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Abstract Tracking the temporal dynamics of urban heat island (UHI) is critical for urban heat adaptation
and mitigation strategies. However, whether UHI trends have shifted recently and their underlying drivers
remain unknown. Here we investigate the variabilities in surface UHI trends and their associated determinants in
2,104 cities worldwide from 2000 to 2022. Our findings reveal that approximately half of the world's cities have
experienced notable shifts in surface UHI trends, predominantly characterized by UHI deceleration. These shifts
can be primarily attributed to alterations in vegetation trends during the day and to modifications in surface
albedo and local warming trends at night. Our study challenges the conventional linear models commonly
employed to estimate surface UHI trends, suggesting potential biases in such estimates. Our findings underscore
the need for nuanced policies to curtail UHI growth by considering changes in urban underlying surfaces and
background climate, particularly from a nonlinear perspective.

Plain Language Summary Cities worldwide have witnessed a pervasive upward trend in surface
urban heat island (UHI). However, it remains unclear whether this trend has changed. Here we reveal
approximately half of the world's cities experiencing significant shifts in surface UHI trends, primarily
characterized by deceleration. These shifts are mainly regulated by local changes in vegetation, albedo and air
temperature. Our research underscores the limited understanding of temporal dynamics of surface UHI, offering
the first indication of global prevalence of nonlinear trends. This implies that urban surface warming may not be
as rapid as previously assumed in contrast to non‐urban terrains. Our results also highlight the actionable
potential of large‐scale urban renewal initiatives to mitigate surface UHI.

1. Introduction
Cities confronting environmental and climate challenges are pivotal in advancing sustainable development
(Esperon‐Rodriguez et al., 2022; Grimm et al., 2008). Among these challenges is the urban heat island (UHI)
effect, a phenomenon of cities experiencing elevated temperatures compared to their rural surroundings
(Oke, 1973). Urban heat island can modify boundary layer dynamics, regional climate, and extreme weather
events (Qian et al., 2022), thereby posing wide‐ranging threats to environmental and public health (Hsu
et al., 2021; Patz et al., 2005; X. Zhang et al., 2004). As urbanization and population growth continue, tracking the
temporal UHI dynamics becomes critical for effective planning, assessing heat adaptation and mitigation stra-
tegies (He et al., 2022), and promoting sustainable urban development (UNEP, 2021).

The availability of high‐quality satellite‐based land surface temperature (LST) data has aided the tracking of
surface UHI intensity (Is, quantified by the difference between urban and rural LSTs) trends on a global scale (D.
Zhou et al., 2019). Pioneering studies have predominantly employed linear diagnostic models to infer Is trend (VI,
measured by the first derivative of Is with time), implicitly assuming its constancy over time (Chakraborty &
Lee, 2019; Si et al., 2022; Yao et al., 2019). These investigations generally revealed a rapid increase in Is for most
cities worldwide (L. Li, Zhan, Hu, et al., 2023; Z. Liu et al., 2022). However, case studies indicated substantial
variability in VI depending on the time frame (L. Li et al., 2022; Meng et al., 2018). For instance, the Is exhibited
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an initial upward trend followed by a subsequent decline (i.e., deceleration) from 1988 to 2013 in Wuhan, China
(Shen et al., 2016). Similarly, the urban agglomeration of the Greater Bay Area in China has experienced Is
deceleration since the 2000s (Feng et al., 2021). Consequently, interpreting the VI using simple linear approaches
may be invalid for cities with nonlinear VI. Nonetheless, the prevalence of nonlinear VI remains uncertain across
global cities. Additionally, the information on acceleration, deceleration and constant rate in VI can help to better
characterize the interannual Is variability from a non‐linear perspective. Nevertheless, we lack information about
the status of global cities with accelerating, decelerating, or stable VI.

