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Supporting information includes two texts (Texts S1 to S2), twelve figures (Figures S1 to 34 
S12), and three tables (Tables S1 to S3).  35 
 36 
 Text S1 shows the clarifications on the study area;  37 
 Text S2 shows the uncertainties related to the impacts from accuracy of SAT estimates 38 

on the quantification of Ic trends.  39 
 40 
 Figure S1 denotes the distribution of 5643 cities worldwide;  41 
 Figure S2 shows the annual mean daytime Is trends across 5643 cities worldwide 42 

quantified using different buffer zones to delineate the rural surfaces;  43 
 Figure S3 gives the impacts from different sizes of buffer zones for delineating rural 44 

surfaces on the quantification of global mean daytime Is trends;  45 
 Figure S4 shows the trends of ΔDTRLST and ΔDTRSAT; 46 
 Figure S5 gives the annual mean LST and SAT trends across global cities as well as the 47 

associated global mean trends;  48 
 Figure S6 shows the mean Is and Ic trends for cities across various continents during 49 

the day and night;  50 
 Figure S7 shows the mean ISP trends and EVI trends over urban and rural surfaces 51 

across different continents;  52 
 Figure S8 gives the logarithmic relationships between daytime and nighttime Is and Ic 53 

trends and urban population across global cities;  54 
 Figure S9 shows the relative importance of various controls to global Is and Ic trends in 55 

different seasons;  56 
 Figure S10 gives the partial correlation coefficients (r) between the Is and Ic trends and 57 

each driver across global cities;  58 
 Figure S11 shows the statistical relationships between daytime Is trends and KΔEVI as 59 

well as those between nighttime Is trends and KΔWSA across global cities; 60 
 Figure S12 shows the global mean daytime and nighttime Ic trends quantified based 61 

on spatially continuous SAT estimates and in-situ SAT measurements. 62 
 63 
 Table 1 shows the details of the data used in this study;  64 
 Table 2 shows the global warming trends based on LST and SAT over both urban and 65 

rural surfaces across global 5643 cities; 66 
 Table 3 shows the abbreviations and symbols used in this study. 67 
  68 
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Text S1: Clarifications on the study area 69 
The chosen 5643 cities are distributed in various climate zones (Figure S1), including 70 
equatorial (427 cities), arid (878 cities), temperate (2610 cities), snow (1718 cities), and 71 
polar climates (10 cities) according to the Köppen–Geiger classification scheme (Kottek et 72 
al., 2006). These cities are also distributed in six continents, including Asia (1822 cities), 73 
Europe (1381 cities), Africa (395 cities), North America (1593 cities), South America (340 74 
cities), and Oceania (112 cities). In terms of city size, these cities can also be divided into 75 
four groups according to the quartile of urban population averaged from 2003 to 2020, 76 
labeled as POP-1, POP-2, POP-3, and POP-4 cities. 77 
 78 
 79 
  80 
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Text S2: Uncertainties related to the impacts from accuracy of SAT estimates on the 81 
quantification of Ic trends 82 
This study employed the spatially continuous SAT estimates to examine the global Ic trends 83 
(Zhang et al., 2022). Although this product possesses much higher accuracy compared to 84 
other global SAT products, it may still introduce potential uncertainties into the 85 
quantification of global Ic trend. We have therefore further discussed these potential 86 
impacts on the Ic trend according to the Bessel formula. We have also performed 87 
cross-validations to demonstrate the robustness of the methods and results by comparing 88 
the global Ic trends calculated based on spatially continuous SAT products and in-situ SAT 89 
measurements. 90 

 91 
(1) Possible uncertainties related to the impacts from accuracy of SAT data according to 92 
Bessel formula 93 
The estimation accuracies of this SAT product are 1.20 °C to 2.44 °C for daily Tmax and 1.69 °C 94 
to 2.39 °C for daily Tmin on a per-pixel scale (Zhang et al., 2022). Nevertheless, these should 95 
not introduce large biases in the main results of the current study due to the following 96 
reasons. First, we have excluded the anomalies of SAT time series for each pixel, and then 97 
aggregated these daily SATs into monthly composites to reduce the impacts from data 98 
anomalies as well as to obtain climatologically representative SATs. Using these monthly 99 
SATs, we have further estimated the Is and Ic trends for each city by first averaging the LSTs 100 
and SATs for all available urban and rural pixels and then subtracting the rural 101 
temperatures from the urban one. These temporal and spatial averaging procedures would 102 
generally suppress the impacts from SAT estimation accuracy on the quantification of Ic 103 
trend for an individual city according to the Bessel formula ( ఋ√௡ିଵ，n represents the number 104 
of samples and δ denotes the SAT estimation error at the per-pixel scale; Pugachev, 2014; 105 
Ye et al., 2016). More importantly, the current study focuses mainly on the disparities 106 
between Is and Ic trends on a global scale or across various climate zones that involve 107 
thousands or hundreds of cities. Therefore, the uncertainties arising from SAT estimation 108 
error to the quantification of Ic trend for an individual city would be further reduced once a 109 
large number of samples are averaged. 110 

