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A B S T R A C T   

The urban heat island (UHI) effect is strongly modulated by urban-scale changes to the aerodynamic, thermal, 
and radiative properties of the Earth’s land surfaces. Interest in this phenomenon, both from the climatological 
and public health perspectives, has led to hundreds of UHI studies, mostly conducted on a city-by-city basis. 
These studies, however, do not provide a complete picture of the UHI for administrative units using a consistent 
methodology. To address this gap, we characterize clear-sky surface UHI (SUHI) intensities for all urbanized 
areas in the United States using a modified Simplified Urban-Extent (SUE) approach by combining a fusion of 
remotely-sensed data products with multiple US census-defined administrative urban delineations. We find the 
highest daytime SUHI intensities during summer (1.91 ± 0.97 ◦C) for 418 of the 497 urbanized areas, while the 
winter daytime SUHI intensity (0.87 ± 0.45 ◦C) is the lowest in 439 cases. Since urban vegetation has been 
frequently cited as an effective way to mitigate UHI, we use NDVI, a satellite-derived proxy for live green 
vegetation, and US census tract delineations to characterize how vegetation density modulates inter-urban, intra- 
urban, and inter-seasonal variability in SUHI intensity. In addition, we also explore how elevation and distance 
from the coast confound SUHI estimates. To further quantify the uncertainties in our estimates, we analyze and 
discuss some limitations of these satellite-derived products across climate zones, particularly issues with using 
remotely sensed radiometric temperature and vegetation indices as proxies for urban heat and vegetation cover. 
We demonstrate an application of this spatially explicit dataset, showing that for the majority of the urbanized 
areas, SUHI intensity is lower in census tracts with higher median income and higher proportion of white people. 
Our analysis also suggests that poor and non-white urban residents may suffer the possible adverse effects of 
summer SUHI without reaping the potential benefits (e.g., warmer temperatures) during winter, though estab-
lishing this result requires future research using more comprehensive heat stress metrics. This study develops 
new methodological advancements to characterize SUHI and its intra-urban variability at levels of aggregation 
consistent with sources of other socioeconomic information, which can be relevant in future inter-disciplinary 
research and as a possible screening tool for policy-making. The dataset developed in this study is visualized 
at: https://datadrivenlab.users.earthengine.app/view/usuhiapp.   

1. Introduction 

The urban heat island (UHI) effect refers to the phenomenon of 
higher temperatures in cities and impacts multiple domains, including 
local weather and climate, energy demand, and public health (Arnfield, 
2003; Tan et al., 2010; Santamouris, 2014; Heaviside et al., 2017). UHI 
intensity can be defined by canopy temperature (CUHI) or surface 

temperature (SUHI). CUHI is derived from air temperature (Ta) mea-
surements, while SUHI is based on satellite-derived land surface tem-
perature (LST). Thus, the CUHI and SUHI, while both representing a 
measure of local temperature perturbations due to urbanization, are not 
identical, and can have potentially distinct diurnal and seasonal patterns 
(Arnfield, 2003; Voogt and Oke, 2003; Chakraborty et al., 2017). In 
general, both background climate and city-specific characteristics, 
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including the presence (or absence) of urban green space, amount and 
properties of built-up materials, and intensity of human activity, 
modulate the UHI’s mean intensity and seasonal variability (Peng et al., 
2012; Zhao et al., 2014; Chakraborty and Lee, 2019; Manoli et al., 
2019). With reference to these factors, the UHI also shows significant 
intra-city variability since urban areas are highly heterogenous. 

Characterizing the spatial variability in the CUHI requires dense Ta 
sensor networks in cities. Although the number of such networks is 
increasing, they are available for few cities and over limited time periods 
(Muller et al., 2013). In-situ measurements also suffer from consider-
ations of representative placement, variable accuracy, and drift of in-
dividual sensors (Stewart 2011). In contrast, satellites have the 
advantage of monitoring all cities at the global scale using the same 
sensor, allowing spatially continuous mapping of SUHI. Although this 
does not imply that satellite-derived SUHI estimates have no uncertainty 
(Lai et al., 2018), these uncertainties largely stem from the selection of 
pixels to delineate urban and rural areas (Zhang et al., 2019), as well as 
the large variabilities in what satellites ‘see’ over heterogeneous urban 
terrain (Lagouarde et al., 2004; Hu et al., 2016). Even though SUHI and 
CUHI are not equivalent (Hu et al., 2019), using satellite observations 
allow us to examine one major impact of urbanization on local climate, 
as well as its intra-urban variations, in a more consistent manner. 

There have been several multi-‘city’ SUHI studies from the national 
to the global scale (Peng et al., 2012; Clinton and Gong 2013; Li et al., 
2017; Chakraborty and Lee 2019). However, the regions of interest used 
in these studies do not necessarily make their findings directly imple-
mentable from the urban planning perspective. The UHI effect stems 
from actual physical changes to the Earth’s land surfaces, while decision 
making aims to serve residents within administrative units. Chakraborty 
and Lee (2019) and Clinton and Gong (2013), for instance, both focus on 
physical urban agglomerations, not administrative boundaries, which, 
while important for providing climatological baseline values for clear- 
sky conditions, limit their application for policymakers who are inter-
ested in designing heat mitigation strategies for urban residents at the 
administrative scale. For global studies, comparing SUHI intensities 
using administratively determined city delineations is problematic since 
city definitions vary widely across nations. In general, these cross-city 
comparisons do not deal with intra-urban variability and instead focus 
on city-level mean values. 

To address these gaps in SUHI comparability, particularly its intra- 
urban variability, here we focus on the United States and US Census- 
defined administrative boundaries to create a methodologically consis-
tent database of SUHI intensity. Disaggregating mean satellite-derived 
SUHI values across census tracts both allows analysis of how SUHI is 
modulated by other physical characteristics at the tract level and facil-
itates its combination with socioeconomic information relevant for 
inter-disciplinary research and applications. To demonstrate the first 
use, we examine how urban vegetation, elevation, and distance from the 
coast modulate the annual, summertime, and nighttime SUHI intensity 
for both day and night across climate zones in the US using a statistical 
approach. To demonstrate the latter, we provide preliminary evidence of 
large disparities in SUHI intensity for different income and racial groups 
in the US. A more detailed analysis of these disparities can be found in 
Hsu et al. (under review). Given that satellite-derived LST does not 
represent the climatological mean state and is not equivalent to actual 
heat exposure or total heat loading, we discuss its limitations in the 
context of this study. Similar uncertainties are also discussed for the 
proxy for vegetation cover used. Keeping these limitations in mind, the 
results have possible applications for future research to further under-
stand the SUHI and its intra-urban variability, as an input to estimate 
more health-focused metrics of environmental stress in urban areas, and 
as a potential factor for urban-scale policy-making in the US. 