The major drivers of Is comprise surface properties, climatic conditions, and human activities (Peng et al., 2012;
D. Zhou et al., 2014). In the context of uneven urbanization (X. Liu et al., 2020) and climate change (Kosaka &
Xie, 2013; Wei et al., 2021), alterations in any of these drivers may affect the variabilities in VI. Investigating the
underlying causes of the variabilities in VI is critical for understanding how natural and anthropogenic drivers
influence Is in distinct urbanization phases (Feng et al., 2021; J. Li et al., 2021). While the impacts of these drivers
on the Is (Manoli et al., 2019; Zhao et al., 2014) and on the VI (Chakraborty & Lee, 2019; Si et al., 2022; Yao
et al., 2019) have been extensively studied on a large scale, their contribution to the variabilities in VI (i.e., the
second derivative of Is with time), particularly across global cities, remains largely unexplored. Investigating the
influencing factors of the variabilities in VI helps to enhance the understanding of the causes of nonlinear Is
variations under climate change and urbanization. Therefore, there is a pressing need to understand the status and
causes of the variabilities in VI on a global scale.

To address these knowledge gaps, we investigate the recent (2000–2022) change rate of VI (AI, measured by the
second derivative of Is with time) across 2,104 global cities, using an extensive archive of satellite‐derived LST
estimates. We analyze the distribution of cities exhibiting distinct patterns of AI. We further quantify the con-
tributions of changes in surface properties, climatic conditions, and human activities to the observed AI. Our study
aims to advance the understanding of Is dynamics, potentially helping to optimize urban planning and design in
tackling urban heat islands.

2. Methods
2.1. Study Area and Data

Our study primarily focused on 2,104 cities worldwide with large urban areas. These cities are widely distributed
in various climatic zones (Kottek et al., 2006). Detailed descriptions of the city selection procedures and dis-
tribution across different climate zones are provided in Text S1 in Supporting Information S1. We used several
satellite‐derived data sets to estimate the Is, VI and AI, including LST, land cover type, elevation, and urban
boundary. Additionally, we gathered data on the normalized difference vegetation index (NDVI), albedo, aerosol
optical depth (AOD), surface air temperature, precipitation, population, and impervious surface to assist attri-
bution analysis of the AI. Further descriptions of these data sets are provided in Text S2 in Supporting
Information S1.

2.2. Estimation of Is, VI, and AI

Delineating urban and rural areas serves as the primary step for quantifying Is, VI, and AI. The urban boundary is
derived from the Global Urban Boundary (GUB) data set (L. Li et al., 2020; X. Li et al., 2020). A discussion of the
choice of this GUB product over other urban boundary products is provided in the Text S3 in Supporting In-
formation S1. We defined the urban surfaces as the pixels within the urban boundary in 2018 based on the latest
available data. Analogous to previous studies (Liang et al., 2020; Yao et al., 2018), we further divided the urban
surfaces into two urban subdivisions, that is, old urban area and newly urbanized area. The former subdivision
was designated as the urban surfaces within the urban boundary in 1990, while the latter subdivision was outlined
by the urban boundaries in 1990 and 2018. Note that the urban boundary in 1990 was only used to divide urban
areas into two spatial units, rather than to emphasize the special significance of one specific year. It is also noted
that when urban clusters are involved, several cities are sometimes represented within the boundaries of a single
urban boundary (Bounoua et al., 2018). We defined the rural surroundings as a buffer of 1.5 times the urban area
located outside the urban boundary in 2018. The incorporation of 1.5 times the urban areas for the rural reference
rather than an equal size buffer allows for more pixels and suppresses the issues with too few pixels when
examining small cities (Peng et al., 2012). To eliminate the influence of elevation and water bodies on the Is
estimation, we excluded the pixels labeled as water bodies, wetlands, and permanent snow and ice and the rural
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pixels with an elevation exceeding ±50 m above the mean urban elevation (Imhoff et al., 2010). The schematic
outlining the categorization of urban and rural areas can be found in Figure S1 in Supporting Information S1.