 111 
(2) Cross-validations of the robustness of this study with in-situ SAT measurements 112 
In-situ SAT measurements from weather stations often possess relatively high data 113 
accuracy (about 0.1 K) and they offer an opportunity to perform cross-validations to 114 
demonstrate the robustness of the associated results. Using in-situ SAT measurements 115 
from more than 40,000 stations obtained from Berkey Earth and the China Meteorological 116 
Data Service Centre (Cao et al., 2016; Rohde et al., 2013), we further quantified the 117 
site-based global Ic trends in 461 cities worldwide and compared these trends with those 118 
quantified based on the spatially continuous SAT estimates to verify the reliability of our 119 
results (Figure S12). These 461 cities were selected based on the following criteria. First, we 120 
have initially identified all stations as ‘urban’ or ‘rural’ according to whether they are 121 
situated over urban or rural surfaces and whether the impervious surface percentage in 122 
the 200-m buffer around the station is greater or less than 20% in each year throughout 123 
the study period (Du et al., 2021). Second, we further screened the stations according to 124 
the data quality of their long-term SAT measurements. Specifically, we excluded the SAT 125 
outliers with the ‘3σ rule’ for each station, and screened the stations with data missing rate 126 
(< 50%) in every single year throughout the study period. To ensure the representativeness 127 
of global cities, we slightly loosened the criteria (at least five years of data for both 2003 − 128 
2010 and 2011 − 2020 and at least five months of data per year) for the less developed or 129 
developing regions owing to their extreme scarcity of weather stations. We finally obtained 130 
660 urban and 953 rural stations that covering 461 cities worldwide and then quantified 131 
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the Ic trends of these cities. The results revealed that the global mean Ic trends quantified 132 
based on in-situ SAT measurements are 0.04 K/decade for both daytime and nighttime 133 
(Figure S12), which are very close to those quantified based on the spatially continuous 134 
SAT estimates (i.e., 0.03 K/decade for both daytime and nighttime). These two distinct data 135 
sources show similar magnitudes of global UHI trends, strongly indicating the reliability of 136 
the main results of the current study. 137 
 138 
 139 
  140 
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 141 
Figure S1. Distribution of 5643 cities worldwide. 142 

143 
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 144 
Figure S2. The annual mean daytime Is trends across 5643 cities worldwide quantified 145 
using different buffer zones to delineate the rural surfaces. 146 
  147 
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 148 

Figure S3. Impacts from different sizes of buffer zones for delineating rural surfaces on the 149 
quantification of global mean daytime Is trends. 150 
  151 
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 152 

Figure S4. Trends of ΔDTRLST (the LST-based diurnal temperature range variations induced 153 
by urbanization; a) and ΔDTRSAT (the same as ΔDTRLST, but for SAT; b) | The percentages in 154 
brackets indicate the proportion of cities with positive trends. 155 
  156 
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 157 

Figure S5. Annual mean LST and SAT trends across global cities as well as the associated 158 
global mean trends | The urban and rural LST trends and SAT trends city by city during the 159 
day (a, b, d, and e) and night (f, g, i, and j), and the global mean LST and SAT trends for the 160 
day (c) and night (h). The error bars in (c) and (h) denote the 90% confidence interval. 161 
  162 
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 163 

Figure S6. The mean Is and Ic trends for cities across various continents during the day (a) 164 
and night (b).  165 
  166 
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 167 

Figure S7. The mean ISP trends (a) and EVI trends (b) over urban (red) and rural (blue) 168 
surfaces across different continents, with the values signifying the magnitudes of 169 
associated ISP or EVI trends. 170 
  171 
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 172 

Figure S8. Logarithmic relationships between daytime and nighttime Is and Ic trends and 173 
urban population across global cities. 174 
  175 
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 176 

Figure S9. Relative importance of various controls to global Is and Ic trends in different 177 
seasons | Panels (a), (b), (c), and (d) denote the results for spring, summer, autumn, and 178 
winter, respectively. Area and KArea belong to the overall urban metric (OUM) category; SAT, 179 
PREP, ΔAOD, RAD, KSAT, KPREP, KΔAOD, and KRAD belong to the background climate (BGC) 180 
category; and ΔISP, ΔEVI, ΔWSA, KΔISP, KΔEVI, and KΔWSA belong to the surface property (SFP) 181 
category. The representations of these variables are given in the Material and methods of 182 
this manuscript.  183 
  184 
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 185 

