@AGU PUBLICATIONS

1	
2	Geophysical Research Letters
3	Supporting Information for
4	Contrasting Trends and Drivers of Global Surface and Canopy Urban Heat Islands
5 6 7	Huilin Du ¹ , Wenfeng Zhan ^{1, 2*} , James Voogt ³ , Benjamin Bechtel ⁴ , TC Chakraborty ⁵ , Zihan Liu ¹ , Leiqiu Hu ⁶ , Zhihua Wang ⁷ , Jiufeng Li ¹ , Peng Fu ⁸ , Weilin Liao ⁹ , Ming Luo ⁹ , Long Li ¹ , Shasha Wang ¹ , Fan Huang ¹ , and Shiqi Miao ¹
8	
9 10 11	¹ Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Science, Nanjing University, Nanjing, Jiangsu 210023, China
12 13	² Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, Jiangsu 210023, China
14	³ Department of Geography, Western University, London, Ontario N6A 5C2, Canada
15 16	⁴ Department of Geography, Ruhr-University Bochum, Bochum, Nordrhein-Westfalen 44801, Germany
17 18	⁵ Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington, 99352, USA
19 20	⁶ Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama 35899, USA
21 22	⁷ School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, Arizona 85287, USA
23	⁸ Center for Environment, Energy, and Economy, Harrisburg, Pennsylvania 17101, USA
24 25 26 27	⁹ Guangdong Key Laboratory for Urbanization and Geo-simulation, School of Geography and Planning, Sun Yat-sen University, Guangzhou, China
28	Contents of this file
29	Texts S1 to S2

- Figures S1 to S12 Tables S1 to S3

Introduction

Supporting information includes two texts (Texts S1 to S2), twelve figures (Figures S1 to
 S12), and three tables (Tables S1 to S3).

- 36
- Text S1 shows the clarifications on the study area;
- Text S2 shows the uncertainties related to the impacts from accuracy of SAT estimates
 on the quantification of *l_c* trends.
- 40
- 41 Figure S1 denotes the distribution of 5643 cities worldwide;
- Figure S2 shows the annual mean daytime *I*_s trends across 5643 cities worldwide
 quantified using different buffer zones to delineate the rural surfaces;
- Figure S3 gives the impacts from different sizes of buffer zones for delineating rural
 surfaces on the quantification of global mean daytime *I*_s trends;
- 46 Figure S4 shows the trends of ΔDTR_{LST} and ΔDTR_{SAT} ;
- Figure S5 gives the annual mean LST and SAT trends across global cities as well as the associated global mean trends;
- Figure S6 shows the mean I_s and I_c trends for cities across various continents during
 the day and night;
- Figure S7 shows the mean ISP trends and EVI trends over urban and rural surfaces
 across different continents;
- Figure S8 gives the logarithmic relationships between daytime and nighttime *I*_s and *I*_c
 trends and urban population across global cities;
- Figure S9 shows the relative importance of various controls to global *I*_s and *I*_c trends in different seasons;
- Figure S10 gives the partial correlation coefficients (r) between the I_s and I_c trends and each driver across global cities;
- Figure S11 shows the statistical relationships between daytime I_s trends and $K_{\Delta EVI}$ as 60 well as those between nighttime I_s trends and $K_{\Delta WSA}$ across global cities;
- Figure S12 shows the global mean daytime and nighttime *l_c* trends quantified based
 on spatially continuous SAT estimates and *in-situ* SAT measurements.
- 63
- Table 1 shows the details of the data used in this study;
- Table 2 shows the global warming trends based on LST and SAT over both urban and
 rural surfaces across global 5643 cities;
- Table 3 shows the abbreviations and symbols used in this study.

69 Text S1: Clarifications on the study area

- 70 The chosen 5643 cities are distributed in various climate zones (Figure S1), including
- 71 equatorial (427 cities), arid (878 cities), temperate (2610 cities), snow (1718 cities), and
- 72 polar climates (10 cities) according to the Köppen–Geiger classification scheme (Kottek et
- 73 al., 2006). These cities are also distributed in six continents, including Asia (1822 cities),
- 74 Europe (1381 cities), Africa (395 cities), North America (1593 cities), South America (340
- 75 cities), and Oceania (112 cities). In terms of city size, these cities can also be divided into
- 76 four groups according to the quartile of urban population averaged from 2003 to 2020,
- 77 labeled as POP-1, POP-2, POP-3, and POP-4 cities.
- 78
- 79
- 80

81 Text S2: Uncertainties related to the impacts from accuracy of SAT estimates on the

82 quantification of I_c trends

83 This study employed the spatially continuous SAT estimates to examine the global I_c trends

84 (Zhang et al., 2022). Although this product possesses much higher accuracy compared to

85 other global SAT products, it may still introduce potential uncertainties into the

86 quantification of global I_c trend. We have therefore further discussed these potential

impacts on the l_c trend according to the Bessel formula. We have also performed

- 88 cross-validations to demonstrate the robustness of the methods and results by comparing
- the global *I*_c trends calculated based on spatially continuous SAT products and *in-situ* SAT
 measurements.
- 91