We employed a segmented linear function‐like approach (i.e., the moving window analysis at a decadal interval)
to quantify the AI across global cities between 2000 and 2022. This approach contains three major steps: (a) The Is
was first estimated as the difference between urban and rural LSTs. (b) The VI was then calculated for 14 periods
(i.e., 2000–2009, 2001–2010, …, and 2013–2022) by 10‐year moving window with 1‐year step length based on
yearly Is. (c) A linear fitting was then performed for the calculated fourteen VI values to obtain the AI based on the
slope of the linear fitting, and the AI was finally tested for significance at the 0.05 level. To facilitate under-
standing of the methodology, we provide schematics to show the calculation process of AI (Figure S2 in Sup-
porting Information S1). Here the 10‐year interval rather than shorter intervals was applied to avoid the
inadequate number of data points within a certain period for linear fitting (F. Zhou et al., 2020). Such an approach
avoids the incomparability across global cities due to differences in quantification criteria such as breakpoint
number and segmentation period required in traditional segmented linear functions. The expressions of Is, VI, and
AI calculations are described as follows:

Is = Tu − Tr (1)

VI =
∆Is
∆t

(2)

AI =
∆2Is
∆t2

(3)

where Is denotes surface UHI intensity (unit: °C); VI denotes Is trend (unit: °C/decade); AI represents the ac-
celeration of Is (unit: °C/decade2); Tu and Tr denote the urban (or old urban area and new urbanized area) and rural
mean LSTs, respectively; t denotes time; “∆” represents the mathematical symbol of difference; and “2” rep-
resents the mathematical symbol of second derivative.

For Equation 1, the Is calculation was based on annual mean MODIS LST (March to February of the following
year) mainly because we focus on the interannual Is variation. Wherein, the LST data were produced with masked
cloud and ocean pixels as well as poor input data. The mean LST error is within ±0.6 K in most cases, which is
much better than earlier products (Wan, 2014). Currently, MODIS LST data were widely used in studying surface
UHI and its trend with good acceptance (Chakraborty & Lee, 2019; M. Yang et al., 2024). For Equation 2, the Δt
equals to 10 years for calculating 14 VI values, which was used to subsequently calculate the AI. For Equation 3,
the first Δt equals to 10 years and the second equals to 14 years for calculations when 10‐year moving periods
with 1‐year nudges are implemented during the period 2000–2022. The cities are labeled as accelerated when
AI > 0, decelerated when AI < 0, and stable when the AI did not pass the significance test. The AI was calculated for
each city as well as using average Is for a portion of selected cities.

It should be noted that the AI estimates may be influenced by data and methodology. The Terra satellite suffers
from orbital drift after 2020 and its data exhibit non‐climatic discontinuities (Good et al., 2022). We therefore
combined the Aqua MODIS data with a diurnal temperature cycle model (Hong et al., 2021) to correct for the
effects of orbital drift, and assessed the reliability of Terra MODIS LST data. The analysis shows that the Terra
MODIS LST data are still reliable in estimating Is, VI, and AI (Text S4 in Supporting Information S1). The count
of calculations for Is in each year are different, which may represent different weights and therefore affect the AI

estimates. To validate this methodology, we divided the entire study period into two periods, 2000–2010 and
2012–2022 (i.e., it treats each year equally), and then calculated the AI and compared it to the AI values obtained
by the methodology used in this study. The results show strong agreement between the two, demonstrating the
reliability of the methodology in this study (Text S5 in Supporting Information S1).