2. Material and methods 

2.1. Data sources and regions of interest 

We use the following remotely sensed data in the present study:  

1. The Moderate Resolution Imaging Spectroradiometer (MODIS) 8-day 
and daily LST products from NASA’s Aqua satellite (MYD11A2 v006 
and MYD11A1 v006) at 1000 m resolution from 2013 to 2017 (Wan, 
2014)  

2. MODIS 8-day surface reflectance product from Aqua satellite 
(MYD09A1 v006) at 500 m resolution from 2013 to 2017 (Vermote 
et al., 2011)  

3. Global Multi-Resolution Terrain Elevation Data (GMTED) at 30 m 
resolution from 2010 (Danielson and Gesch, 2011) 

Fig. 1. Examples of the two levels of aggregation used for processing the satellite data for (a) Minneapolis, Minnesota and (b) Oklahoma City, Oklahoma. The red 
polygons are the urbanized areas used for calculating the average SUHI intensity from the difference in LST between the spectrally classified urban (built-up pixels) 
and rural (non built-up, non water pixels) references. The black polygons show the groups of census tracts that overlap the urbanized area in each case. Only the 
satellite data over the urbanized areas (red polygons) are used for SUHI calculations. SUHI value for an inner-city census tract is identical to the average SUHI for the 
tract, while for the census tracts extending beyond the edge of the urbanized areas, only the pixels in that also overlap the red polygon are considered. The data can 
be visualized here: https://datadrivenlab.users.earthengine.app/view/usuhiapp. 
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4. European Space Agency’s Climate Change Initiative (ESA CCI) land 
cover data at 300 m resolution for 2015 (Bontemps et al., 2013)  

5. National Land Cover Database (NLCD) tree canopy dataset at 30 mm 
resolution for 2013 (Coulston et al., 2012) 

Measurements from the MODIS sensor on the Aqua satellite are 
chosen over the Terra satellite since the overpass time during the day for 
Aqua is 1:30 pm local time, which better corresponds to the peak day-
time LST. Since the focus is on urban areas, we only consider the census 
tracts intersecting urbanized areas, which the US census bureau defines 
as densely settled geographical regions with more than 50,000 residents 
(https://www.census.gov/programs-surveys/geography/guidance/ 
geo-areas/urban-rural/2010-urban-rural.html). Our SUHI data 
comprise 55,871 census tracts, grouped into 497 urbanized areas (Figs. 1 
and 2), covering approximately 78 percent of the U.S. population. Tract- 
level information on median household income and race (White, Black, 
Asian, American Indian, Hawaiian, and others) come from the 2017 
American Community Survey 5-year Data Profile from 2017 (Mather 
et al., 2005). 

The prevailing background climate for each urbanized area is 
determined from the Köppen-Geiger dataset (Rubel and Kottek, 2010; 
Fig. S1), based on the climate zone of the centroid of each of the chosen 
497 urbanized areas. Of these, 3 of the centroids do not overlap any of 
the climate zones due to the coarseness of the Köppen-Geiger dataset, 
and are designated to have the nearest climate zone. Finally, a census 

tract group is considered coastal if the original urbanized area intersects 
the Natural Earth global coastal dataset at 10 m resolution 
(https://www.naturalearthdata.com/downloads/10m-physical-vecto 
rs/10m-coastline/). All spatial analyses are done on the Google Earth 
Engine platform (Gorelick et al., 2017). 

2.2. Satellite data processing 

We pre-processed the 8-day LST images to exclude pixels with an 
uncertainty of more than 3 ◦C, based on the pixel-level quality control 
flags, similar to Chakraborty and Lee (2019). The use of 8-day images 
versus daily LST data prevents sampling biases due to differing overcast 
periods across regions of the country (see Discussion). Similarly, we use 
the highest-quality pixels of the MODIS 8-day surface reflectance 
product to compute the Normalized Difference Vegetation Index (NDVI) 
(Rouse et al., 1974): 

NDVI = (NIR − RED)/(NIR+RED), (1)  

where NIR and RED are the surface reflectance in the near infrared 
(band 2) and red (band 1). We extract terrain elevation from the Dan-
ielson and Gesch (2011) Digital Elevation Model (DEM). 

Annual LST and NDVI values are simple means of all 8-day images 
from 2013 to 2017, while seasonal values are means from June to 
August (summer) and December to February (winter). Since sensors do 
not penetrate clouds, annual or seasonal values should be considered 

Fig. 2. Map of all urbanized areas in the US, along with their mean (a) annual daytime and (b) annual nighttime SUHI intensity for 2013–2017. The sub-panels 
include Alaska, Hawaii, and Puerto Rico. 
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clear-sky estimates. We use the ESA CCI land cover data for 2015 since it 
is in the middle of the 2013–2017 range. All satellite data are processed 
at 300 m resolution to be consistent with the land cover data. 

2.3. SUHI and Urban-Rural differential estimation at multiple levels of 
aggregation 

We use the Simplified Urban Extent (SUE) algorithm, originally 
developed to characterize SUHI intensity in a globally consistent manner 
(Chakraborty and Lee, 2019), to calculate the annual, summer, and 
winter SUHI intensities for day and night. Traditional SUHI estimates 
usually assume a fixed buffer around an urban region of interest to 
create a rural reference and compare the temperature differential be-
tween the two (Clinton and Gong, 2013). The footprint of the SUHI, 
however, can vary widely between cities (Zhou et al., 2015; Yang et al., 
2019), preventing a standard method to select a rural reference based on 
these buffers. This lack of standardization is more problematic when 
using administrative boundaries since a hypothetical buffered region 
around these boundaries may or may not be built-up. To address these 
issues, the SUE method defines the SUHI as the average LST difference 
between the urban and non-urban pixels, as classified from spectral 
reflectance data, within an urban agglomeration or city (Chakraborty 
and Lee, 2019). 

