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A. Supplementary Texts 

 

Text S1: City selection procedures and distribution across different climate zones 

We consider all the world’s urban clusters (cities, henceforth) with an urban area larger than 15 km2 

in 1990 and an urban area larger than 50 km2 in 2018 in the present study. These two thresholds of 

urban area were chosen to filter the cities to ensure a larger sample of cities and an adequate 

number of pixels for statistics. The urban regions for 1990 and 2018 were considered, aiming to 

delineate global old urban area and newly urbanized area. By this filtering procedure, we obtained 

2104 cities. According to the Köppen-Geiger climate classification (Kottek et al., 2006), these cities 

are distributed in arid (281 cities), equatorial (169 cities), polar (6 cities), snow (547 cities), and 

warm temperate climates (1101 cities).  

 

Text S2: Descriptions of the datasets used in this study 

We used satellite-derived data from multiple sources in our analysis. The datasets include land 

surface temperature (LST), land cover type, elevation, and urban boundary. Here we used the LST 

data (2000 – 2022) from the MODIS MOD11A1 product, consisting of daytime (~10:30) and 

nighttime (~22:30) observations with a spatial resolution of 1 km. The satellite LST data were used 

to quantify the surface urban heat island intensity (i.e., Is) trends and the associated variabilities 

(i.e., AI). We used the land cover type data for 2022 from the MODIS MCD12Q1 product, with a 

spatial resolution of 500 m using the IGBP classification scheme. The land cover type data were 

used to exclude pixels labeled as water bodies, wetlands, and permanent snow and ice in 

calculating the Is and AI. We considered the Shuttle Radar Topography Mission (SRTM) digital 

elevation model to eliminate the impacts from elevation changes in calculating the Is and AI, which 

is at 90 m resolution. We used the urban boundary data in 1990 and 2018 from Li et al. (2020), 

which were produced based on high-resolution (30 m) artificial impermeable surfaces. Such data 

were used to delineate urban areas (i.e., old urban area and newly urbanized area) and the 

associated rural surroundings required to estimate the Is and AI across global cities.  

 

We further collected the normalized difference vegetation index (NDVI), albedo, aerosol optical 

depth (AOD), surface air temperature, precipitation, and population data to assist the attribution 

analysis of the AI. We also collected impervious surface data to understand the urbanization 

impacts on AI. Here we used the NDVI data (2000 – 2022) from the MODIS MOD13A2 product, 

with a spatial resolution of 1 km. We obtained the albedo data (2000 – 2022) from the MODIS 

MCD43A3 product at a spatial resolution of 500 m. The white-sky albedo product was used. We 

used the AOD data (2000 – 2022) from the MODIS MCD19A2 product, with a spatial resolution of 1 

km. We used the surface air temperature and precipitation data (2000 – 2017) from the National 

Oceanic and Atmospheric Administration Physical Sciences Laboratory, with a spatial resolution of 

0.5°. We used the population data (2000 – 2020) from the Global Human Settlement Layer at every 

5-year intervals, with a spatial resolution of 1 km. We used impervious surface data (2000 – 2022) 

from Gong et al. (2020). During the satellite data collection process, we filtered out the data that 

was contaminated by clouds. In addition, these data were all resampled or aggregated to 1 km 

resolution and annual averages, mainly to examine the magnitude and drivers of the AI across 

global cities.  

 



 

Text S3: Selection of the urban boundary data 

Urban boundary data produced based on different data resources have distinct characteristics. The 

Global Human Settlement Urban Centre Database (GHS-UCDB) data are generated primarily based 

on urban population and urban extent (Florczyk et al., 2019). The spatial extent of GHS-UCDB 

mainly describes the urban center and is therefore smaller than the physical built-up area. 

Nighttime light data is also commonly used for urban boundary extraction. However, this may 

ignore some areas with weak lighting and require thresholds to be set (Li & Zhou, 2017). 

Impervious surfaces can adequately characterize the spatial distribution of urban built-up areas. 

We therefore used the Global Urban Boundary (GUB) dataset based on impervious surfaces (Li et 

al., 2020). This helps to capture the contour of urban and rural fringes. In addition, the GUB data 

can enable rapid mapping and multi-temporal updating on a global scale. This significantly 

reduces the labor costs and subjectivity of defining urban boundaries for manual interpretation.  