2.3. Analysis of Regulators of AI

We assembled NDVI, albedo, AOD, urban population, surface air temperature, and precipitation to examine the
regulators of AI. These studied factors jointly capture the key information on surface properties, background
climate, and human activity that largely influence Is (Cao et al., 2016; Lazzarini et al., 2015; Peng et al., 2012;
Zhao et al., 2014). We then calculated the urban‐rural differences in NDVI (δNDVI), albedo (δAlbedo), AOD
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(δAOD), as well as urban population (POP), rural surface air temperature (TEMP), and rural precipitation
(PRCP). Note that the parameters, including δNDVI, δAlbedo, δAOD, and POP, are jointly influenced by ur-
banization and climate change, and it is therefore difficult to distinguish whether AI is dominated by urbanization
or climate change. Hence, we have chosen an indicator that is not disturbed by climate change to refer to ur-
banization, namely urban‐rural difference in impervious surface percentage (δISP). Analogous to the AI calcu-
lation, the 10‐year moving window with 1‐year step length was used to estimate the variabilities in the trends of
these factors, namely the δNDVI (denoted as AδNDVI), δAlbedo (AδAlbedo), δAOD (AδAOD), POP (APOP), TEMP
(ATEMP), and PRCP (APRCP). Our analysis shows that there is no serious multicollinearity among these six factors
and they are suitable for linear modeling because their variance inflation factors are less than 10 (Figure S3 in
Supporting Information S1). We also used the same method to calculate AδISP from δISP.

We further employed the geographically weighted regression (GWR) as well as ordinary least squares (OLS) to
determine the relationship between the AI and these factors across global cities. We compared GWR with OLS
performances, and found the GWR outperforms the OLS with a better goodness of fit (R2) (Table S1 in Sup-
porting Information S1). We therefore used the GWR‐fitted parameters to assess the contributions of these factors
to AI and to identify the most dominant factor for each city. We also constructed identical models to understand
the relationship of AI with urbanization (using AδISP) and climate change (using ATEMP and APRCP). For a better
comparison among various factors, we also quantified the relative contribution (in percentage) by the following
equation (X. Liu et al., 2019):

Pi =
|Ci|

∑ |Ci|
× 100% (4)

where Pi denotes the percent contribution of driver i (i = AδNDVI, AδAlbedo, AδAOD, ATEMP, APRCP, and APOP) to the
AI; Ci denotes the contribution of driver i to the AI, which was estimated by the GWR model. Here the absolute
instead of the original values were used to calculate the percent contribution to avoid a single factor contributing
>100% as well as to avoid the denominator being equal to zero.

3. Results
3.1. Spatiotemporal Patterns of AI

Figure 1 shows that 48% of the world's cities during the day and 43% at night have statistically significant
(p < 0.05, refer to Method) AI. Among these, 34% of the cities exhibit significant Is deceleration (i.e., AI < 0)
during the day, and those cities are widespread globally. Only 14% of the studied cities show significant Is ac-
celeration (i.e., AI > 0), and they have been found to primarily cluster over central Eurasia (Figure 1a). There are
26% of the cities exhibiting significant Is deceleration at night, while the percentage of cities with significant Is
acceleration is 17%, mainly located in Europe (Figure 1c).

The AI exhibits remarkable spatial disparities across global cities. During the day, equatorial cities experience
pronounced Is deceleration, with a higher magnitude than in other climate zones (Figure 1b). At night, cities
located in polar and snow zones exhibit the most notable Is deceleration (Figure 1d). The AI is negatively
correlated with city size (Figures 1b and 1d), suggesting that Is deceleration is more rapid in larger cities. This is
potentially due to faster urban greening occurring in larger cities, as reported in a previous study (Sun et al., 2020).

The AI values of different intra‐city areas exhibit a strong correlation with each other (Figure S4 in Supporting
Information S1). In addition, the AI magnitude of old urban area generally exceeds that of newly urbanized area,
with this disparity being insensitive to the specific year of urban boundary chosen for urban subdivisions (Figure
S5 in Supporting Information S1). This suggests that although there are spatial differences in AI values in different
intra‐city areas, AI values are spatially highly correlated and they are larger in the old urban area than in the newly
urbanized area. Therefore, our average outcomes (i.e., using urban boundaries in 2018) are typically lower than
those in the old urban area and higher than those in the newly urbanized area, which reflects the average AI in old
urban area and newly urbanized area.