The US Census Bureau’s 497 urbanized areas are our urban ag-
glomerations, while we use ESA CCI pixel-level data to delineate urban 
and rural references. Thus, the rural reference includes all non-urban, 
non-water land cover classes within each urbanized area. Although re-
sults from the SUE algorithm have been independently validated against 
both observational and theoretical estimates of SUHI intensity (Manoli 
et al., 2020a; Niu et al., 2020), there is debate regarding whether it 
constitutes a ‘true’ rural reference (for an extended discussion, see 
Chakraborty and Lee (2019)). For the purposes of this study, however, 
SUHI intensity is the average LST difference between the average built- 
up pixel and the average non built-up pixel within each urbanized area. 
While a similar method of delineating urban and rural references would 
not work for CUHI, this is primarily due to the stronger effect of 
advection on Ta compared to LST. Similar to the algorithm used for 
SUHI, we also calculate urban–rural differentials in NDVI (ΔNDVI) and 
DEM (ΔDEM) for each agglomeration. To examine the suitability of 
using NDVI as a proxy for vegetation, we calculate the urban–rural 
differential in tree cover percentage (ΔTree Cover) for each urbanized 
area from the NLCD dataset (see Discussion). 

To calculate SUHI and urban–rural differentials for a census tract, we 
keep the rural reference identical (based on the non-urban, non-water 

ESA CCI pixels within the urbanized area), while all pixels within the 
urbanized part of the census tracts are used as the urban reference. This 
is a necessary modification to the SUE algorithm to account for the 
mismatch between the physical extent of an urban area and its admin-
istrative boundaries (Hsu et al., 2018; Chakraborty et al., 2019). Though 
this adjustment does not keep both remotely sensed and socioeconomic 
data at the same level of aggregation, we assume that most people live in 
the part of the census tract contained in the urbanized area. Moreover, 
using all pixels within the urbanized area of the census tract gives a more 
complete picture of the average LST of the tract, accounting for presence 
(or absence) of green space, bare soil, permanent snowpack, etc. Fig. 1 
shows two examples of these different levels of aggregation used in this 
study. 

3. Results 

3.1. Spatial and seasonal variability in SUHI in the US 

Fig. 2 shows a map of US urbanized areas including their mean 
annual clear-sky daytime and nighttime SUHI intensities. The annual 
average SUHI intensity is 1.38 ± 0.66 ◦C during daytime and 0.40 ±
0.28 ◦C for nighttime. Seasonally, summers show the highest values 
(1.91 ± 0.97 ◦C for daytime; 0.60 ± 0.26 ◦C for nighttime), while 
winters show the lowest (0.87 ± 0.45 ◦C for daytime; 0.31 ± 0.34 ◦C at 
night; Table 1). The summer SUHI is higher than the annual mean SUHI 
in ~84% (418/497) of the cases, while the winter SUHI is higher in only 
~12% (58/497) cases. This seasonal trend of higher summer SUHI in-
tensities compared to winter values is consistent with previous results - 
both global and US-specific (Imhoff et al., 2010; Peng et al., 2012; Li 
et al., 2017; Chakraborty and Lee 2019), and show similar magnitude to 
the 15-year mean urban cluster-based values extracted from the dataset 
created by Chakraborty and Lee (2019) (Table S1). Note that the slightly 
higher SUHI values in the present study are due to primarily two 
reasons:  

1. The global dataset uses a fusion of Terra and Aqua data, with Aqua, 
which we use in the present study, generally showing higher daytime 
SUHI values (Chakraborty and Lee, 2019).  

2. We focus on urbanized areas, and thus filter out many smaller urban 
areas with lower expected SUHI values (Zhou et al., 2017). 

When divided into climate classes, there is a marked difference in 
daytime SUHI intensity between arid and other climate zones. Urban-
ized areas in the arid climate zone show the lowest SUHI intensities 

Table 1 
Summary of calculated SUHI intensities (mean ± standard deviation) for the cases considered in the present study. These values are not weighted by area.   

Regions of interest 

SUHI Case All US Arid Boreal Temperate Tropical 

Annual daytime (◦C) All 1.38 ± 0.66 0.5 ± 0.57 1.55 ± 0.56 1.39 ± 0.58 2.03 ± 0.87 
Coastal 1.46 ± 0.77 0.23 ± 0 1.25 ± 0.54 1.36 ± 0.68 2.1 ± 0.9 

Non-Coastal 1.36 ± 0.63 0.5 ± 0.58 1.56 ± 0.56 1.4 ± 0.55 1.58 ± 0.64 
Annual nighttime (◦C) All 0.4 ± 0.28 0.64 ± 0.3 0.35 ± 0.27 0.39 ± 0.26 0.56 ± 0.35 

Coastal 0.42 ± 0.34 0.64 ± 0 0.1 ± 0.19 0.4 ± 0.33 0.59 ± 0.36 
Non-Coastal 0.4 ± 0.27 0.64 ± 0.3 0.35 ± 0.27 0.38 ± 0.24 0.35 ± 0.04 

Summer daytime (◦C) All 1.91 ± 0.97 0.52 ± 0.82 2.1 ± 0.8 2.01 ± 0.9 2.22 ± 0.99 
Coastal 1.98 ± 0.99 − 0.27 ± 0 1.95 ± 0.61 1.95 ± 0.97 2.29 ± 1.01 

Non-Coastal 1.89 ± 0.97 0.54 ± 0.82 2.1 ± 0.81 2.02 ± 0.88 1.69 ± 0.84 
Summer nighttime (◦C) All 0.6 ± 0.27 0.74 ± 0.33 0.61 ± 0.24 0.57 ± 0.26 0.62 ± 0.35 

Coastal 0.53 ± 0.31 0.58 ± 0 0.28 ± 0.22 0.52 ± 0.3 0.65 ± 0.37 
Non-Coastal 0.62 ± 0.25 0.75 ± 0.33 0.62 ± 0.23 0.59 ± 0.24 0.39 ± 0.05 

Winter daytime (◦C) All 0.87 ± 0.45 0.54 ± 0.4 0.9 ± 0.41 0.86 ± 0.39 1.75 ± 0.77 
Coastal 0.98 ± 0.67 0.74 ± 0 0.6 ± 0.43 0.84 ± 0.52 1.8 ± 0.8 

Non-Coastal 0.85 ± 0.39 0.54 ± 0.4 0.91 ± 0.41 0.87 ± 0.35 1.39 ± 0.5 
Winter nighttime (◦C) All 0.31 ± 0.34 0.52 ± 0.31 0.34 ± 0.38 0.25 ± 0.31 0.47 ± 0.34 

Coastal 0.35 ± 0.4 0.7 ± 0 0.01 ± 0.27 0.33 ± 0.4 0.5 ± 0.35 
Non-Coastal 0.3 ± 0.33 0.51 ± 0.31 0.35 ± 0.38 0.22 ± 0.27 0.25 ± 0.05  
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while those in tropical regions show the highest, both with little seasonal 
variation. Urbanized areas in temperate and boreal climates show larger 
seasonal variations. Arid zones also show the lowest intra-urban spatial 
variation in daytime SUHI intensity for all cases (Fig. 3). During night-
time, urbanized areas in arid climate show the highest SUHI intensity 
(Fig. 3b). 