 

Text S4: Reliability assessment of the Terra MODIS LST data 

We used the Aqua MODIS LST data to assess the reliability of Terra MODIS LST data. The results 

show that the Aqua and Terra MODIS LST data are relatively consistent in characterizing 

interannual Is variability, showing the same fluctuation characteristics (Figure S16 in Supporting 

Information S1). In addition, the spatial patterns of AI calculated based on Terra MODIS and Aqua 

MODIS LST data are similar (Figure S17 in Supporting Information S1). The correlation coefficient 

between the two was 0.78 (p < 0.01) during the daytime and 0.64 (p < 0.01) during the nighttime, 

showing a strong correlation (Figure S18 in Supporting Information S1). The difference between 

the two could be related to the difference in transit time and the influence of different degrees of 

clouds. Considering the reliability of Aqua satellite LST data (Good et al., 2022), the Terra MODIS 

LST data is therefore reliable in estimating Is and AI.  

 

We further simulated the intra-day variations of LST for 2021 and 2022 using a diurnal temperature 

circle model with four intra-day Terra/Aqua MODIS LST observations to correct the Terra MODIS 

LST (Hong et al., 2021). The comparison of the pre- and post-correction LST data was used to 

evaluate the impact of the Terra satellite's orbital drift on the LST, Is, and AI estimates. The results 

show that the urban LST is underestimated by 0.642°C and 0.719°C in 2021 and 2022, respectively, 

and the rural LST is underestimated by 0.609°C and 0.684°C during the daytime, corresponding to 

an Is underestimation of 0.033°C and 0.035°C; during the nighttime, the urban LST is overestimated 

by 0.153°C and 0.172°C in 2021 and 2022, respectively, and the rural LST were overestimated by 

0.146°C and 0.165°C, and the corresponding Is were overestimated by 0.007°C and 0.007°C, 

correspondingly (Figure S19 in Supporting Information S1). The orbital drift also biased the mean 

AI of global 2104 cities from −0.073°C/decade2 (post-correction) to −0.086°C/decade2 (pre-

correction) during the daytime, with an −15% bias, and from −0.041°C/decade2 (post-correction) 

to −0.038°C/decade2 (pre-correction) during the nighttime, with an 8% bias (Figure S20 in 

Supporting Information S1). Therefore, although the Terra satellite has undergone orbital drift, this 

does not alter the main findings. However, the errors may be further magnified as the orbital drift 

becomes larger, and thus this requires extra caution in the future.  

 



 

Text S5: Reliability assessment of the calculation method of AI 

We compared the method that divided the entire study period into two periods and the method 

used in this study that distinguishes between multiple periods. The results show that the method 

used in this study (denoted as method 1) is strongly correlated with the method based on only two 

periods (denoted as method 2, treating Is equally for each year) in estimating AI, with correlation 

coefficients of 0.88 (p < 0.01) and 0.89 (p < 0.01) in daytime and nighttime, respectively, and the 

slope of the fit approximates to a 1:1 line (Figure S21 in Supporting Information S1). This implies 

that the method in this study is effective and could accurately estimate AI.  

 

Text S6: Spatial pattern of contributions from AδNDVI and AδAlbedo to AI 

We quantified the respective contributions (measured in °C/decade2) of the AδNDVI and AδAlbedo to 

the observed AI during the day and at night (Figure S15 in Supporting Information S1), as these 

two factors are the most important drivers of the AI. Our results reveal significant spatial and 

diurnal differences in their impacts on the AI. Spatially, the AδNDVI-led contribution is relatively 

larger in East Asia and Africa, possibly due to the larger increase in δNDVI trends over these 

regions (Figure S22 in Supporting Information S1). The AδAlbedo-led contribution is greater in mid- 

and high-latitude cities in the Northern Hemisphere, which may be related to the stronger regional 

albedo-climate feedback (Betts, 2000; Lee et al., 2011). Diurnally, the AδAlbedo-led contribution is 

slightly larger at night than during the day, while the AδNDVI-led contribution is considerably higher 

during the day. This is mostly because vegetation strongly modulates Is during daytime through 

evaporative cooling (Chakraborty & Lee, 2019), while the impact of albedo is associated with 

changes in heat storage during daytime that can carry over to impact Is at night (Zhao et al. 2014). 

