
1. Introduction
Land cover alterations and increased anthropogenic activities in the urbanization process typically lead to 
elevated temperatures within urban regions, thereby giving rise to the urban heat island (UHI) phenomenon 
(L. Li et al., 2023; Luyssaert et al., 2014; Sun et al., 2016; D. Zhou et al., 2019). The UHI effect has attracted 
substantial attention owing to its far-reaching consequences on the local microclimate, energy consumption, 
vegetation growth, and the health status of urban dwellers (Chakraborty et al., 2022; Cuerdo-Vilches et al., 2023; 
Ho et al., 2023; X. Li et al., 2019; W. Liu et al., 2016; X. Peng et al., 2023; X. Yang et al., 2020). Thermal infrared 
(TIR) remote sensing techniques implemented on satellite observations can retrieve spatially continuous urban 
surface temperatures (Z. L. Li et al., 2013; Wan, 2014; X. Xu et al., 2023; Zheng et al., 2019). Hence, TIR land 
surface temperature (LST) observations have been widespread utilized in the exploration of surface UHI (SUHI) 
effect (Chakraborty & Lee, 2019; Clinton & Gong, 2013; Cui et al., 2021; Gui et al., 2019; S. Peng et al., 2012; 
Q. Yang et al., 2021; S. Zhao et al., 2016; D. Zhou et al., 2014, 2016, 2019; B. Zhou et al., 2017).

However, TIR sensors have the limitation of only capturing land surface data under clear-sky (i.e., cloudless) 
conditions, thereby leading to missing values in the retrieved LST data (Z. L. Li et al., 2013; Mo et al., 2021). 
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all-sky LST data in the examination of urban surface thermal environments, especially for cities situated in 
humid regions.
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Global cloud cover statistics reveal that over half of the Earth's terrestrial surface is obscured by clouds (King 
et al., 2013), consequently leading to the presence of extensive and unevenly distributed gaps of clear-sky LST 
images (Mo et al., 2021). Additionally, urban areas often manifest increased cloud coverage (Qian et al., 2022; Vo 
et al., 2023), which exacerbates the scarcity of available clear-sky observations for SUHI analysis. Consequently, 
using clear-sky LST observations may pose challenges in accurately characterizing SUHI effects, potentially 
leading to analysis results that are skewed toward clear-sky conditions and not representative of all-sky condi-
tions. In light of the limitations associated with clear-sky LST observations, many research efforts have been 
dedicated to developing algorithms for reconstructing all-sky (or, in other words, all-weather) LST data sets (Mo 
et al., 2021). Existing studies have facilitated the production of all-sky LST products across a variety of spatial 
scales—from local to national to global (Yao et al., 2023; Yu et al., 2022; X. Zhang et al., 2021).

The availability of these all-sky LST data sets offers the opportunity for quantitative comparisons between surface 
thermal properties under clear-sky and all-sky conditions. For example, S. Xu et al. (2023) conducted a compar-
ison between clear-sky LST products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and 
corresponding all-sky LST data sets in the Heihe River Basin. Their results emphasized noticeable day-night 
fluctuations in both the sign and magnitude of the difference between clear-sky and all-sky LSTs. Gallo and 
Krishnan  (2022) identified noteworthy seasonal variations in the differences between clear-sky and all-sky 
LSTs based on a comparative analysis involving the MODIS LST products and in-situ LST observations. The 
global-scale analysis by Ermida et  al.  (2019) highlighted the spatial heterogeneity in the difference between 
clear-sky and all-sky LSTs, with relatively lower differences in arid zones and more pronounced differences in 
mid-latitudes. However, the above studies lack comparative analyses between urban and rural areas, which are 
crucial for discerning differences in the SUHI effect under clear-sky and all-sky conditions. Liao et al. (2022) 
derived clear-sky and all-sky SUHI intensities (SUHIIs) for five Chinese megacities by calculating corresponding 
average LST difference between urban and rural areas. Their analysis revealed that clear-sky SUHII tended to be 
greater than all-sky SUHII, but the extent of this difference varied among cities and seasons. The localized-scale 
examinations underscore the potential for bias in the estimated SUHII when derived from clear-sky LST data. 
However, it remains questionable whether such localized conclusions, drawn from a few cities, can be extrap-
olated to global cities distributed in different climate zones, given the large spatiotemporal heterogeneity of 
the SUHI effect. Although some studies have analyzed the effect of missing LST data on SUHII estimations at 
continental or global scales (K. Li et al., 2022; Q. Yang et al., 2023b), there is a lack of large-scale quantitative 
assessments comparing SUHII derived from clear-sky and all-sky conditions.