In addition, AI also exhibits significant seasonal variations. During the daytime, Is in spring and summer shows a
more pronounced deceleration (i.e., AI < 0), while during the nighttime, Is in autumn and winter shows a more
pronounced deceleration (Figure S6 in Supporting Information S1). Spatially, some European cities exhibit
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contrasting features of accelerated Is in summer and decelerated Is in winter (Figure S7 in Supporting Infor-
mation S1). These findings underscore the importance of considering climate zone, city size, urban subdivision,
and seasonal variability when interpreting the AI.

Figure 2 shows that the magnitude of Is exhibits remarkable nonlinear variations for the cities with significant AI.
The mean Is increases initially and then follows a stable or decreasing trend. Such a pattern of Is changes is more
noticeable when considering only cities with either accelerating Is (AI > 0) or decelerating Is (AI < 0). We also find
that the VI shows an approximately linear decrease (Figures 2a and 2c), with the daytime decrease faster than the
nighttime decrease. From the first phase (2000–2010) to the second phase (2012–2022), the VI decreases from
0.14°C/decade to − 0.05°C/decade during the day, while it drops from 0.08°C/decade to 0.01°C/decade at night
(Figures 2b and 2d). In addition, we observe slight differences in the mean AI between different urban sub-
divisions (Figure S8 in Supporting Information S1), with the deceleration in the old urban area slightly more
pronounced than that of the newly urbanized area both during the day and at night. These results indicate that the Is
has been decelerating in most cities since 2000, and the deceleration is even more rapid in the old urban area and
during the day.

3.2. Divergent Impacts of Drivers on AI

Figure 3 shows that the major drivers of the AI in global cities differ between day and night. During the day, the AI

is mostly driven by the AδNDVI and AδAlbedo, with contributions being 42.5 ± 25.6% (mean ± one standard de-
viation) and 17.8 ± 19.9%, respectively (Figure 3a); and these two drivers are both negatively related to the AI

(Table S2 in Supporting Information S1). The AδNDVI is the dominant driver in most cities, while in mid‐ and high‐

Figure 1. Spatial pattern of AI and its variation with city size and climate zone over 2,104 cities worldwide for 2000–2022. Spatial pattern of AI during the day (a). Mean
AI at each climate zone and the relationship between AI and city size during the day (b). Panels (c, d), as in (a, b), but showing nighttime results corresponding to panels (a
and b), respectively. The red and blue numbers in brackets in panels (a and c) indicate the percentages of cities with AI > 0 (the accelerated VI) and AI < 0 (the decelerated
VI), respectively, with the percentages with underlines representing significant (p < 0.05), while the others denoting insignificant (p > 0.05). The relationships between
AI and city size in panels (b and d) are denoted based on sorting global cities by urban area through percentiles, with each percentile corresponding to an AI mean (solid
line) and standard deviation (shaded). The dots and bars of the climate zone‐based summary in panels (b and d) represent the mean and standard deviation of the AI,
respectively.

Geophysical Research Letters 10.1029/2024GL112711

ZHAN ET AL. 5 of 12

 19448007, 2025, 12, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024G

L
112711, W

iley O
nline L

ibrary on [18/07/2025]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



latitude cities in the Northern Hemisphere, the AδAlbedo becomes the largest contributor (Figure 3a). At night, the
AδAlbedo and ATEMP surpasses other factors in importance, and they contribute 26.6 ± 24.0% and 23.6 ± 22.6% to
the AI, respectively (Figure 3c). The AI in North American and Central Eurasian cities is mostly controlled by the
AδAlbedo. However, for cities along the west coast of North America and Western Europe, the ATEMP can become
the largest driver (Figure 3c). This is likely due to accelerated local warming over these regions (Figure S9 in
Supporting Information S1). These results suggest that the AI is mainly regulated by nonlinear changes in
vegetation, albedo, temperature and precipitation. The important role of various drivers on AI resembles the
findings of previous studies focusing on Is (L. Li et al., 2020; X. Li et al., 2020; Peng et al., 2012; D. Zhou
et al., 2014). Considering the strong control of AδNDVI and AδAlbedo on AI, the spatial characteristics of their
contributions are further elaborated in Text S6 in Supporting Information S1.