Although these trends are consistent with global patterns, US- 
specific characteristics of urbanization affect some results. With a pri-
marily continental climate, the US contains 298 temperate urbanized 
areas, with only 16 in tropical climate, most of which are on islands, 
either in Hawaii or Puerto Rico. Values in the temperate zone therefore 
skew the average SUHI intensities. Moreover, since only one of the 44 
arid urbanized areas, San Diego, CA, adjoins the coast, the low SUHI 
intensity in arid areas leads to a higher overall annual SUHI intensity for 
coastal urbanized areas (1.46 ± 0.77 ◦C for coastal; 1.36 ± 0.63 ◦C for 
non-coastal), which is counter-intuitive, given the moderating influence 
of sea breezes on daytime coastal temperature (Santamouris et al., 
2017). This expected influence of sea-breeze moderation on SUHI 
emerges when this analysis is done separately for temperate (1.36 ±
0.68 ◦C for coastal; 1.40 ± 0.55 ◦C for non-coastal) and boreal (1.25 ±
0.54 ◦C for coastal; 1.56 ± 0.60 ◦C for non-coastal) urbanized areas. This 
result is mostly consistent for summer and winter SUHI intensities 
(Table 1). During nighttime, when one would expect coastal areas to 
have relatively higher temperatures, summer SUHI intensity is actually 
higher for non-coastal urbanized areas (0.53 ± 0.31 ◦C for coastal; 0.62 
± 0.25 ◦C for non-coastal). This difference is not due to a sampling issue 
since we essentially analyze all urbanized areas, as defined by the US 
census bureau. While it is possible to extend this analysis to the ‘urban 
areas’, which the US census bureau defines as regions with a population 
of less than 50,000 people, some of these tend to be very small, with few 
census tracts. The limited size and intra-area variation limits the both 
the ability to obtain sufficient representative pixels to reliably calculate 
SUHI intensity and to conduct analysis regarding its relationship with 
socioeconomic variables. 

3.2. SUHI intensity and urban green space 

Replacement of natural vegetation with impermeable surfaces is a 
key cause of the urban heat island effect. Although it is one of many 
factors that controls SUHI (Peng et al., 2012; Zhao et al., 2014), we focus 
on this land cover conversion due for three main reasons: it has signif-
icant intra-urban and inter-urban variation (Cui and De Foy, 2012; 
Chakraborty and Lee, 2019; Chakraborty et al., 2019); access to green 
space has been found to be inversely correlated with income (Hsu et al., 
2018; Nesbitt et al., 2019; Chakraborty et al., 2019); and urban re- 
vegetation is a commonly proposed urban heat mitigation strategy 
(Maimaitiyiming et al., 2014; Ziter et al., 2019). The presence of green 

vegetation has other co-benefits beyond reducing local temperature 
(Dadvand et al., 2015; Fong et al., 2018; Iyer et al., 2020). Finally, given 
the multiple economic and social benefits of urban forestry (Nowak and 
Dwyer, 2007), planting urban trees can be easily implementable and 
defensible from the policy standpoint. 

We find daytime SUHI intensity and the urban–rural differential in 
NDVI (ΔNDVI), a proxy for live green vegetation, to be negatively 
correlated both within and between urbanized areas (Fig. 4), except for 
the boreal climate. These correlations are especially strong during 
summer, which is expected due to higher potential evaporative cooling 
from vegetated surfaces during this season (Manoli et al., 2020a). 
Overall, negative correlations persist for 459, 481, and 368 of the 497 
urbanized areas for the year, summer, and winter, respectively. Across 
all urbanized areas, correlations are stronger for non-coastal areas 
(annually, r = − 0.42 ± 0.45 for coastal and − 0.66 ± 0.45 for non-coastal 
urbanized areas after Fisher’s z transformation and back- 
transformation). This difference may be due to the mediating effect of 
sea breezes (Santamouris et al., 2017). For temperate climate, which has 
a large number of both coastal and inland urbanized areas, the differ-
ence in correlations is even stronger (annually, r = − 0.41 ± 0.46 for 
coastal and − 0.75 ± 0.38 for non-coastal urbanized areas), particularly 
for summer (r = − 0.50 ± 0.46 for coastal and − 0.80 ± 0.36 for non- 
coastal urbanized areas). 

Although the overall trends persist during nighttime (Fig. 4d–f), the 
strengths of the negative correlations are much lower, expected due to 
the lower differential of (and absolute) evaporative cooling at night (De 
Dios et al., 2015). In particular, at night, the control of ΔNDVI on inter- 
urban variation in SUHI practically disappears. A negative trend in SUHI 
and ΔNDVI is found in 400, 456, and 319 urbanized areas for the year, 
summer, and winter, respectively and the correlations for non-coastal 
urbanized areas decrease the most to − 0.32 ± 0.37 (r = − 0.40 ± 0.38 
for coastal urbanized areas). 

3.3. SUHI intensity and distance from the coast 

We examine the coastal influence on SUHI intensity by calculating 
the mean and standard deviation of the correlation coefficients (after 
Fisher’s z transformation and back-transformation) between the dis-
tance of the census tract centroids from the nearest coast and the annual, 
summer, and winter SUHI intensities (Table 2). This analysis is only 
done for the 110 census tract groups adjoining the coast. On average, the 
correlation coefficients are negative for both daytime (− 0.09 ± 0.42 for 
annual) and nighttime (− 0.5 ± 0.43 for annual). The strong negative 
correlations are expected during nighttime due to the thermal inertia of 
water. We examine the correlation coefficients between distance from 
the coast and ΔNDVI to resolve the seemingly counter-intuitive 
decreasing daytime SUHI with distance from the coast. For all cases 