Hence, this study collected the MODIS clear-sky LST products and corresponding all-sky LST data sets and 
compared SUHIIs under clear-sky and all-sky conditions across 639 global cities. The objectives of this study are:

1.  to quantify the differences between clear-sky and all-sky SUHIIs, and
2.  to analyze their spatiotemporal variations and possible drivers.

Our results yield valuable insights into the uncertainty associated with commonly performed clear-sky SUHII 
estimations and may help with future standardizations for detecting the SUHI effect.

2. Data and Methods
2.1. Data

The determination of urban areas relies on the Global Urban Boundary (GUB) data set developed by X. Li 
et al. (2020). The original GUB patches (2015) situated within a proximity of less than 2 km were merged into the 
same urban clusters (Lai et al., 2021b; Q. Yang et al., 2023b; C. Yang & Zhao, 2023). A total of 639 urban clus-
ters (>100 km 2) were randomly selected for representing urban areas within cities. They are distributed across 
four climate zones: tropical (52), arid (120), temperate (309), and cold (158) (Figure S1 in Supporting Informa-
tion S1). The spatial extent of each climate zone was determined based on the major climate classes identified by 
the Köppen-Geiger climate scheme (Beck et al., 2018).

All-sky LST was derived from the Global Seamless and High-resolution Temperature Data set (GSHTD) 
produced by Yao et al. (2023). The GSHTD can provide global seamless LST data under all-sky conditions with 
a spatial resolution of 1 km. Consistent with the all-sky LST, the clear-sky LST was derived from the MODIS 
LST products (MOD11A2). The all-sky and clear-sky LST data sets maintain uniformity in their spatial extent, 
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covering the entire globe, as well as in their temporal range, spanning from 2014 to 2016. These data sets were 
subjected to separate annual and seasonal averaging as part of our analysis.

The surface elevation was obtained from the Global 30 Arc-Second Elevation (GTOPO30) data and used to 
minimize the influence of topographic relief on the estimation of SUHII. The nighttime light intensity was 
acquired from the Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB) product and applied 
for minimizing the uncertainty in SUHII estimations caused by human activity. The surface water was derived 
from Global Surface Water data set developed by Pekel et al. (2016) and utilized to eliminate the influence of 
water bodies on the estimation of SUHII. The annual precipitation, calculated from the TerraClimate data set 
(Abatzoglou et al., 2018), was employed to assess the general level of wetness or dryness of cities. The details for 
the aforementioned data are presented in Text S1 and Table S1 in Supporting Information S1.

2.2. Analysis

2.2.1. Estimation of SUHII

SUHII is defined as the average LST difference between the urban area and its surrounding rural area. Currently, 
various methods exist for estimating SUHII, with differences primarily arising from the definition of rural area 
(K. Li et al., 2022; Q. Yang et al., 2023b). The preferred rural area should be chosen to minimize the effects of 
natural factors like topographic relief and water bodies, while also eliminating the influence of human activities 
(K. Li et al., 2022). Hence, this study utilized the Modified Equal Area-Rural (MEA-R) method, as introduced by 
K. Li et al. (2022), to extract the rural area. This method has been proved to be effective in removing the influence 
of confounding factors on the estimation of SUHII (K. Li et al., 2022). Specific details of the MEA-R method are 
provided in Text S1 in Supporting Information S1. After obtaining the rural area, we calculated both the average 
LST of the urban area (LSTU) and the average LST of the rural area (LSTR). SUHII can then be determined using 
the following formula:

SUHII = LSTU − LSTR (1)

2.2.2. Comparison Analysis Between Clear-Sky and All-Sky SUHIIs

For each city, we calculated the clear-sky average LST within the urban area (LSTU_Clearsky) and the rural area 
(LSTR_Clearsky), as well as the all-sky average LST within the urban area (LSTU_Allsky) and the rural area (LSTR_Allsky). 
Then, we can get the clear-sky SUHII (SUHIIClearsky) and the all-sky SUHII (SUHIIAllsky) according to Equation 1. 
After that, we can also obtain the following formulas:

