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Abstract This study develops a surrogate‐based method to assess the uncertainty within a convective
permitting integrated modeling system of the Great Lakes region, arising from interacting physics
parameterizations across the lake, atmosphere, and land surface. Perturbed physics ensembles of the model
during the 2018 summer are used to train a neural network surrogate model to predict lake surface temperature
(LST) and near‐surface air temperature (T2m). Average physics uncertainties are determined to be 1.5°C for
LST and T2m over land, and 1.9°C for T2m over lake, but these have significant spatiotemporal variations. We
find that atmospheric physics parameterizations alone are the dominant sources of uncertainty (45%–53%),
while lake and land parameterizations account for 33% and 38% of the uncertainty of LST and T2m over land
respectively. Interactions of atmosphere physics parameterizations with those of the land and lake contribute to
an additional 13%–17% of the total variance. LST and T2m over the lake are more uncertain in the deeper
northern lakes, particularly during the rapid warming phase that occurs in late spring/early summer. The LST
uncertainty increases with sensitivity to the lake model's surface wind stress scheme. T2m over land is more
uncertain over forested areas in the north, where it is most sensitive to the land surface model, than the more
agricultural land in the south, where it is most sensitive to the atmospheric planetary boundary and surface layer
scheme. Uncertainty also increases in the southwest during multiday temperature declines with higher
sensitivity to the land surface model.

Plain Language Summary Regional climate models couple together lake, atmosphere, and land
surface components, each containing several simplifications of complex small‐scale physics, known as
parameterizations. In this study, we explore the uncertainty arising from the choice of interacting
parameterizations and associated parameters across coupled lake‐atmosphere‐land components of a Great Lakes
regional climate model. To do this, we train a machine learning surrogate model on the climate model outputs of
lake and air surface temperatures during the 2018 summer. The surrogate model is then rapidly queried
thousands of times to find the uncertainty range and which physics parameterizations contribute to it. We find
that atmospheric physics parameterizations are the dominant sources of uncertainty and that another 15% comes
from its interactions with lake and land physics. The surface temperatures are more uncertain over the deeper
northern lakes and forested northern land areas than over the shallower lakes and more agricultural land in the
south. Uncertainty increases on and over the lakes during a time of rapid warming in the late spring‐early
summer, and over the southwest land area during periods where the temperature drops over multiple days.

1. Introduction
Uncertainty about the physical processes in the atmosphere, water bodies, and the land surface can contribute to
biases and large spread in weather and climate models (Bellprat et al., 2012b; Eidhammer et al., 2024; Ricciuto
et al., 2018; Zanna et al., 2019). This is most often attributable to unresolved physics requiring parameterizations
that, while often based on theory, are necessarily simplifications requiring several assumptions and free empirical
parameters. To appropriately deal with the inevitable presence of this epistemic uncertainty, the weather and
climate modeling fields have employed the use of Perturbed Physics/Parameter Ensembles (PPE; Bellprat
et al., 2012a; Eidhammer et al., 2024). Several PPE‐based studies have investigated processes in the atmosphere
(Bellprat et al., 2012a; Qian et al., 2015, 2018, 2024), land surface processes (Ricciuto et al., 2018; Xu et al., 2022),
and oceans (Huber & Zanna, 2017). Land‐atmosphere interactions were investigated in C. Wang et al. (2021).
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Prior PPE studies have rarely focused on complex coastal systems, where interactions between the atmosphere,
land and water bodies can collectively modulate these uncertainties. One region where these interactions are
important and not well‐assessed by the climate modeling communities is the Great Lakes of North America
(Sharma et al., 2018; J. Wang et al., 2022), the world's largest surface freshwater system. Many climate models
have used a simplified representation of the lake surface, and thus may not adequately capture the impact of the
lakes on the regional climate (Briley et al., 2021). However, several recent studies have now incorporated coupled
three‐dimensional (3‐D) hydrodynamic processes of the lakes into regional climate models focused on the Great
Lakes region (GLR; Kayastha et al., 2023; Sun et al., 2020; Xue et al., 2017, 2022). To date, investigation of
physics parameterizations in GLR regional climate models has been limited to ad‐hoc performance evaluation
experiments without the 3‐D lake (Notaro et al., 2021), and without a formal PPE analysis.

One of the reasons for the lack of in‐depth analysis of parameterizations of unresolved physics across the lakes,
atmosphere, and land is that running coupled models with perturbations across all model components is
computationally costly. To mitigate this issue, PPE studies have adopted the use of surrogate models (Ricciuto
et al., 2018). Surrogate models are extremely inexpensive to query, often based on linear models or polynomials
(Bellprat et al., 2012b; Qian et al., 2018; Ricciuto et al., 2018), so that the entire uncertainty space can be explored.
However, this requires the generation of an adequate surrogate model in the first place. Further, we are typically
interested in how the uncertainties and interactions vary across space and time, hence we need a way to deal with
the large dimensionality of the model.

This paper focuses on addressing the problem of assessing physics uncertainties across a complex atmosphere‐
land‐lake system. We assume that the choice of a set of physics parameterizations are equally reasonable a
priori, and the range of model outputs represent an inherent uncertainty of the model due to incomplete physics.
To efficiently assess the uncertainty we develop a surrogate model‐based framework that is, in principle,
generalizable to all regional climate models and apply it to simulations of the GLR with a newly developed
coupled modeling system (Kayastha et al., 2023). We investigate the sensitivity of (near‐)surface temperature, a
critical component of the surface energy budget, to variations in parameterizations/parameters. We quantify the
contribution of each parameterization/parameter to this uncertainty, including the effects of interactions between
parameterization/parameters, which is made possible through the presented training methodology of the
nonlinear surrogate model. The variation of this physics uncertainty across space and time and the importance of
the coupled effects are highlighted.