Fig. 3. Bar charts showing 2013–2017 mean annual, summer, and winter daytime (a) and nighttime (b) SUHI intensity of the urbanized areas for each climate zone. 
The error bars represent the standard deviation of the mean urban daytime SUHI for each case, while the number at the top of the bars represent the pooled standard 
deviation of intra-urban daytime SUHI intensity for the respective cases. 
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Fig. 4. Summary of intra-urban and inter-urban correlation between 2013 and 2017 (a) daytime SUHI and mean annual ΔNDVI, (b) daytime SUHI and mean 
summer ΔNDVI, (c) daytime SUHI and mean winter ΔNDVI, (d) nighttime SUHI and mean annual ΔNDVI, (e) nighttime SUHI and mean summer ΔNDVI, and (f) 
nighttime SUHI and mean winter ΔNDVI. The points show the distribution (jittered) of the Pearson correlation coefficient (r) between the two variables for every US 
urbanized area divided into the climate zones, calculated from the census tract-level calculations. The numbers below the points give the mean and standard de-
viation of r after Fisher’s z transformation and back-transformation. The equations at the top show the correlations between the variables, calculated from the mean 
for each urbanized area (in black) and also sub-divided into the climate zones. 
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considered, ΔNDVI is positively correlated with distance from the coast 
(around 0.28 ± 0.33 for all cases). This means that for the coastal ur-
banized areas in the US, vegetation density tends to increase farther 
from the waterfront, thereby counteracting the coastal influence on 
SUHI. Partial correlations that account for the ΔNDVI variability gives 
us slightly positive correlation coefficients between SUHI intensity and 
distance from the coast, at least for the annual and summer cases. It 
should be noted that isolating the influence of coastal advection on UHI 
intensity is much more complicated than can be inferred from the bulk 
statistical analysis performed here and requires considerations of wind 
speed and direction, land-sea thermal gradients, and other meteoro-
logical variables. 

3.4. Census-tract elevation: a possible confounding factor 

Since temperature varies with altitude, comparing UHI intensities at 
different elevations is not ideal. The UHI literature typically accounts for 
this limitation by setting elevation differential thresholds for entire 
cities (in multi-city analysis) or for individual pixels before calculating 
SUHI. For illustration, we examine the relationship between SUHI in-
tensity and the urban–rural elevation differential (ΔDEM) for each ur-
banized area (Fig. S2). The elevation differential is indeed important, 
showing a negative correlation with SUHI intensity for a slight majority 
of the urbanized areas considered. Though there is not as much inter- 
seasonal trend, roughly two-thirds of urbanized areas (316 for year, 
320 for summer, and 342 for winter) demonstrate this negative corre-
lation, confirming that census tracts with a higher average elevation 
have lower temperature. The negative correlations are slightly lower at 
night. While elevation is an unwelcome confounder when dealing with 
SUHI intensity itself, it is less problematic from a human welfare 
perspective. Since it is not necessarily true that higher elevation areas 
will not be inhabited, using such elevation thresholds in the present 
study would mask out entire census tracts or large parts of the popula-
tion who live in the higher elevation regions of the urbanized areas. 
Therefore, with the aim of consistent assessment of SUHI’s local distri-
bution as a bulk parameter, we do not use elevation thresholds, 
acknowledging that this omission leads to some uncertainties in ur-
banized areas with large terrain gradients. 

3.5. Applications of dataset: exploring SUHI by income and race 

Chakraborty et al. (2019) found SUHI to be higher in poorer neigh-
borhoods for the majority of a sample of 25 global cities. Recent studies 
have explored similar disparities in environmental stressors and access 
to resources in the US (Clark et al., 2014; Tessum et al., 2019; Hoffman 
et al., 2020). Here we expand on those studies, demonstrating one use of 
this dataset by exploring the statistical associations between SUHI in-
tensity, income, and race using a spatially explicit approach. Unlike 
Chakraborty et al. (2019), which focused on annual mean daytime 
values, we also consider the seasonal and diurnal components of the 
disparities in SUHI intensity. 

Fig. 5 shows the statistical relationship between SUHI intensity and 
median income for all urbanized areas. SUHI intensity is negatively 
associated with median income for 436 (~88%), 445 (~89%), and 428 

(~86%) of the 497 urbanized areas during the year, summer, and 
winter, respectively. For all seasons, the strengths of the correlations are 
highest for the boreal climate, followed by temperate and arid climate. 
The correlations for the tropical urbanized areas show a fairly even 
spread from negative to positive. Nighttime SUHI intensity also shows 
negative, albeit weaker, correlations with median income (Fig. 5d–f). 

Mean daytime SUHI intensity is negatively correlated with the per-
centage of white population for most urbanized areas (i.e., census tracts 
with higher proportion of white residents have lower SUHI; Fig. 6 shows 
the patterns for summer). Overall, white is the only racial group for 
which the mean correlation between SUHI intensity and proportion of 
population is negative, while the mean positive correlation is highest for 
the black racial group. These patterns persist even after accounting for 
income, as seen from the distribution of partial correlation coefficients 
between the two variables (Fig. 6b). For winter nights, the association 
between SUHI intensity and race practically disappears (Fig. 6c), espe-
cially after accounting for income (Fig. 6d). 

Even though absolute temperature may be a more relevant indicator 
of environmental stress than urban–rural differentials, such as a UHI 
metric (Martilli et al., 2020a), here we use SUHI to examine environ-
mental disparities for two main reasons:  

1. First, it keeps the analysis consistent with the SUHI characterization, 
which is important from a meteorological perspective because of its 
impact on local weather and boundary layer processes.  

2. Second, since cities are located in a wide variety of climates, the UHI 
remains a useful proxy to isolate the impact of urbanization on local 
temperatures (Manoli et al., 2020a), which can be a relevant target 
for policy interventions. 

Since the SUHI is just the difference between the census-tract LST 
and a constant rural reference LST within each urbanized area, all intra- 
urban statistical correlations also hold true for the corresponding LST. 
Accordingly, the use of SUHI in the manuscript (and UHI in general) 
refers to the additional impacts of urbanization (Heaviside et al., 2017). 
A more comprehensive discussion on the relevance of the SUHI as an 
urban heat metric can be found in Martilli et al. (2020b) and Manoli 
et al. (2020b). Recognizing the importance of LST distinct from SUHI, in 
addition to our web application visualizing SUHI data (https:// 
datadrivenlab.users.earthengine.app/view/usuhiapp), we have made 
available a companion data set containing urban and rural LST, NDVI, 
and DEM estimates for all urbanized census tracts in the US (Chakra-
borty et al., 2020). 

4. Discussion 

4.1. Limitations of satellite-derived estimates of urban heat and vegetation 

Satellite-derived estimates offer larger scale coverage than ground- 
based observations but have several limitations relevant to our analysis:  

i) Estimates are only valid for clear-sky conditions and influenced 
by the scale of temporal aggregation; 

Table 2 
Correlation (and partial correlation) coefficients between distance of census tract centroid from coast and the variables of interest for all the coastal urban census tract 
groups. Note that ΔNDVI has no diurnal variation.  