∆SUHII = SUHIIClearsky − SUHIIAllsky (2)

∆LSTU = LSTU_Clearsky − LSTU_Allsky (3)

∆LSTR = LSTR_Clearsky − LSTR_Allsky (4)

where ∆SUHII represents the difference between clear-sky and all-sky SUHIIs. Similarly, ∆LSTU and ∆LSTR 
represent the difference between clear-sky and all-sky average LSTs within the urban area and the rural area, 
respectively. We calculated all above metrics across 639 global cities and conducted an analysis of their spatial, 
seasonal, and diurnal variations.

2.2.3. Calculation of the Missing Rate of Clear-Sky LST

It is widely acknowledged that clear-sky LST is susceptible to disturbances such as clouds, and as a result, it may 
experience data gaps or missing data issues. To assess the extent of missing data in the clear-sky LST data set, 
we computed a metric known as the missing rate (MR) similar to Chakraborty et al. (2020). For a specific pixel 
within the urban area or the rural area, assuming that the number of LST images is N and the number of available 
clear-sky LST observations is n, the MR for that pixel can be expressed as follows:

MR = (𝑁𝑁 − 𝑛𝑛)∕𝑁𝑁 × 100% (5)

The MR ranges from 0% to 100%, with larger value indicating more severe data missing in the clear-sky LST 
data set. For each city, we calculated the average MR for all pixels located in the urban area (MRU) and the rural 
area (MRR), respectively, and further calculated their difference (MRDiff). We examined their correlations with 
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∆LSTU, ∆LSTR, and ∆SUHII, aiming to offer plausible explanations for the difference between clear-sky and 
all-sky SUHIIs.

3. Results
3.1. Spatiotemporal Variations of the Difference Between Clear-Sky and All-Sky SUHIIs

In general, clear-sky SUHII tends to be higher than all-sky SUHII. On a global average, the annual daytime 
and nighttime clear-sky SUHIIs reach 1.23 ± 0.12°C (95% confidence interval, hereinafter) and 1.31 ± 0.05°C, 
respectively, which are significantly (p < 0.05, t-test) higher compared to the corresponding all-sky SUHIIs of 
1.12 ± 0.12°C and 1.27 ± 0.05°C (Table S2 in Supporting Information S1). The difference between clear-sky 
SUHII and all-sky SUHII, denoted as ∆SUHII, displays clear spatial and temporal variations.

It is evident that both daytime and nighttime ∆SUHIIs show a notable rise as latitude decreases (Figure 1, Figure 
S2 in Supporting Information S1). As a result, cities with higher ∆SUHII are concentrated in regions like South-
east Asia, Central Africa, and the Caribbean, which are situated near the equator. The precipitation grouping 
statistics reveal a noteworthy trend: ∆SUHII substantially increases with higher annual precipitation levels 
(Figure 1a). This suggests that relying on clear-sky LST observations would result in a noticeable overestimation 
of SUHII for cities located in regions with more precipitation. Consequently, ∆SUHII tends to be much larger 

Figure 1. Clear-sky and all-sky differences in surface urban heat island intensity (SUHII) (∆SUHII), urban average land surface temperature (LST) (∆LSTU), and rural 
average LST (∆LSTR). (a) Annual daytime averages of different precipitation intervals. (b) Annual daytime averages for different climate zones (tropical zone [Trop], 
arid zone [Arid], temperate zone [Temp], and cold zone [Cold]). (c) Daytime averages for global cities across seasons (spring [Spr], summer [Sum], autumn [Aut], and 
winter [Win]). (d–f) Spatial distributions of annual daytime ∆LSTU, ∆LSTR, and ∆SUHII. Error bars in (a)–(c) and shaded areas in (d)–(f) represent 95% confidence 
intervals. The nighttime results display similar spatiotemporal patterns to the daytime results, please refer to Figure S2 in Supporting Information S1.
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for cities located in the precipitation-rich tropical zone compared to cities in other climate zones (Figure 1b). On 
average, daytime and nighttime ∆SUHII in the tropical zone reach 0.65 ± 0.18°C and 0.21 ± 0.06°C, respec-
tively. These values are approximately 5–6 times higher than the global averages and significantly greater than in 
other climate zones (Table S2 in Supporting Information S1). Overall, the usage of clear-sky LST data results in 
an overestimation of approximately 30% for annual daytime SUHII and 20% for annual nighttime SUHII in the 
tropical zone when compared to using all-sky LST data (Table S2 in Supporting Information S1).