With respect to different urbanization subclasses, the AδNDVI- and AδAlbedo-led contributions are 

greater in the old urban area than in the newly urbanized area (Figure S23 in Supporting 

Information S1). This explains the faster Is deceleration in the old urban area than in the newly 

urbanized area due to their dominant role in promoting Is deceleration.  

 

Text S7: Limitations of this study 

We acknowledge five limitations in this study. First, our analysis covers only the past two decades 

due to the availability of high-quality satellite LST data. Landsat and NOAA satellites provide LST 

data with longer records, but they are restricted in accurately estimating Is trend (VI) due to orbital 

drift (for NOAA-AVHRR; Gutman, 1999) or long revisiting periods (for Landsat-series; Zhou et al., 

2019). Currently, LST data acquired by MODIS represent the sole reliable and robust data source 

for investigating AI at a fine resolution over cities worldwide. One may still question whether two 

decades are enough to detect robust shifts in VI. We argue that these detected shifts should be 

reliable because they are mainly driven by noteworthy changes in surface properties during 

urbanization over this period. Nevertheless, we acknowledge the necessity for investigating shifts 

in VI over longer periods, but this requires the generation of high-quality global LST products with 

high spatial resolutions. Second, investigating higher-order derivatives is relatively difficult due to 

the discreteness of satellite data and the influence of weather conditions, land cover change and 

data noise. We conducted two trend calculations to derive AI (i.e., second-order signal) based on 

the approximate form of the second-order difference, with relatively longer step length than unit 

step length. This can effectively eliminate the impacts of inter-annual Is fluctuations on the AI 

estimation, providing an average AI over the entire period. Nevertheless, we acknowledge that the 



 

degree of difficulty faced is likely to be further exacerbated and may even become less feasible 

when one goes further into the investigation of higher-order change features, such as third-order 

signals. Third, our study mainly focuses on surface UHI, while canopy UHI based on air temperature 

is more closely related to heat stress (Chakraborty et al., 2022). Future endeavors could delve into 

UHI trends based on air temperature and thermal comfort indices, which further incorporate 

humidity, wind speed, and radiant temperature (Middel et al., 2021). Nevertheless, efforts remain 

required to develop advanced and reliable algorithms for obtaining long-term pixel-based air 

temperatures and thermal comfort index values across each individual city worldwide. Fourth, 

satellite LST data used to estimate Is are clear-sky observations, which can lead to biases in the Is 

estimates (Yang et al., 2024). Consequently, this may also distort the magnitude of the Is 

acceleration or deceleration. Regarding this issue, we collected the gap-filled MODIS LST data 

provided by Zhang et al., (2022) to investigate the influence of cloud contamination on our 

findings by comparing the AI estimated by observed MODIS LST and gap-filled MODIS LST. The 

results show that the AI calculated based on Aqua MODIS data is strongly correlated with the 

outcomes based on gap-filled MODIS LST (Figure S24 in Supporting Information S1). Therefore, 

despite the influence of cloud contamination on satellite observations, this should not affect our 

main findings (e.g., widespread Is deceleration). Nevertheless, a reliable all-sky LST dataset is still 

essential to understand the temporal dynamics of Is. Lastly, a data-driven approach was employed 

to elucidate the relationships between AI and its drivers. This approach can offer explanations for 

the AI, but providing correlations rather than causality. We acknowledge that our approach 

simplifies the complexity of impacts of urbanization and climate change on AI. Physics-based 

attribution methods may offer more precise interpretations of the AI.  

 

  



 

B. Supplementary Figures 

 

 

Figure S1. Schematic for delineating old urban area, newly urbanized area, and rural background 

over a typical urban agglomeration in China. Old urban area is defined as the urban surfaces 

demarcated by the 1990 urban boundary; newly urbanized area comprises of the urban surfaces 

located between the 1990 and 2018 urban boundaries; and rural background is defined as the 1.5 

times buffer of the urban area situated outside the 2018 urban boundary. The pixels labeled as 

water bodies, wetlands, and permanent snow and ice and the rural pixels with an elevation 

exceeding ±50 m above the mean urban elevation were excluded to eliminate their influence on 

the estimation of Is.  