Time Period SUHI ΔNDVI SUHI (accounting for ΔNDVI) 

Daytime Annual − 0.09 ± 0.42 0.28 ± 0.33 0.02 ± 0.4 
Summer − 0.09 ± 0.41 0.28 ± 0.33 0.03 ± 0.4 
Winter − 0.13 ± 0.44 0.29 ± 0.3 − 0.07 ± 0.42 

Nighttime Annual − 0.5 ± 0.43 0.28 ± 0.33 − 0.45 ± 0.42 
Summer − 0.49 ± 0.46 0.28 ± 0.33 − 0.44 ± 0.45 
Winter − 0.48 ± 0.42 0.29 ± 0.3 − 0.44 ± 0.41  
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Fig. 5. Summary of intra-urban and inter-urban correlation of 2013–2017 (a) mean annual daytime SUHI, (b) mean summer daytime SUHI, (c) mean winter daytime 
SUHI, (d) mean annual nighttime SUHI, (e) mean summer nighttime SUHI, and (f) mean winter nighttime SUHI with 2017 median income. The points show the 
distribution (jittered) of the Pearson correlation coefficient (r) between the two variables for every US urbanized area divided into the climate zones, calculated from 
the census tract-level calculations. The numbers below the points give the mean and standard deviation of r after Fisher’s z transformation and back-transformation. 
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ii) NDVI is not a perfect proxy for all types of urban vegetation, 
particularly with reference to their local cooling potential; and  

iii) Discrepancies between satellite-derived LST, near-surface Ta, and 
heat stress. 

Here we explain these in more detail, discussing the pros and cons of 
alternative methods and evaluating sensitivity of the results to the 
inherent assumptions in our approach. 

The calculated SUHI and ΔNDVI values are only valid for clear-sky 
conditions and do not represent the climatological mean state. More-
over, the temporal and spatial patterns of cloud cover can introduce 
systematic biases in the clear-sky estimates if daily MODIS observations 
are used (Hu and Brunsell, 2013). We reduce this bias by using 8-day 
composites instead of the daily scenes when aggregating to annual 
and seasonal time scales. We illustrate the impact of this bias adjustment 
by calculating the percentage of valid data for both urban and rural 
pixels for each climate zone using 8-day LST composites and the daily 
LST product (Tables 3, S2–S4). 

In general, the highest percentages of available data are over arid 
urbanized areas since they are relatively cloud free, with the lowest 
percentages over boreal and tropical climates. Although this distribution 
is consistent for both 8-day composites and daily scenes, the percentage 
of available LST data are much lower at the daily scale. Note that missing 
data are due to both cloudy pixels and the 3 ◦C uncertainty limit spec-
ified during quality control. We generally expect similar percentages of 
valid pixels across the different climate zones for NDVI. 

Even though the use of 8-day composites instead of daily scenes 
could also lead to biases in our SUHI estimates (Hu and Brunsell, 2013), 
we find surprisingly strong correlations between SUHI intensities 
calculated from the two levels of temporal aggregation, with r2 over 0.90 
and the slope of the linear fit close to 1 in most cases (Fig. 7). Exceptions 
include winter daytime and annual nighttime, with the largest 

deviations seen for the boreal climate. Noting that the mean percentage 
of valid urban pixels for winter daytime for the boreal climate is only 
17.9% (39.6% for annual nighttime) when using the daily scenes (66.6% 
when using 8-day composites; 94.3% for annual nighttime), we are more 
confident in the representativeness of the 8-day composites for calcu-
lating clear-sky SUHI estimates. Low missing data in the daily LST 
product in Table S3 (for instance, in the arid zone) is also a good proxy 
for regions and seasons for which our clear-sky estimates would 
approach the true LST climatology. This variability in representativeness 
across seasons and climate zones should be kept in mind when using this 
dataset. 

The use of NDVI as a proxy for vegetation cover may be inaccurate, 
particularly during winter and for coastal regions, due to the influence of 
water bodies, snow cover, and clouds. These influences could introduce 
noise in urban–rural differentials, since the ΔNDVI signal can be small in 
some urbanized areas. Moreover, ΔNDVI may not always map linearly to 
local cooling due to vegetation. NDVI is an aggregate measure of live 
green vegetation. While all types of vegetation can increase evaporation, 
the cooling potential of different kinds of vegetation also vary, with trees 
also contributing to local cooling by providing shade (Leuzinger et al., 
2010). 

To illustrate the possible discrepancies between our quality- 
controlled clear-sky estimates of ΔNDVI and a more direct measure of 
the urban–rural vegetation differential, we examine its correlation with 
ΔTree Cover from the NLCD dataset at the annual scale (Coulston et al., 
2012; Fig. 8). While we do find relatively strong correlations between 
the two for all and non-coastal urbanized areas, there are regional 
anomalies. For tropical and arid zones, the associations are weak; and 
the overall correlations are low for coastal urbanized areas. In contrast, 
the correlations are high across the board for boreal climate. NDVI in-
corporates information about several kinds of live vegetation, not just 
trees. Accordingly, we should not expect strong correlations for regions 

Fig. 6. Summary of intra-urban correlation of 2013–2017 mean (a) summer daytime and (c) winter nighttime SUHI with percentage of population belonging to each 
race. The points show the distribution (jittered) of the Pearson correlation coefficient (r) between the two variables for every US urbanized area divided into the 
climate zones, calculated from the census tract-level calculations. The numbers below the points give the mean and standard deviation of r after Fisher’s z trans-
formation and back-transformation. (b) and (d) Same as sub-figures (a) and (c), but for the partial correlation coefficients after accounting for median income. 
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with other types of urban vegetation. 
ΔNDVI derived from the 8-day MODIS reflectance product also has a 

couple of advantages compared to the NLCD dataset. It provides infor-
mation about the other forms of urban vegetation that may be relevant 
for the total evaporative cooling over urban green space and allows one 
to examine the seasonal components of the urban–rural vegetation dif-
ferentials (the NLCD dataset is only for annual mean values). 

