure S5 and Table S2 in Supporting Information S1), the global urban warming rate esti-
mated from LST observations (0.53°C/decade; averaged for daytime and nighttime) is 1.3 times that of the rural 
surroundings (0.40°C/decade), while such a ratio is reduced to 1.1 (urban and rural warming rates are 0.39°C/
decade and 0.36°C/decade, respectively) when using SAT measurements.

Both the Is and Ic trends exhibit notable spatial variations (Figures 1g–1n). For Asian cities, the daytime Is and Ic 
trends are 0.31°C/decade and 0.07°C/decade, respectively, and the corresponding nighttime trends are 0.17°C/
decade and 0.09°C/decade, respectively (Figure S6 in Supporting Information S1). By contrast, for European 
cities with more stable urban land, both the Is and Ic trends are less pronounced during the day (0.07°C/decade for 
Is and −0.01°C/decade for Ic) and even negative at night (−0.03°C/decade for Is and −0.01°C/decade for Ic; Figure 
S6 in Supporting Information S1). Both the slightly larger urban densification trends (identified by KISP) and the 
substantially faster rural than urban greening (identified by KEVI) in Asian cities compared to European cities 
may contribute to the disparities in UHI trends between these two continents (Figure S7 in Supporting Informa-
tion S1). Further illustrations on the impacts of KISP and KEVI on the Is and Ic trends are provided in Section 3.2.

From a climatic perspective, during the day, the Is trend reaches its maximum in equatorial climates (0.30°C/
decade), followed by temperate (0.27°C/decade) and snow climates (0.16°C/decade), while the Is exhibits a 
decreasing trend for arid climates (−0.03°C/decade; Figure 2c), which are in relatively good agreements with 
previous results (Si et  al.,  2022). By comparison, the Ic trends show diametrically opposite climatic patterns 
to those of Is, that is, the maximum Ic trend occurs in snow climates (0.034°C/decade), followed by temperate 
(0.030°C/decade), arid (0.028°C/decade), and equatorial (0.007°C/decade) climates (Figure 2c). At night, the 
Is and Ic trends show very similar climatic variations, with larger values in equatorial and arid climates than in 
temperate and snow climates (Figure 2d).

Interestingly, we find that the Is and Ic trends generally increase with urban population (Figures 2e and 2f), and 
there are significant positive relationships between both Is and Ic trends and the logarithm of urban population 
(Figure S8 in Supporting Information S1). During the day, both the Is and Ic trends of POP-1 cities are notably 
lower than those of POP-2, POP-3 and POP-4 cities (Figure 2e). At night, the Is trend increases continuously with 
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population size, while the Ic trend is characterized by an initial decrease from POP-1 to POP-2 cities and then a 
steady increase from POP-2 to POP-4 cities (Figure 2f). With respect to seasonal variations, both the daytime Is 
and Ic trends are characterized by a notably higher trend in summer (0.36°C/decade for Is and 0.07°C/decade for 
Ic) than in other seasons (Figures 2g and 2h). At night, the seasonal pattern of the Is trends holds a similar fashion 
to that of daytime, while the Ic trends become larger in spring and summer than in autumn and winter.

3.2. Contrasting Drivers Between Is and Ic Trends

The results reveal that the R 2 of RF models are 0.50 and 0.44 for global daytime and nighttime Is trends, respec-
tively, and are 0.44 and 0.48 for global daytime and nighttime Ic trends, respectively. During the day, the global Is 
trend is slightly more controlled by SFP than by BGC (Figure 3a), with the impacts from SFP reaching the maxi-
mum (64%) and minimum (45%) in summer and winter, respectively (Figure S9 in Supporting Information S1). 
By comparison, BGC plays a more dominant role in regulating global Ic trend relative to SFP (Figure 3a), and 
the BGC impacts are more pronounced in autumn (68%), followed by summer (61%), winter (57%), and spring 
(56%) (Figure S9 in Supporting Information S1). At night, both the global Is and Ic trends are more controlled by 
BGC than by SFP (Figure 3a), with the impacts from BGC much lower in winter than in other seasons for both Is 
and Ic trends (Figure S9 in Supporting Information S1). From a climatic perspective (Figure 3b−3e), the relative 
importance among different categories of drivers in equatorial and temperate climates follows a similar pattern 

Figure 1. The annual mean Is and Ic trends across 5,643 cities worldwide over 2003−2020 | The Is trends during the day 
(a) and night (d), the Ic trends during the day (b) and night (e), and the global mean Is and Ic trends for the day (c) and night 
(f). The percentages in brackets indicate the proportion of cities with positive UHI intensity trends. Panel (g) to (n) show 
the enlarged rectangular regions within (a), (b), (d) and (e), with their red and blue boxes indicating the Is and Ic trends, 
respectively. The error bars in (c) and (f) denote the 99% confidence interval.
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to that over the globe (Figures 3b and 3d). For cities in arid climates, SFP serves as the dominant regulator of the 
Is trend, while the Ic trend is more regulated by BGC during both daytime and nighttime (Figure 3c). For cities 
in snow climates, both the Is and Ic trends are significantly more controlled by BGC relative to SFP (Figure 3e).