Figure S10. Partial correlation coefficients (r) between the Is and Ic trends and each driver 186 
across global cities | (a) is for the day while (b) is for the night. The asterisk (*) indicates 187 
statistical significance at the 0.05 level. Area and KArea belong to the overall urban metric 188 
(OUM) category; SAT, PREP, ΔAOD, RADs, KSAT, KPREP, KΔAOD, and KRADs belong to the 189 
background climate (BGC) category; and ΔISP, ΔEVI, ΔWSA, KΔISP, KΔEVI, and KΔWSA belong to 190 
the surface property (SFP) category. The representations of these variables are given in the 191 
Material and methods of this manuscript. 192 
  193 
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 194 

Figure S11. Statistical relationships between daytime Is trends and KΔEVI (i.e., trend in ΔEVI; 195 
a) as well as those between nighttime Is trends and KΔWSA (i.e., trend in ΔWSA; b) across 196 
global cities. 197 
  198 
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 199 

Figure S12. The global mean daytime and nighttime Ic trends quantified based on 200 
spatially continuous SAT estimates (termed product-based Ic) and in-situ SAT 201 
measurements (termed site-based Ic). 202 

  203 
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Table S1. Details of the data used in this study | The LST, EVI, WSA, LC, AOD, SAT, PREP, 204 
RAD are abbreviations for land surface temperature, enhanced vegetation index, white sky 205 
albedo, land cover, aerosol optical depth, surface air temperature, precipitation, and 206 
radiation, respectively. 207 

Variable Product 
Temporal 
resolution 

Spatial 
resolution 

Data 
year 

References 

LST MYD11A2 8-day 1 km 2003 to 
2020 

Ma et al. (2023) 
Wan et al. (2015) 

EVI MOD13A2 16-day 1 km 2003 to 
2020 

Didan (2015) 

WSA MCD43A3 16-day 500 m 2003 to 
2020 

Schaaf & Wang 
(2015) 

LC type MCD12Q1 Yearly 500 m 
2003 to 
2020 

Friedl & 
Sulla-Menashe 
(2019) 

AOD MCD19A2 Daily 1 km 
2003 to 
2020 

Lyapustin & Wang 
(2018) 

SAT — Daily 1 km 
2003 to 
2020 

Zhang et al. (2022) 

Reanalysis 
SAT 

ERA5-Land Monthly 0.1 degree 
2003 to 
2020 

Muñoz-Sabater 
(2019) 

Reanalysis 
PREP 

ERA5-Land Monthly 0.1 degree 
2003 to 
2020 

Muñoz-Sabater 
(2019) 

Reanalysis 
RAD 

ERA5-Land Monthly 0.1 degree 
2003 to 
2020 

Muñoz-Sabater 
(2019) 

Population  GPWv411 Five years 30 arc sec 

2005, 
2010, 
2015, 
2020 

Doxsey Whitfield et 
al. (2015) 

Impervious 
surface 
area 

GAIA Yearly 30 m 2003 to 
2018 

Gong et al. (2020) 

Global 
urban 
boundary 

GUB Five years — 
2000, 
2018 Li et al. (2020) 

 208 
  209 
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Table S2. The global warming trends based on LST and SAT over both urban and rural 210 
surfaces across global 5643 cities.  211 

Trend (°C/decade) Variable Urban surfaces Rural surfaces 

day 
LST 0.53 0.33 
SAT 0.37 0.34 

night 
LST 0.53 0.47 
SAT 0.41 0.37 

day/night average 
LST 0.53 0.40 
SAT 0.39 0.36 

 212 
  213 



20 

Table S3. The abbreviations and symbols used in this study. 214 

Abbreviations Descriptions 

UHI urban heat island 

Is surface UHI 

Ic canopy UHI 

LST land surface temperature 

SAT surface air temperature 

SFP surface property 

BGC background climate 

OUM overall urban metric 

RF random forest 

EVI enhanced vegetation index 

AOD aerosol optical depth 

PREP precipitation 

RAD shortwave net radiation 

ISP impervious surface percentage 

R2 determination coefficient 

ΔAOD urban-rural contrast in AOD 

ΔISP urban-rural contrast in ISP 

ΔEVI urban-rural contrast in EVI 

ΔWSA urban-rural contrast in WSA 

Area urban area 

POP urban population 

KPOP trend in POP 

KSAT trend in SAT 

KPREP trend in PREP 

KΔAOD trend in ΔAOD 

KRAD trend in RAD 

KΔISP trend in ΔISP 

KΔEVI trend in ΔEVI 
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KΔWSA trend in ΔWSA 

ΔDTRLST urban-rural contrast in LST-based diurnal temperature range  

ΔDTRSAT urban-rural contrast in SAT-based diurnal temperature range  

SUCI surface urban cool island 

 215 