It is found that ∆SUHII demonstrates a notable diurnal and seasonal variation, characterized by higher values 
during daytime compared to nighttime and a stronger presence during the summer season relative to the winter 
season (Figure 1, Figure S2 and Table S3 in Supporting Information S1). Globally, on average, the annual daytime 
∆SUHII reaches 0.11 ± 0.02°C, much higher than the annual nighttime ∆SUHII of 0.04 ± 0.00°C, and the 
summer daytime ∆SUHII is 0.19 ± 0.04°C, surpassing the winter daytime ∆SUHII of 0.07 ± 0.02°C. In addition, 
the use of clear-sky LST data not only leads to an overestimation of SUHII itself, but also amplifies the day-night 
differences and seasonal contrasts of SUHII (Table S3 in Supporting Information S1). For instance, on a global 
average, clear-sky SUHII during the summer demonstrates a day-night difference of 0.56 ± 0.18°C, surpassing 
the day-night difference observed in summertime all-sky SUHII (0.47 ± 0.17°C). Similarly, the global average of 
summer-winter difference in daytime clear-sky SUHII reaches 1.49 ± 0.14°C, which is higher than that of all-sky 
SUHII (1.37 ± 0.14°C). More importantly, the amplifying effect of clear-sky LST observations on the seasonal 
and diurnal contrasts of SUHII appears to be more pronounced in regions characterized by higher precipitation, 
such as the tropical zone (Table S3 in Supporting Information S1).

3.2. Drivers for the Difference Between Clear-Sky and All-Sky SUHIIs

It can be observed that, on average, clear-sky LST tends to be higher than all-sky LST both within the urban area 
and the rural area (Figure 1, Figure S2 in Supporting Information S1). This suggests that employing clear-sky 
LST data potentially leads to an overestimation of average LST, and this overestimation is more pronounced in 
the urban area. Consequently, it leads to an overall higher value of ∆LSTU compared to ∆LSTR, accompanied by 
a corresponding positive value of ∆SUHII. This provides a reasonable explanation for the clear-sky overestima-
tion of the SUHII estimations. Additionally, although ∆LSTU and ∆LSTR exhibit similar spatiotemporal patterns, 
∆LSTU displays a greater degree of variability, particularly in humid regions and during the summer daytime 
(Figure 1). This coincides with the spatiotemporal variation observed in ∆SUHII.

Further analysis reveals that MR of clear-sky LST data in the urban area (i.e., MRU) is generally higher than that 
in the rural area (i.e., MRR) (Figure S3 in Supporting Information S1), which aligns with the higher value of 
∆LSTU compared to ∆LSTR. Besides, the difference between MRU and MRR (i.e., MRDiff) exhibits a consistent 
spatiotemporal pattern with ∆SUHII, which is also shown to be stronger during summer daytime in the humid 
cities (Figure S3 in Supporting Information S1). More importantly, ∆SUHII displays a significant positive corre-
lation with MRDiff, which further highlights the significance of missing data as a factor driving the clear-sky and 
all-sky discrepancies (Figure 2).

4. Discussion
Remotely sensed LST data from observations in the thermal infrared plays a crucial role in studying the urban 
surface thermal environment. However, it is limited to capturing observations during clear-sky conditions, which 
presents a challenge in accurately representing the SUHI effect. This study offers an extensive comparative anal-
ysis of clear-sky and all-sky SUHIIs, as well as an examination of their underlying drivers in global cities. Our 
findings offer valuable insights for current research, which can be summarized in the following two aspects.