92 (1) Possible uncertainties related to the impacts from accuracy of SAT data according to 93 Bessel formula

94 The estimation accuracies of this SAT product are 1.20 °C to 2.44 °C for daily T_{max} and 1.69 °C 95 to 2.39 °C for daily T_{min} on a per-pixel scale (Zhang et al., 2022). Nevertheless, these should 96 not introduce large biases in the main results of the current study due to the following 97 reasons. First, we have excluded the anomalies of SAT time series for each pixel, and then 98 aggregated these daily SATs into monthly composites to reduce the impacts from data 99 anomalies as well as to obtain climatologically representative SATs. Using these monthly 100 SATs, we have further estimated the I_s and I_c trends for each city by first averaging the LSTs 101 and SATs for all available urban and rural pixels and then subtracting the rural 102 temperatures from the urban one. These temporal and spatial averaging procedures would generally suppress the impacts from SAT estimation accuracy on the quantification of l_c trend for an individual city according to the Bessel formula $(\frac{\delta}{\sqrt{n-1}}, n$ represents the number 103 104 105 of samples and δ denotes the SAT estimation error at the per-pixel scale; Pugachev, 2014; 106 Ye et al., 2016). More importantly, the current study focuses mainly on the disparities 107 between I_s and I_c trends on a global scale or across various climate zones that involve 108 thousands or hundreds of cities. Therefore, the uncertainties arising from SAT estimation 109 error to the quantification of I_c trend for an individual city would be further reduced once a 110 large number of samples are averaged. 111 112 (2) Cross-validations of the robustness of this study with in-situ SAT measurements 113 In-situ SAT measurements from weather stations often possess relatively high data 114 accuracy (about 0.1 K) and they offer an opportunity to perform cross-validations to 115 demonstrate the robustness of the associated results. Using *in-situ* SAT measurements 116 from more than 40,000 stations obtained from Berkey Earth and the China Meteorological 117 Data Service Centre (Cao et al., 2016; Rohde et al., 2013), we further quantified the 118 site-based global I_c trends in 461 cities worldwide and compared these trends with those 119 guantified based on the spatially continuous SAT estimates to verify the reliability of our

results (Figure S12). These 461 cities were selected based on the following criteria. First, we

have initially identified all stations as 'urban' or 'rural' according to whether they are
situated over urban or rural surfaces and whether the impervious surface percentage in
the 200-m buffer around the station is greater or less than 20% in each year throughout

the study period (Du et al., 2021). Second, we further screened the stations according to

125 the data quality of their long-term SAT measurements. Specifically, we excluded the SAT

126 outliers with the '3σ rule' for each station, and screened the stations with data missing rate

(< 50%) in every single year throughout the study period. To ensure the representativeness
 of global cities, we slightly loosened the criteria (at least five years of data for both 2003 –

of global cities, we slightly loosened the criteria (at least five years of data for both 2003 –
2010 and 2011 – 2020 and at least five months of data per year) for the less developed or

130 developing regions owing to their extreme scarcity of weather stations. We finally obtained

660 urban and 953 rural stations that covering 461 cities worldwide and then quantified

the *I*_c trends of these cities. The results revealed that the global mean *I*_c trends quantified

133 based on *in-situ* SAT measurements are 0.04 K/decade for both daytime and nighttime

134 (Figure S12), which are very close to those quantified based on the spatially continuous

135 SAT estimates (i.e., 0.03 K/decade for both daytime and nighttime). These two distinct data

136 sources show similar magnitudes of global UHI trends, strongly indicating the reliability of

137 the main results of the current study.

138

139

Figure S1. Distribution of 5643 cities worldwide.

145 Figure S2. The annual mean daytime *I*_s trends across 5643 cities worldwide quantified

146 using different buffer zones to delineate the rural surfaces.

149 Figure S3. Impacts from different sizes of buffer zones for delineating rural surfaces on the

150 quantification of global mean daytime I_s trends.

- Figure S4. Trends of ΔDTR_{LST} (the LST-based diurnal temperature range variations induced
- 155 by urbanization; a) and ΔDTR_{SAT} (the same as ΔDTR_{LST} , but for SAT; b) | The percentages in
- brackets indicate the proportion of cities with positive trends.

158 **Figure S5.** Annual mean LST and SAT trends across global cities as well as the associated 159 global mean trends | The urban and rural LST trends and SAT trends city by city during the

160 day (a, b, d, and e) and night (f, g, i, and j), and the global mean LST and SAT trends for the

161 day (c) and night (h). The error bars in (c) and (h) denote the 90% confidence interval.

162

Figure S6. The mean I_s and I_c trends for cities across various continents during the day (a) 165 and night (b).

168 Figure S7. The mean ISP trends (a) and EVI trends (b) over urban (red) and rural (blue)

surfaces across different continents, with the values signifying the magnitudes of

170 associated ISP or EVI trends.