Figure 2. Temporal variations in Is, VI, and the AI over all cities with significant AI. Temporal variations in Is, VI, and the AI
during the day (a). The left panel shows the frequency distributions of daytime VI across these cities between 2000–2010 and
2012–2022, while the right panel shows the boxplots of daytime VI during these two periods (b). Panels (c, d), as in (a, b), but
showing nighttime results corresponding to panels (a and b), respectively. In panels a and c, the red solid lines indicate the
mean Is variations; the red dot‐dash lines indicate the mean Is variations for all cities with AI > 0; the red dotted lines indicate
the Is variations for all cities with AI < 0; the black solid lines indicate the variations in the VI; the black dotted lines indicate
the linear fit of the VI (with the slope denoting the AI); and the gray backgrounds indicate 95% confidence interval of the
linear fit.
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In cities with Is deceleration (i.e., AI < 0) during the day, the δNDVI trend is negative around 2000 but it increases
linearly and rapidly to around zero (i.e., AδNDVI > 0; Figure 3b), while in cities with Is deceleration at night, the
δAlbedo trend is also negative and shows a significant linear increasing trend (Figure 3d). This indicates that the
recent daytime Is deceleration across most cities potentially results from the decelerated vegetation loss, while the
nighttime Is deceleration could be due to the decelerated reduction in albedo. For these cities, both urban and rural
LSTs are accelerating, with the latter accelerating faster (Figure S10 in Supporting Information S1). In contrast, in
cities with Is acceleration (i.e., AI > 0) during both the day and night, the δNDVI and δAlbedo trends did not
change significantly (Figures 3b and 3d). This implies that the Is acceleration is likely to be significantly
influenced by climate change and not solely dominated by surface properties when relative to that of Is decel-
eration. For these cities, both urban and rural LSTs are accelerating, with the former accelerating faster (Figure
S10 in Supporting Information S1). Overall, the recent Is deceleration is mainly due to a slower rate of accel-
eration in urban LSTs than in rural areas, in the context of a general acceleration in LST growth globally (Figure
S11 in Supporting Information S1). For the two urbanization subclasses considered here, we obtain similar

Figure 3. Dominant drivers of AI across global cities. The most dominant drivers of AI and their percentage contributions for each city during the day (a). Temporal
variations of the urban‐rural normalized difference vegetation index (NDVI) difference (δNDVI) for city categories with AI > 0 and with AI < 0 during the day (b).
Panels (c, d), as in (a, b), but showing nighttime case and temporal variations of the urban‐rural albedo difference (δAlbedo) corresponding to panels (a and b),
respectively. In panels (a and c), the “+” indicates a positive contribution to AI, while “− ” indicates a negative contribution. AδNDVI, AδAlbedo, and AδAOD denote the
second derivatives of the changes in urban‐rural differences for NDVI, albedo, and aerosol optical depth, and ATEMP, APRCP, and APOP denote the second derivatives of
the changes in rural surface air temperature (TEMP), precipitation (PRCP), and urban population (POP).
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findings as described above (Figure S12 in Supporting Information S1). The relative contributions of urbanization
and climate change to AI are difficult to disentangle, since their impacts on δNDVI and δAlbedo are interde-
pendent. Further analysis using AδISP, ATEMP, and APRCP suggests that the AI in Asia, Africa, and South America
tended to be dominated by urbanization, while climate change had a stronger impact in Europe and eastern North
America, with significant differences across climate zones (Figure S13 in Supporting Information S1).