4.1. Our Results Provide Direct Evidence for the Clear-Sky Overestimation of SUHI Effect in Humid 
Regions

It is found that utilizing clear-sky LST data not only leads to an overestimation of the SUHII but also ampli-
fies its diurnal and seasonal contrasts when compared to the use of all-sky LST data. Moreover, these clear-
sky overestimations exhibit spatial variability, with more pronounced effects observed in regions characterized 
by higher levels of precipitation. Specifically, for cities located in the tropical zone, the annual daytime and 
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nighttime SUHII can be, on average, overestimated by about 30% and 20%, respectively, when using the clear-
sky LST observations. Though previous studies have identified the bias resulting from using clear-sky LST 
data (Ermida et al., 2019; Gallo & Krishnan, 2022; S. Xu et al., 2023), there remains a lack of large-scale anal-
yses specifically focusing on the urban-rural difference (i.e., SUHII). This study addresses this research gap by 
conducting quantitative analysis on a global scale, offering direct evidence for the overestimation of the SUHI 
effect when relying on the LST observations under clear-sky conditions. More crucially, existing studies inves-
tigating the spatiotemporal patterns and driving factors of the SUHI effect primarily rely on clear-sky LST data 
(Cao et al., 2016; Chakraborty & Lee, 2019; Clinton & Gong, 2013; Du et al., 2023; Gui et al., 2019; Imhoff 
et al., 2010; Lai et al., 2018b, 2021a; X. Li et al., 2023; Y. Liu et al., 2021, 2023; Z. Liu et al., 2022a, 2022b; 
S. Peng et al., 2012; Quan et al., 2016; Q. Yang et al., 2017, 2019, 2023a; C. Yang & Zhao, 2023; Yao, Wang, 
Huang, Chen, et al., 2018; Yao et al., 2019; B. Zhou et al., 2013, 2017; D. Zhou et al., 2014, 2016). The findings 
from these studies could benefit from the updates to integrate the differences in their spatial patterns between 
clear-sky and all-sky SUHIIs. In particular, several studies have tried to explain the SUHI patterns from climatic 
perspectives (L. Li et al., 2020; Manoli et al., 2019; L. Zhao et al., 2014). It is especially crucial for such studies 
to account for the distinctions between clear-sky and all-sky SUHIIs, given the high dependence of the clear-sky 
bias on precipitation levels. Fortunately, a succession of all-sky LST data sets is now becoming available (Mo 
et al., 2021; Shiff et al., 2021; Yao et al., 2023; Yu et al., 2022; X. Zhang et al., 2021), offering a new opportunity 
to gain a more accurate comprehension of the SUHI patterns and their driving factors.

4.2. Our Results Unveil a Potential Mechanism That Explains the Discrepancies Between Clear-Sky and 
All-Sky SUHIIs

The amount of clouds can be influenced by atmospheric moisture, temperature, wind patterns, solar radiation, 
and the presence of weather systems, with their interplay determining cloud formation and dissipation (Bony 
et al., 2015; Schiro et al., 2022; Su et al., 2017). Urban areas typically exhibit higher cloud cover due to a conflu-
ence of influential factors (Qian et  al.,  2022; Vo et  al.,  2023). The increased aerodynamic roughness within 
urban landscapes, resulting from the presence of buildings and other structures, induces local atmospheric distur-
bances that facilitate heightened cloud formation (Rajeswari et al., 2021). Moreover, the heightened temperatures 