Although LST and Ta are strongly correlated at longer time scales, 
they may not be correlated as strongly seasonally and/or spatially 
(Arnfield, 2003; Voogt and Oke, 2003; Chakraborty et al., 2017; Hu 
et al., 2019). Moreover, satellite-derived estimates of urban LST do not 
correspond to the Ta felt by urban pedestrians since they are influenced 
by roof top temperatures. Similarly, the temperature of the top of the 
tree is usually higher than the temperature under its shade (Leuzinger 
et al., 2010), suggesting that negative statistical correlations between 
LST and NDVI may underestimate the cooling effect of covered canopies. 
In the US, CUHI, which is directly related to Ta, is generally higher than 
the SUHI intensities derived from MODIS AQUA measurements for 
daytime, but show similar values during nighttime (Zhang et al., 2014). 
Consequently, satellite-derived LST has been associated with negative 
health outcomes at night (Laaidi et al., 2012), although it is not ideal for 
describing urban heat exposure under all conditions (Stone et al., 2019). 

Even Ta is not adequate for this purpose, since heat stress is a func-
tion of many other variables (Oleson et al., 2018). Combinations of Ta, 
humidity, wind speed, and radiation have been used to create several 
different metrics and indices for heat stress, including apparent tem-
perature, wet-bulb temperature, Universal Thermal Climate Index 
(UTCI), Human Thermal Comfort Index (HTCI), Physiological 

Equivalent Temperature Index (PET), etc. (Harlan et al., 2006; Anderson 
et al., 2013; Pantavou et al., 2018). In the context of heat mitigation, the 
effect of urban vegetation may also be different for LST, Ta, and heat 
stress (Declet-Barreto et al., 2013; Chatterjee et al., 2019). 

Insufficient measurement of Ta inside city boundaries, let alone other 
variables needed to predict heat stress at high resolutions, makes cross- 
city comparisons of disparities in urban heat stress difficult. Though 
studies on individual cities have suggested that intra-urban variations 
can lead to higher Ta and HTCI in neighborhoods inhabited by poorer 
and more vulnerable populations in the US (Harlan et al., 2006; Voelkel 
et al., 2018), further research is necessary to establish whether the 
disparities in them across US cities is as systematic as we see for SUHI. 

Nevertheless, LST can still be an important input to predict Ta (and 
possibly heat stress), particularly with the recent growth in crowd-
sourced meteorological data (Venter et al., 2020). Several efforts have 
been made to leverage satellite-derived LST to inform epidemiological 
studies (Kloog, 2019). Given the spatial continuity of satellite products 
and the logistical barriers to establishing dense measurement networks 
in cities, satellite-based LST can be a useful screening tool that com-
plements more intensive human-health focused approaches. Looking 
beyond observations, numerical weather prediction models have the 
capacity to simulate Ta, LST, and more appropriate metrics of heat stress 
at relevant scales (Krayenhoff et al., 2018). These may be more useful for 
testing scenarios that cannot be explicitly measured, though they also 
have limitations pertaining to model simplifications and the accuracy of 
provided boundary conditions. 

4.2. SUHI intensity, urban vegetation, and population distributions 

The SUHI intensity is typically higher for the urban core, while in-
come distribution within cities depends strongly on sociocultural 
context. For the US, this distribution is partly a result of a history of 
urban and national-scale policies, and stems from, among other things, 
urban flight, redlining, and access to public transportation (Kahn et al., 
2008; Hoffman et al., 2020). Here we demonstrate an example case of 
disparity in SUHI intensity for a single nation, thus partly controlling for 
the variabilities in those sociocultural factors. For the US, these factors 
have generally led to higher poverty in city centers, with the population 
becoming richer and whiter as one moves towards the suburbs (Kahn 
et al., 2008). While this income and race-based segregation within cities 
has weakened over time (Juday, 2015), the higher SUHI for the urban 
core partly explains the associations between SUHI intensity, income, 
and race. Physical factors may also control the disparity in SUHI, 
particularly urban vegetation, which is also associated with income and 
race (Chakraborty et al, 2019; Nesbitt et al., 2019). We see positive 
correlations between ΔNDVI and median income (Fig. 7a, b, and 8c), 
implying richer urban residents live in ‘greener’ census tracts. However, 
for coastal urbanized areas, we see weaker correlations between ΔNDVI 
and median income (r = 0.28 ± 0.30 for coastal and − 0.45 ± 0.29 for 
non-coastal urbanized areas for the year; r = 0.27 ± 0.30 for coastal and 
− 0.46 ± 0.30 for non-coastal urbanized areas for summer), which is not 
surprising since ocean-adjacent census tracts, which tend to have less 
vegetation cover (Table 2), generally house richer populations. 

We separated the difference in summer and winter NDVI for the low- 
income tracts (below 25 percentile of income) and high-income tracts 
(above 75 percentile of income) for each urbanized area (Fig. 9d). We 
find that this mean difference (of summer NDVI-winter NDVI) is greater 
in high income tracts for temperate and boreal climate zones (p < 0.01), 
but not for arid and tropical climate. This heterogeneity is due to the 
stronger vegetation phenology in temperate and boreal climate due to 
the larger abundance of deciduous trees and shrubs. Similar values in the 
difference in summer and winter NDVI in both low and high-income 
tracts for tropical and arid cases explain the practically non-varying 
relationships between daytime SUHI intensity and median income for 
urbanized areas in these climate zones. Similarly, the difference between 
summer and winter NDVI is significantly (p < 0.01) higher for white- 

Table 3 
Percentage of processed 8-day composite MODIS images (mean ± standard 
deviation) for urban pixels for the cases and climate zones considered in the 
present study.   

Regions of interest 

Period Case Arid Boreal Temperate Tropical 

Annual 
daytime (%) 

All 98.1 ±
2.3 

87.8 ±
4.2 

94.6 ± 2.9 91.5 ±
3.9 

Coastal 99.4 ±
0 

92.6 ±
1.4 

95.2 ± 2.5 91.3 ±
4.2 

Non- 
Coastal 

98.1 ±
2.3 

87.7 ±
4.2 

94.4 ± 3 92.9 ±
1.1 

Annual 
nighttime 

(%) 

All 98.7 ±
1.5 

94.3 ±
3.6 

95.5 ± 2.6 96.9 ±
1.3 

Coastal 96.5 ±
0 

97 ± 1 96 ± 2 96.9 ±
1.4 

Non- 
Coastal 

98.7 ±
1.5 

94.2 ±
3.7 

95.4 ± 2.7 97.3 ±
0.5 

Summer 
daytime (%) 

All 99.8 ±
1.1 

98.1 ±
2.1 

94.5 ± 5.9 89 ± 7.2 

Coastal 99.5 ±
0 

97.3 ±
2.4 

94 ± 6.2 88.5 ±
7.5 

Non- 
Coastal 

99.8 ±
1.1 

98.1 ± 2 94.6 ± 5.8 92.9 ±
1.6 

Summer 
nighttime 

(%) 