The relative importance of regulators on the UHI intensity trends depends on the UHI type (i.e., Is or Ic) and time 
of day (Figure 3a). Across global cities, the daytime Is trend is mostly regulated by KΔEVI (reaching 25%) among 
all the regulators, which is on par with the magnitude reported previously (Chen et al., 2021; Yao et al., 2019). 
This is understandable because Earth's surface has been increasingly greening over the past two decades due to 
CO2 fertilization, nitrogen deposition, and climate change (Chen et al., 2019; Zhu et al., 2016), which greatly 
enhances the evapotranspiration efficiency of rural surfaces and thus increases global daytime Is (Figures S10 and 
S11a in Supporting Information S1). For the global daytime Ic trend, PREP (13%) and ΔAOD (11%) contribute 

Figure 2. The differences between the annual mean Is and Ic trends (i.e., Is − Ic) across global cities as well as comparisons of Is and Ic trends in different climate zones, 
city sizes, and seasons | The patterns of Is − Ic trend for the day (a) and night (b), with the percentages in brackets indicating the proportion of cities with a larger trend 
of Is than of Ic; the Is and Ic trends across different climate zones, city sizes (denoted by urban population, with “POP-1” to “POP-4” representing the ascending order 
of urban population, refer to Text S1 in Supporting Information S1), and seasons for the day (c, e, and g) and night (d, f, and h). The error bars in (c–h) denote the 99% 
confidence interval.
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slightly more than the other regulators. At night, KΔWSA serves as the largest regulator (17%) to the global Is trend, 
and a smaller KΔWSA is usually accompanied by a larger nighttime Is trend (Figures S10 and S11b in Supporting 
Information  S1). In comparison, the nighttime Ic trend is more controlled by PREP (15%) than by the other 
regulators.

4. Clarifications and Implications
Simultaneous investigation of Is and Ic has long been of interest to the urban climate community. The contrast-
ing patterns and drivers between global Is and Ic at the intra-annual timescale have been well understood 
(Du et al., 2021). However, the differences between these two variables remain poorly understood from an 
interdecadal perspective, mainly due to the difficulty of obtaining long-term and spatially dense SAT measure-
ments within global cities. By combining spatially continuous MODIS LST observations and SAT estimates 
(Zhang et al., 2022), here we provide a first global evaluation of the Ic trends and demonstrate that these trends 
are only one-sixth and one-half of those based on LSTs during daytime and nighttime, respectively (Figure 1). 
From the urban warming perspective, we reconfirm the findings of a very recent literature that LST-based 

Figure 3. Relative importance of different types of controls to annual mean Is and Ic trends for all the cities (a), cities in 
equatorial (b), arid (c), temperate (d), and snow climates (e) | Three types of controls are involved. City area (Area) and 
its trend (KArea) belong to the overall urban metric (OUM) category; surface air temperature (SAT), precipitation (PREP), 
urban-rural contrast in aerosol optical depth (ΔAOD), shortwave net radiation (RAD), and their associated trends (KSAT, 
KPREP, KΔAOD, and KRAD) belong to the background climate (BGC) category; and urban-rural contrast in impervious surface 
percentage (ΔISP), enhanced vegetation index (ΔEVI), white sky albedo (ΔWSA), and their trends (KΔISP, KΔEVI, and KΔWSA) 
belong to the surface property (SFP) category.
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global urban to rural warming rate ratio is 1.3 (Liu et al., 2022), while we, for the first time to the best of 
knowledge, provide evidence that such a ratio is reduced to 1.1 when using SAT measurements that hold more 
important implications for public health considerations (Figure S5 in Supporting Information  S1). These 
results suggest the caution of incorporating LST or SUHI in epidemiological researches, which may signif-
icantly overestimate the trends of heat stress perceived by urban residents, especially once the local drying 
effects of urbanization is also taken into consideration (Chakraborty et al., 2022). From the urban climatol-
ogy perspective, the contrasting patterns of the Is and Ic trends revealed by this study also better clarify the 
temporal evolution of urban surface-atmosphere interaction in the recent two decades (Oke et al., 2017), which 
may help improve the accuracy of global urban climate models. Besides, we show that these Is and Ic trends 
are prone to be higher in more populous cities (Figures 2e–2f; Figure S8 in Supporting Information S1). This 
implies an augmented urban population exposure to urban warmth and a greater urgency of urban heat mitiga-
tion in these populous cities, especially for tropical and subtropical cities that are already hot (Figures 2c–2d; 
Manoli et al., 2019).

Our attribution analysis reveals that KΔEVI and KΔWSA are the largest regulators of global daytime and nighttime 
Is trends, respectively, while global Ic trends are more regulated by PREP during both daytime and nighttime 
(Figure 3a and Figure S11 in Supporting Information S1). These results suggest that increasing urban green 
infrastructure and surface albedo may serve as effective strategies to curb Is trends, yet they become less helpful in 
mitigating the Ic trends, even though the Ic serves as a more meaningful measure of increased thermal discomfort 
perceived by urban residents (compared with a rural reference; Stewart et al., 2021). Practitioners should there-
fore keep in mind that the benefits of these commonly used adaptation strategies to mitigate urban heat stress 
does not necessarily equal to those to alleviate the Is trends and that the design of urban heat mitigation strategies 
should not rely merely on Is.

There may exist some limitations of this study. First, the quantified Is and Ic trends have been demonstrated to be 
robust and reliable at global or regional scales (Text S2 in Supporting Information S1), while these trends may 
be less convincing in individual cities due to the potential uncertainties related to LSTs (e.g., thermal anisot-
ropy, missing records due to cloud contamination) and SATs (e.g., weather stations used to estimate SATs are 
unevenly distributed within cities worldwide) (Chakraborty, Lee, et al., 2021; Du et al., 2023; Zhang et al., 2022). 
Second, like a couple of recent studies regarding the absolute UHI (Chakraborty, Sarangi, & Lee, 2021; Venter 
et al., 2021), this study investigates the drivers of Is and Ic trends with RF models. These statistical approaches are 
not capable of disentangling the physical mechanism of UHI trends from the surface energy balance perspective, 
yet they still serve as an important complement to the physical attribution frameworks (Manoli et al., 2019; Zhang 
et al., 2023; Zhao et al., 2014). Future efforts are still needed to use multiple lines of evidence, including data- and 
process-based models, to understand these complex physical mechanisms.
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