 

  



 

 

Figure S2. Schematics showing the comparison of AI estimated by methods based on two periods 

(change rate of VI between 2000-2010 and 2012-2022) and multiple periods (this study). (a) Linear 

fitting for two periods; (b) VI for two periods; (c) linear fitting for multiple periods; and (d) VI for 

multiple periods.  

 

  



 

 

 

Figure S3. Variance inflation factor (VIF) of the explanatory variables for the AI. The grouped bar 

charts (i.e., urban subdivisions and daytime/nighttime) indicate the VIF of explanatory variables for 

the AI under different categories. AδNDVI, AδAlbedo, and AδAOD denote the second derivatives of the 

changes in urban-rural differences for normalized difference vegetation index (NDVI), albedo, and 

aerosol optical depth (AOD), and ATEMP, APRCP, and APOP denote the second derivatives of the 

changes in rural surface air temperature (TEMP), precipitation (PRCP), and urban population (POP).  

 

  



 

 

Figure S4. Spatial pattern of AI in old urban area and newly urbanized area over 2104 cities 

worldwide for 2000-2022. Spatial pattern of AI in old urban area (a) and newly urbanized area (c) 

during the day. (b), (d), as in (a), (c), but showing nighttime results corresponding to panels a and c, 

respectively.  

 

  



 

 

Figure S5. The relationship between AI in old urban area and newly urbanized area over 2104 

cities worldwide during the day and night. Comparison of AI in old urban area and newly urbanized 

area using urban boundary in 1990 (a) and 2000 (b). The red and blue backgrounds indicate 95% 

confidence interval of the linear fit. Note that in this study, the urban boundary in 1990 was 

primarily used to delineate the old urban area and newly urbanized area, while the urban boundary 

in 2000 was used to assess the impact of year selection of urban boundaries on the correlation of 

AI between old urban area and newly urbanized area.  

 

  



 

 

Figure S6. Seasonal variations in AI across global cities with significant AI for 2000-2022.  

 

  



 

 

Figure S7. Spatial pattern of seasonal variations in AI across global cities for 2000-2022. (a) 

Daytime AI in spring; (b) daytime AI in summer; (c) daytime AI in autumn; and (d) daytime AI in 

winter. (e)-(h), as in (a)-(d), but showing nighttime results corresponding to panels a-d, 

respectively.  

 

  



 
 



 

Figure S8. Temporal variations in Is, and VI, and the AI in old urban area and newly urbanized area 

over all cities with significant AI. Temporal variations in Is, and VI and the AI in old urban area 

during the day (a). The left panel shows the frequency distributions of daytime VI in old urban area 

across these cities between 2000-2010 and 2012-2022, while the right panel shows the boxplots of 

daytime VI in old urban area during these two periods (b). (c) to (h), as in (a), (b), but showing 

different cases (e.g., during the day or night, and in old urban area or newly urbanized area). In (a), 

(c), (e), and (g), for different cases, the red solid lines indicate the mean Is variations; the red dot-

dash lines indicate the Is variations for all cities with AI > 0; the red dotted lines indicate the Is 

variations for all cities with AI < 0; the black solid lines indicate the variations in the VI; the black 

dotted lines indicate the linear fit of the VI (with the slope denoting the AI); and the gray 

backgrounds indicate 95% confidence interval of the linear fit.  

 

  



 

 

Figure S9. Comparison of the variabilities of the trends of the surface air temperature (ATEMP) 

among local and other cities. The local cities represent those of west coast of Western Europe and 

North America and with AI dominated by ATEMP. The other cities indicate the cities examined in this 

study except the local cities.  

 

  



 

 

Figure S10. Urban/rural LST trends as well as their difference (i.e., VI) over all cities with significant 

AI for 2000-2022. (a) Daytime LST trends and their difference over all cities with positive AI; (b) 

nighttime LST trends and their difference over all cities with positive AI; (c) daytime LST trends and 

their difference over all cities with negative AI; and (d) nighttime LST trends and their difference 

over all cities with negative AI.  

 

  



 

 

Figure S11. Global LST acceleration (ALST) and urban/rural LST trends as well as their difference 

(i.e., VI) over all cities with significant AI for 2000-2022. (a) Daytime ALST; and (b) urban and rural LST 

trends across multiple periods. (c), (d), as in (a), (b), but showing nighttime results corresponding to 

panels a and b, respectively.  