173 174 **Figure S8.** Logarithmic relationships between daytime and nighttime *I*_s and *I*_c trends and

urban population across global cities.

183 this manuscript.

186 Figure S10. Partial correlation coefficients (r) between the Is and Ic trends and each driver

187 across global cities | (a) is for the day while (b) is for the night. The asterisk (*) indicates

188 statistical significance at the 0.05 level. Area and K_{Area} belong to the overall urban metric 189

(OUM) category; SAT, PREP, ΔAOD, RAD_s, K_{SAT}, K_{PREP}, K_{ΔAOD}, and K_{RADs} belong to the

190 background climate (BGC) category; and Δ ISP, Δ EVI, Δ WSA, K_{Δ ISP, K_{Δ EVI, and K_{Δ WSA} belong to

191 the surface property (SFP) category. The representations of these variables are given in the 192 Material and methods of this manuscript.

Figure S11. Statistical relationships between daytime I_s trends and $K_{\Delta EVI}$ (i.e., trend in ΔEVI ; 195 196

- a) as well as those between nighttime I_s trends and $K_{\Delta WSA}$ (i.e., trend in ΔWSA ; b) across
- 197 global cities.

- Figure S12. The global mean daytime and nighttime *I*_c trends quantified based on
- spatially continuous SAT estimates (termed product-based I_c) and in-situ SAT
- 202 measurements (termed site-based *I*_c).

204 Table S1. Details of the data used in this study | The LST, EVI, WSA, LC, AOD, SAT, PREP,

205 RAD are abbreviations for land surface temperature, enhanced vegetation index, white sky

albedo, land cover, aerosol optical depth, surface air temperature, precipitation, and

207 radiation, respectively.

Variable	Product	Temporal resolution	Spatial resolution	Data year	References
LST	MYD11A2	8-day	1 km	2003 to 2020	Ma et al. (2023) Wan et al. (2015)
EVI	MOD13A2	16-day	1 km	2003 to 2020	Didan (2015)
WSA	MCD43A3	16-day	500 m	2003 to 2020	Schaaf & Wang (<mark>2015</mark>)
LC type	MCD12Q1	Yearly	500 m	2003 to 2020	Friedl & Sulla-Menashe (2019)
AOD	MCD19A2	Daily	1 km	2003 to 2020	Lyapustin & Wang (2018)
SAT	_	Daily	1 km	2003 to 2020	Zhang et al. (2022)
Reanalysis SAT	ERA5-Land	Monthly	0.1 degree	2003 to 2020	Muñoz-Sabater (2019)
Reanalysis PREP	ERA5-Land	Monthly	0.1 degree	2003 to 2020	Muñoz-Sabater (2019)
Reanalysis RAD	ERA5-Land	Monthly	0.1 degree	2003 to 2020	Muñoz-Sabater (2019)
Population	GPWv411	Five years	30 arc sec	2005, 2010, 2015, 2020	Doxsey Whitfield et al. (2015)
Impervious surface area	GAIA	Yearly	30 m	2003 to 2018	Gong et al. (2020)
Global urban boundary	GUB	Five years	_	2000, 2018	Li et al. (2020)

Table S2. The global warming trends based on LST and SAT over both urban and rural
 surfaces across global 5643 cities.

Trend (°C/decade)	Variable	Urban surfaces	Rural surfaces
day	LST	0.53	0.33
day	SAT	0.37	0.34
night	LST	0.53	0.47
night	SAT	0.41	0.37
day/night ayoraga	LST	0.53	0.40
day/night average	SAT	0.39	0.36

214	Table S3. The abbreviations and symbols used in this study.
-----	---

Abbreviations	Descriptions	
UHI	urban heat island	
l _s	surface UHI	
l _c	canopy UHI	
LST	land surface temperature	
SAT	surface air temperature	
SFP	surface property	
BGC	background climate	
OUM	overall urban metric	
RF	random forest	
EVI	enhanced vegetation index	
AOD	aerosol optical depth	
PREP	precipitation	
RAD	shortwave net radiation	
ISP	impervious surface percentage	
<i>R</i> ²	determination coefficient	
ΔAOD	urban-rural contrast in AOD	
ΔISP	urban-rural contrast in ISP	
ΔΕVΙ	urban-rural contrast in EVI	
ΔWSA	urban-rural contrast in WSA	
Area	urban area	
POP	urban population	
K _{POP}	trend in POP	
K _{SAT}	trend in SAT	
K _{PREP}	trend in PREP	
Kaaod	trend in ΔAOD	
K _{RAD}	trend in RAD	
$K_{\Delta ISP}$	trend in Δ ISP	
ΚΔΕΥΙ	trend in ΔEVI	

Kawsa	trend in Δ WSA
ΔDTR_{LST}	urban-rural contrast in LST-based diurnal temperature range
	urban-rural contrast in SAT-based diurnal temperature range
SUCI	surface urban cool island