All 99.2 ±
1.5 

97.8 ±
1.9 

96.5 ± 3.2 96.9 ±
2.3 

Coastal 91.3 ±
0 

96 ± 4.6 96 ± 2.8 96.7 ±
2.5 

Non- 
Coastal 

99.4 ±
0.9 

97.9 ±
1.8 

96.7 ± 3.3 98.1 ±
0.9 

Winter daytime 
(%) 

All 95 ±
5.4 

66.6 ±
12.7 

90.6 ± 7.4 96.9 ±
2.2 

Coastal 99.2 ±
0 

82.8 ±
6.9 

92.8 ± 4.8 96.7 ±
2.2 

Non- 
Coastal 

94.9 ±
5.4 

66.1 ±
12.5 

90 ± 7.9 98.7 ±
0.7 

Winter 
nighttime 

(%) 

All 97.2 ±
3.2 

86.7 ±
9.7 

91.5 ± 6.6 99.1 ±
1.4 

Coastal 99.2 ±
0 

94.2 ±
2.9 

94.1 ± 4.2 99 ± 1.5 

Non- 
Coastal 

97.2 ±
3.3 

86.4 ±
9.7 

90.8 ± 6.9 99.9 ±
0.1  
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Fig. 7. Correlation between 2013 and 2017 estimates of (a) annual daytime, (b) summer daytime, (c) winter daytime, (d) annual nighttime, (e) winter nighttime, 
and (f) winter nighttime SUHI intensity from MODIS daily scenes and 8-day composites. The equations at the top show the correlations between the variables, 
calculated from the mean for each urbanized area (in black) and also sub-divided into the climate zones. The dashed line shows the best fit between the two variables 
for all urbanized areas. 
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dominant tracts (over 75% white residents) than non-white dominant 
tracts (under 25% white residents) for temperate and boreal climate. 

4.3. Implications 

The UHI is not an additional environmental stressor due to urbani-
zation under all circumstances, since in some cases, especially in boreal 
climate and winter nights, a higher temperature may be preferable 
(Yang and Bou-Zeid, 2018). As we note from Fig. 5, the negative asso-
ciation between SUHI and median income is much weaker at night, 
practically disappearing during winter. For many US urban areas, since 
we can reasonably assume that the UHI has primarily negative health 
effects during summer days and primarily positive health effects during 
winter nights, our results imply that poor people may be suffering the 
adverse effects of the UHI without reaping the potential wintertime 
benefits. This result holds for race as well, with lower potential SUHI 
intensity for white-dominant census tracts during summer days and a 
relatively even distribution of SUHI intensity regardless of race for 
winter nights (Fig. 6). It is important to note however, that verifying the 
possible health connotations of these trends requires using more 
comprehensive metrics than LST. Although Laaidi et al. (2012) found 
nighttime LST to be associated with increased mortality during a heat-
wave period, it should be noted that Ta, which is more relevant to public 
health, is more strongly coupled with LST at nighttime, both within 
cities and on larger scales (Kawashima et al., 2000; Vancutsem et al., 
2010; Zhang et al., 2011; Zhang et al., 2014). In this context, it is also 
important to stress that a lack of UHI does not imply no need for heat 
mitigation, the most striking example of this being cities situated in 
deserts with generally low (even negative) UHI intensities and high 
absolute temperatures (Martilli et al., 2020). 

Moving beyond public health consequences, since UHI generally 
reduces heating demand during winter and increases cooling demand 
during summer compared to a rural baseline (Santamouris, 2014), poor 
and non-white urban residents in the US may be disproportionately 
bearing the economic burden of UHI during both seasons, an aspect that 
could be further explored in comparative analysis based on an initial 
screening using the tool presented in this paper. With reference to these 
economic consequences, the SUHI, which is heavily influenced by roof 
and road temperatures, is also more directly relevant. 

Evident from Fig. 9, seasonal trends in SUHI disparity are particu-
larly strong for boreal and temperate urbanized areas in the US. It re-
mains to be seen whether these patterns would be consistent for Ta (and 
thus CUHI), and urban heat stress. For the overall spatial disparities 
however, since CUHI also tends to be higher for the urban core (Basara 
et al., 2011; Schatz and Kucharik, 2015; Smoliak et al., 2015; Hardin 
et al., 2018) and given the general distribution of population in US cities 
(Kahn et al., 2008; Juday 2015), we do expect higher Ta and CUHI in 
poorer, and non-white dominant census tracts, though these disparities 
are probably less prominent than for SUHI. Regardless of the strength of 
the intra-urban variabilities, it is important to address possible envi-
ronmental disparities in heat exposure within urbanized areas and 
across seasons. The methodologically consistent SUHI dataset generated 
in this study is constrained by US census-defined urbanized areas, 
which, from an administrative perspective, provides an important input 
for future research and applications. 

5. Conclusions 

Most SUHI characterizations are done using physical delineations of 
urban areas and their rural references. While this is ideal since SUHIs are 

Fig. 8. Evaluation of urban–rural differential in NDVI (ΔNDVI) used in the present study for 2013–2017 and urban–rural differential in tree cover percentage from 
the NLCD dataset for 2013 for, (a) all urbanized areas, (b) non-coastal urbanized areas and, (c) coastal urbanized areas. The equations at the top show the cor-
relations between the variables, calculated from the mean for each urbanized area (in black) and also sub-divided into the climate zones. The dashed line shows the 
best fit between the two variables for all urbanized areas. 
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primarily due to changes in the physical characteristics of the land 
surface, the mismatch between physical boundaries and administrative 
boundaries makes comparisons between and within cities difficult. Here 
we use a fusion of remotely-sensed products and multiple administrative 
boundary definitions to characterize the intra and inter-city variation in 
the annual, summer, and winter SUHI intensities during daytime and 
nighttime in the US. We find that SUHI intensity is negatively correlated 
with income and percentage of white population for the vast majority of 
the urbanized areas. Moreover, poorer and non-white urban residents 
tend to be exposed to higher summer daytime SUHI, when heat stress 
would be at its maximum, and similar winter nighttime SUHI, when 
poorer urban residents could potentially benefit from higher ambient 
temperatures. Since SUHI intensity, its seasonality, and spatial vari-
ability are strongly associated with the degree of vegetation cover in and 
within urbanized areas, strategically placing urban parks and green 
spaces can be a useful way to reduce both the mean SUHI, as well as its 
spatial variability. The dataset created in this study can be accessed 
through the web application https://datadrivenlab.users.earthengine. 
app/view/usuhiapp, and companion dataset Chakraborty et al. (2020). 
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