 

  



 

 



 

Figure S12. Dominant drivers of AI in old urban area and newly urbanized area across global cities. 

The most dominant drivers of AI and their percentage contributions in old urban area for each city 

during the day (a). Temporal variations of the urban-rural normalized difference vegetation index 

(NDVI) difference (δNDVI) for city categories with AI > 0 and with AI < 0 in old urban area during 

the day (b). (c) to (h), as in (a), (b), but showing different cases (e.g., during the day or night, in old 

urban area or newly urbanized area, and for δNDVI trend or urban-rural albedo difference 

(δAlbedo) trend). In panels a, c, e, and g, the '+' indicates a positive contribution to AI, while '−' 

indicates a negative contribution. AδNDVI, AδAlbedo, and AδAOD denote the second derivatives of the 

changes in urban-rural differences for NDVI, albedo, and aerosol optical depth (AOD), and ATEMP, 

APRCP, and APOP denote the second derivatives of the changes in rural surface air temperature 

(TEMP), precipitation (PRCP), and urban population (POP).  

 

  



 

 

Figure S13. The dominant drivers of AI and the relative contributions of urbanization and climate 

change to AI. The dominant drivers of AI during daytime (a) and nighttime (c) across global cities. 

The relative contributions of urbanization and climate change to AI during daytime (b) and 

nighttime (d) across climate zones.  

 

  



 

 

Figure S14. The impacts of urban renewal on land surface temperature (LST). The types of urban 

land cover changes in Shanghai, China (a) and San Diego, USA (c) from 2000 to 2020, including 

region A (urban renewal, namely impervious surface converted to parkland) and region B 

(control/reference regions, namely relatively stable impervious surface). The LST differences of 

regions A and B in Shanghai, China (b) and San Diego, USA (d) reflect the impacts of urban renewal 

on LST. The LST data used here were obtained by reconstructing the Landsat LST from 1985 to 

2022 at a resolution of 120m based on the previously adopted method (Li et al., 2022).  

 

  



 

 

Figure S15. Contributions from the variabilities of the trends of the urban-rural normalized 

difference vegetation index (NDVI) and albedo differences (the AδNDVI and AδAlbedo) to the AI across 

global cities. Contributions from the AδNDVI (a) and AδAlbedo (b) to the AI during the day. (c), (d), as in 

(a), (b), but showing nighttime results corresponding to panels a and b, respectively. The color and 

size of the circles signify the value and percentage of contribution from the AδNDVI and AδAlbedo to 

the AI.  

 

  



 

 

Figure S16. Interannual variations in Is based on Aqua and Terra MODIS LST observations. (a) 

Daytime comparison; and (b) nighttime comparison.  

 

  



 

 

Figure S17. Spatial pattern of AI estimated by Terra and Aqua MODIS data over 2104 cities 

worldwide for 2003-2022. (a) Terra-derived daytime AI; (b) Aqua-derived daytime AI; (c) Terra-

derived nighttime AI; and (d) Aqua-derived nighttime AI.  

 

  



 

 

Figure S18. Correlation of AI estimated by Terra and Aqua MODIS data. (a) Daytime comparison; 

and (b) nighttime comparison.  

 

  



 

 

Figure S19. Intra-day modes of urban/rural LST and Is variations across global 2104 cities based on 

diurnal temperature circle model. (a) LST mode in 2021; (b) SUHII mode in 2021; (c) LST mode in 

2022; and (d) SUHII mode in 2022. δLST (and δSUHII) denotes the difference of LST (and SUHII) 

before and after correction for orbital drift. δLST (and δIs) denotes the difference of LST (and Is) 

before and after correction for orbital drift, namely the influence of orbital drift on observed LST 

(and Is).  

 

  



 

 

Figure S20. Interannual variations in Is before (i.e., observation) and after (i.e., correction) 

correction for orbital drift. (a) Daytime comparison; and (b) nighttime comparison.  

 

  



 

 

Figure S21. Comparison of AI estimated by methods based on multiple periods (this study) and 

two periods (change rate of VI between 2000-2010 and 2012-2022). (a) Daytime comparison; and 

(b) nighttime comparison.  