4. Discussion and Implications
Accurately tracking UHI trends is critical to understanding the changing environmental impacts resulting from
urbanization and climate change. Traditional ground‐based observations are valuable for monitoring UHI trends
(Wang & Shu, 2020; L. Zhang et al., 2024). However, accurate monitoring of global UHI trends using such
measurements remains challenging, in part due to their limited presence within highly heterogeneous urban
environments (Du et al., 2021; Y. Yang et al., 2020). The recent emergence of crowd‐sourced meteorological data
offers a potential solution to alleviate this intra‐city heterogeneity issue (Venter et al., 2021). Nevertheless, the
widespread availability of such densely distributed data is a very recent development, making such data less
suitable for monitoring long‐term UHI trends. Another notable challenge is the extremely uneven global dis-
tribution of ground‐based meteorological observations (J. Li et al., 2023). This disadvantage severely hampers the
global monitoring of UHI trends by site‐based meteorological measurements, especially in the Global South.
Furthermore, numerical climate models still face challenges in accurately identifying long‐term UHI trends,
especially at fine resolutions, due to their inherently simplified parameterization of urban surface‐atmosphere
interactions and computational bottlenecks (Qian et al., 2022).

Satellite‐derived LST products appear to be the critical approach for detecting UHI trends at the city‐specific level
worldwide as well as at the granular level (Lee & Dessler, 2024; Voogt & Oke, 2003). With the accumulation of
satellite LST data, a growing body of studies have revealed surface UHI (Is) trends worldwide, suggesting that
most cities are experiencing rapid Is growth (Chakraborty & Lee, 2019; L. Li, Zhan, Hu, et al., 2023; Z. Liu
et al., 2022; Si et al., 2022; Yao et al., 2019). However, these studies have predominately examined VI based on a
simple linear assumption. This linear approach may become invalid and introduce biases in projections, especially
when cities exhibit nonlinear VI due to rapid urbanization and climate change (Feng et al., 2021). Using a
comprehensive archive of satellite LST data, our study shows that over 40% of the world's cities have witnessed
significant shifts in VI since 2000, with most of them displaying Is deceleration (Figures 1 and 2).

To the best of our knowledge, our study offers the first indication of the global prevalence of nonlinear VI,
suggesting that the use of simple linear models can yield biased estimates in VI. Moreover, this suggests that urban
surface warming may not be as rapid as extrapolated from linear models, particularly over cities that experience Is
deceleration. This aligns with previous multi‐model projections of global urban climates, especially under high‐
emission scenarios (Zhao et al., 2021), albeit with distinctions in skin‐surface or surface‐air temperatures in
quantification.