Figure 2. Relations between ∆SUHII and MRDiff, ∆LSTU and MRU, and ∆LSTR and MRR. (a) Annual daytime results. (b) 
Annual nighttime results. ∆SUHII, ∆LSTU, and ∆LSTR represent clear-sky and all-sky differences in surface urban heat 
island intensity (SUHII), urban average land surface temperature (LST), and rural average LST, respectively. MRU and MRR 
refer to missing rate of clear-sky LST observations for the urban area and the rural area, respectively. The difference between 
MRU and MRR is represented as MRDiff. r and p represent Pearson's correlation coefficient and significance level, respectively. 
The colored points and error bars represent the mean values and 95% confidence intervals, respectively.
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associated with surface heating in urban areas can impact atmospheric dynamics, fostering the condensation of 
water vapor into clouds (Chen et al., 2011; Vo et al., 2023). Additionally, the augmented concentration of anthro-
pogenic emissions in urban settings, stemming from industrial activities and vehicular traffic, introduces addi-
tional particulate matter and aerosols into the atmosphere (Z. H. Zhang et al., 2017). These pollutants serve  as 
cloud condensation nuclei, providing surfaces for water droplets to coalesce and thereby amplifying cloud cover 
(Leng et al., 2013; Ma et al., 2010). This intricate interplay among urban characteristics, atmospheric conditions, 
and human activities underscores the nuanced relationship between urbanization and the prevalence of clouds, 
distinguishing urban areas from their rural counterparts. The heightened cloud cover causes a more severe missing 
of satellite TIR temperature data in urban areas, which is consistent with our observations and previous estimates 
(Chakraborty et al., 2020). Recent evidence suggests that an increased presence of clouds can reduce surface 
heating by solar radiation, leading to a generally lower all-sky LST than clear-sky LST (Ghausi et al., 2023). As a 
result, more cloudiness in urban areas would cause a greater difference between clear-sky and all-sky LSTs. This 
offers a plausible explanation for the higher clear-sky SUHII compared to the all-sky SUHII. More importantly, 
the enhancement of urban cloud appears to be more pronounced in wetter areas (Vo et al., 2023), as substantiated 
by the observed increase in MRDiff with higher levels of precipitation (Figure S3 in Supporting Information S1). 
Consequently, the differences between clear-sky and all-sky SUHIIs are more pronounced in humid regions 
compared to dry regions. This elucidates why the overestimation of SUHII is more conspicuous when utilizing 
clear-sky LST in humid areas. Moreover, the spatiotemporal patterns of ∆SUHII consistently align with those of 
MRDiff (Figure 2). This further supports our hypothesis that the increased cloud cover in urban areas, indicated 
by a higher occurrence of missing data, results in a more substantial contrast between clear-sky and all-sky LSTs 
in the urban area compared to the rural area, ultimately manifesting as a clear-sky overestimation in SUHII. 
Building on the aforementioned hypothesis, we have created a schematic diagram illustrating the factors behind 
the discrepancies in clear-sky and all-sky SUHIIs and showing potential reasons for their variations with precip-
itation levels (Figure 3).

This study is subject to certain inherent constraints and limitations. First, this study relies on the newly released 
all-sky LST data sets produced by Yao et al. (2023). Due to the absence of accuracy assessments for individual 
LST pixels, our analysis does not address the impact of uncertainty in the LST data on our results. Second, 
to fully utilize the available MODIS LST data, Yao et  al.  (2023) did not employ any filtering process when 
generating the all-sky LST data sets. Consistent with their practices, we also used all the available clear-sky 
MODIS LST pixels to ensure fairness in our comparison. The unfiltered low-precision LST data may introduce 
uncertainties when estimating SUHII (Lai et al., 2018a). However, these uncertainties are implausible to impact 
the difference between clear-sky and all-sky SUHIIs as they offset each other during the differencing process. 
Third, our analysis relied on LST observations from the Terra sensor, as Yao et al. (2023) developed their all-sky 

Figure 3. Schematic illustration of the mechanisms behind the clear-sky and all-sky surface urban heat island intensity 
(SUHII) differences and their spatial variations. The heightened cloud cover in urban areas poses more challenges for satellite 
observations, resulting in a higher differences between clear-sky and all-sky land surface temperatures (LSTs) compared 
to rural areas. This urban-rural contrast further contributes to the difference between clear-sky and all-sky SUHIIs. The 
enhancement of urban clouds is more pronounced in cities with a higher level of precipitation, accentuating the contrast 
between clear-sky and all-sky SUHIIs in humid areas compared to arid regions.
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LST based on Terra LST products. Currently, Aqua LST products are commonly utilized in UHI-related studies 
because of their proximity to daily maximum and minimum temperatures. Differences between Terra and Aqua 
LSTs can influence SUHII estimations (Yao, Wang, Huang, Niu, et al., 2018). However, variations in SUHII due 
to sensor differences are unlikely to significantly affect our results, as our focus lies in discerning differences 
between clear-sky and all-sky SUHIIs. Finally, this study scrutinizes the mechanisms underlying the discrepan-
cies between clear-sky and all-sky SUHIIs, primarily focusing on the aspect of missing data attributed to cloud 
cover. Nevertheless, it is imperative to acknowledge that cloud cover not only leads to missing data but also 
instigates alterations in surface energy fluxes, thereby influencing surface temperature and, consequently, the 
intensity of heat islands. Future research efforts could combine more data (e.g., flux tower and reanalysis data) 
with different analytical methods (statistical and modeling approaches) to make a more in-depth analysis of the 
factors contributing to the difference between clear-sky and all-sky SUHIIs.

Data Availability Statement
The data used in this study is available at Q. Yang (2023).
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