 

  



 

 

Figure S22. Spatial pattern of the variabilities of the trends of the urban-rural normalized 

difference vegetation index (NDVI) difference (AδNDVI) in 2104 cities worldwide for 2000-2022. The 

red dashed ellipse mainly overlays cities in eastern Asia and Africa with a larger AδNDVI.  

 
  



 

 

Figure S23. Contributions from the variabilities of the trends of the urban-rural normalized 

difference vegetation index (NDVI) and albedo differences (AδNDVI and AδAlbedo) to the AI in old 

urban area and newly urbanized area across global cities. Contributions from the AδNDVI (a) and 

AδAlbedo (b) to the AI in old urban area during the day; (c) to (h), as in (a), (b), but showing different 

cases (e.g., during the day or night, and in old urban area or newly urbanized area). The color and 

size of the circles signify the value and percentage of contribution from the AδNDVI and AδAlbedo to 

the AI.  

  



 

 

Figure S24. Correlation of AI estimated by Aqua MODIS LST and gap-filled MODIS LST. (a) 

Daytime comparison; and (b) nighttime comparison.  

  



 

C. Supplementary Tables 

 

Table S1. Diagnosis of ordinary least squares (OLS) and geographically weighted regression (GWR) 

models for describing the relationship between AI and various drivers.  

Variable Urban Old urban area Newly urbanized area 

Day Night Day Night Day Night 

OLS diagnostics 

AICc 1378.640146 401.738301 1842.152559 944.974214 1147.243277 146.137117 

F-statistic 46.890303 7.158833 40.470028 7.767617 42.698399 9.883292 

R2 0.220428 0.046741 0.200708 0.050570 0.204105 0.062010 

R2 Adjusted 0.215727 0.040212 0.195748 0.044060 0.199325 0.055735 

Moran Index 

(MI) 

0.166 0.275 0.221 0.256 0.091 0.155 

MI Probability 0.000 0.000 0.000 0.000 0.000 0.000 

GWR diagnostics 

Neighbors 117 125 110 134 134 126 

Residual sum of 

squares 

126.696409 49.289398 187.237825 94.461877 118.823316 40.290729 

Effective 

number 

186.090618 144.754918 189.143525 134.452446 164.216233 151.945818 

Sigma 0.394059 0.25839 0.488429 0.355475 0.375708 0.231461 

AICc 1114.906548 220.326304 1509.788079 773.142331 1003.595237 31.472726 

R2 0.567801 0.41273 0.597448 0.394126 0.478405 0.381604 

R2 Adjusted 0.469756 0.298374 0.500949 0.285966 0.377271 0.257484 

Moran Index 

(MI) 

0.028 0.023 0.032 0.030 0.023 0.014 

MI Probability 0.000 0.000 0.000 0.000 0.000 0.013 

 

  



 

Table S2. The regression coefficients (mean ± one standard deviation) from geographically 

weighted regression model in describing the relationship between AI and various drivers.  

Drivers Urban Old urban area Newly urbanized area 

Day Night Day Night Day Night 

AδNDVI -10.28 ± 5.17 -0.37 ± 1.75 -11.03 ± 5.97 -0.27 ± 2.42 -8.00 ± 2.83 -1.73 ± 1.27 

AδAlbedo -9.09 ± 14.29 -7.78 ± 8.71 -10.09 ± 15.08 -7.64 ± 8.69 -8.52 ± 12.44 -9.45 ± 9.93 

AδAOD 0.86 ± 7.72 2.67 ± 5.27 -0.25 ± 6.79 3.22 ± 4.00 2.12 ± 7.07 0.04 ± 5.42 

ATEMP -0.012 ± 0.055 0.003 ± 0.044 -0.007 ± 0.073 0.007 ± 0.040 -0.024 ± 0.041 -0.004 ± 0.042 

APRCP 0.0017 ± 0.0021 0.0001 ± 0.0011 0.0023 ± 0.0024 -0.0001 ± 0.0015 0.0013 ± 0.0016 -0.0002 ± 0.0009 

APOP -0.000019 ± 

0.000035 

-0.000003 ± 

0.000046 

0.000010 ± 

0.000004 

-0.000010 ± 

0.000005 

-0.000021 ± 

0.000033 

0.000001 ± 

0.000062 
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