The widespread Is deceleration appears optimistic as it signifies that UHI may not continually intensify and, as a
result, the urbanization‐induced extra heat stress may not amplify incessantly. However, it becomes pessimistic
when considering a warmer future. Adding 0.5°C of UHI (i.e., additional urban warmth) to a hotter period has a
markedly different impact on extreme heat events when compared to adding it to a colder period—the combi-
nation of a warmer phase and additional urban warmth can lead to more frequent and severe heatwaves (Hansen
et al., 2012). In addition, despite widespread Is deceleration, UHI footprint continues to expand with city size and
population (Hu et al., 2022), exposing a larger population to extra urban warmth. This emphasizes the necessity of
combining UHI intensity and footprint when assessing the impact of urban warming on residents. Simultaneously,
population dynamics can also modify the exposure of urban residents to extra urban warmth, thus requiring
additional consideration within urban climate adaptation strategies (J. Yang et al., 2019). Furthermore, our study
may provide implications for canopy UHI, given the similar spatiotemporal patterns between surface and canopy
UHI at night (Du et al., 2021; Venter et al., 2021). The widespread nighttime Is deceleration and even reductions
in Is magnitude at night in certain cities caution against relying on superlinear scaling relationships between UHI
intensity and city population, commonly accepted in urban climatology (Oke et al., 2017). However, it should also
be noted that the design of urban heat adaptation and mitigation strategies may not be based solely on the UHI
intensity (Martilli et al., 2020) or LST (Parlow, 2021).
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Our results show that the Is deceleration is more pronounced in larger cities and old urban area as compared to
smaller cities and newly urbanized area (Figure 1 and Figure S8 in Supporting Information S1). This indicates that
highly urbanized regions are more likely to experience Is deceleration. For instance, some old urban areas of
megacity (e.g., Beijing and Shanghai) have experienced slight decreases in Is magnitudes in recent years (L. Li
et al., 2022). Our study demonstrates that the shift from positive to negative VI in old urban area should be
attributable to substantial greening (Figure S12 in Supporting Information S1) initiated by both biogeochemical
factors (L. Li, Zhan, Ju, et al., 2023) and urban renewal activities (Jin et al., 2018; J. Li et al., 2021), resonating
with the well‐documented cooling impact of urban tree cover (Schwaab et al., 2021). In general, regulating
biogeochemical drivers may pose challenges, while our empirical evidence in individual cities suggests that large‐
scale urban renewal endeavors can effectively mitigate local Is growth (Figure S14 in Supporting Information S1).
This highlights the actionable feasibility of employing such urban renewal endeavors to curtail VI and to achieve
greater benefits over old urban area of megacity characterized by strong Is and high population density. None-
theless, it is also essential to underscore that urban renewal endeavors can achieve greater cooling benefits
through a more targeted focus on underprivileged communities, thus redressing the existing disparity in access to
green space cooling (W. Zhou et al., 2021) and optimizing financial resources allocation (Ziter et al., 2019). Our
results also show that cities with Is acceleration (Figure 1, e.g., arid and European cities) are primarily controlled
by climate change, with surface properties exerting relatively fewer influences (Figure 3 and Figure S15 in
Supporting Information S1). This emphasizes the need to integrate climate change impacts into heat adaptation
and mitigation strategies in such cities. We acknowledge several limitations of our study, including timespan,
difficulty in detecting second‐order signals, land surface observation, missing data resulting from cloud
contamination, and attribution method. Elaborate discussions on these limitations are provided in Text S7 in
Supporting Information S1.
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All data used in this study are publicly available online. The MODIS LST product (MOD11A1) is available at
https://developers.google.cn/earth‐engine/datasets/catalog/MODIS_061_MOD11A1 (Wan et al., 2021). The
MODIS land cover type product (MCD12Q1) is available at https://developers.google.cn/earth‐engine/datasets/
catalog/MODIS_061_MCD12Q1 (Friedl & Sulla‐Menashe, 2022). The MODIS NDVI product (MOD13A2) is
available at https://developers.google.cn/earth‐engine/datasets/catalog/MODIS_061_MOD13A2 (Didan, 2021).
The MODIS albedo product (MCD43A3) is available at https://developers.google.cn/earth‐engine/datasets/cat-
alog/MODIS_061_MCD43A3 (Schaaf & Wang, 2021). The MODIS AOD product (MCD19A2) is available at
https://developers.google.cn/earth‐engine/datasets/catalog/MODIS_061_MCD19A2_GRANULES (Lyapustin
& Wang, 2022). The Shuttle Radar Topography Mission (SRTM) digital elevation model can be downloaded at
https://srtm.csi.cgiar.org/ (Reuter et al., 2007). The GUB data can be downloaded at http://data.starcloud.pcl.ac.
cn/zh/resource/14 (L. Li et al., 2020; X. Li et al., 2020). The surface air temperature and precipitation data can be
downloaded at https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html (Matsuura & Willmott, 2018). The
population data can be downloaded at http://data.europa.eu/89h/d6d86a90‐4351‐4508‐99c1‐cb074b022c4a
(Schiavina et al., 2022).
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