2. Methods and Data
2.1. Model Description and Experimental Design

2.1.1. Coupled Lake‐Atmosphere Model Configuration

We use a two‐way coupled atmosphere and 3‐D hydrodynamic lake modeling setup developed by Kayastha
et al. (2023) for our PPE analysis. The atmosphere component is the Weather Research and Forecasting (WRF)
model v4.2.2 (Skamarock et al., 2021) with the Advanced Research WRF dynamic core (Skamarock &
Klemp, 2008). The hydrodynamic lake component is based off of the Finite Volume Community Ocean Model
(FVCOM; Chen et al., 2003) v4.1 (see more descriptions below). The coupled atmosphere‐lake model domain is
centered at 45.5°N and 85.0°W and has dimensions of 543 × 484 grid points in the west‐east and south‐north.
Grid spacing is 4 km, covering the GLR (Figure 1). There are 50 stretched vertical levels topped at 50 hPa. The
initial and boundary conditions are from 3‐hourly 0.25° European Centre for Medium‐Range Weather Forecasts
atmospheric reanalysis of the global climate, version 5 (ERA5; Hersbach et al., 2020).

Three commonly used physics options each for cloud microphysics (MP), longwave and shortwave radiation
(LW + SW RA), and planetary boundary layer and surface layer (PBL + SFC), and two land surface models
(LSM) are used in this study, as summarized in Table 1. The default configuration from our previous studies
(Kayastha et al., 2023; J. Wang et al., 2022) is indicated in the table. In this study, we modified the source codes of
the SFC scheme in WRF so that each SFC scheme can use one of any three chosen parameterizations of surface
roughness length over water (z0w): constant Charnock coefficient of 0.0185, the Coupled Ocean–Atmosphere
Response Experiment (COARE) 3.5 algorithm (Edson et al., 2013), or the depth‐dependent over shallow wa-
ters (<100 m) scheme (Jiménez & Dudhia, 2018). Our hypothesis is that the depth‐dependent scheme should
improve surface variables over the Great Lakes as a large portion is<100 m deep (Figure 1). Note that z0w is used
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directly as the momentum roughness length and is modified internally by the SFC scheme to obtain different
temperature and moisture roughness lengths. This modification was found to improve the modeling latent and
sensible heat fluxes over the Great Lakes (Charusombat et al., 2018).

The hydrodynamic lake component is based off of the Finite Volume Community Ocean Model (FVCOM; Chen
et al., 2003) v4.1. Horizontal resolution on an unstructured triangular mesh varies from 2 to 4 km offshore to 1–
2 km along the coasts (Figure 1), and the model has 40 vertical sigma layers (Kayastha et al., 2023). The model is
initialized from a quiescent state in the winter when the lakes are unstratified with an initial uniform lake tem-
perature of 2°C. As in Kayastha et al. (2023), FVCOM is run simultaneously with WRF, including a two‐way
information exchange between them at 1‐hr intervals using the OASIS3‐MCT coupler (Craig et al., 2017).
Here, the lake surface temperature (LST) and ice cover are dynamically calculated by FVCOM and are provided
to WRF as overlake surface boundary conditions using an inverse distance weighting interpolation. Only WRF
cells that are designated water by its land‐water grid mask and are within the FVCOM domain receive information
from FVCOM. In turn, the atmospheric forcings required by FVCOM are dynamically calculated and provided by
WRF using bilinear interpolation regardless of the WRF land‐water grid mask value.

FVCOM parameterization options and parameters are summarized in Table 1. Vertical mixing is modeled with
either the Mellor‐Yamada Level 2.5 (MY‐2.5) closure (Mellor & Yamada, 1982) or the General Ocean Turbu-
lence Model implementation of the k‐ϵ closure (Stips et al., 2002). We use the Large and Pond (1981) or Andreas
et al. (2012) bulk wind stress (WS) parameterization to impart momentum from the atmosphere into the lake at the
surface. Lastly, we vary two uncertain parameters: the turbulent Prandtl number (Prt) and R: the fraction of the
downward shortwave flux associated with the longer wavelength irradiance. We vary Prt from 0.1 to 1 and R from
0.74 to 0.78, the latter representing a range from relatively clear Type IA water to lower clarity Type III water
(Paulson & Simpson, 1977). We also assign values to the two other variables in the shortwave radiation ab-
sorption formulation dependent on R: the attenuation depth for the longer wavelength component of shortwave
irradiance, ζ1 = 1.7 + 0.3αR and the attenuation depth for shorter wavelength component of shortwave irradi-
ance, ζ2 = 6 + 9.7αR, in which αR = (0.74 − R)/0.04, based on values from Paulson and Simpson (1977);
Chen et al. (2011).

2.2. Model Uncertainty Analysis

We use a surrogate model framework for the forward uncertainty propagation of the expensive coupled lake‐
atmosphere‐land physics model. In this framework, physics parameterizations and parameters are assigned a

Figure 1. Computational domain of the Weather Research and Forecasting‐Finite Volume Community Ocean Model (WRF‐
FVCOM) model with zoom‐in view of grid sizes near the Chicago coastline. Shading shows the geopotential height in the
WRF atmosphere model and bathymetric depths in the FVCOM lake model. Labels denote lake names and land area
quadrants.
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statistical distribution (typically uniform or Gaussian) a priori by the modeler, hereafter termed the “parametric
priors” and denoted by λ. For the physics parameterizations, a discrete uniform distribution is chosen,Ud [1,Ns] ,
where the value of the integer corresponds to a specific scheme in the range from 1 to the number of chosen
schemes, Ns. As the order of these integers is unimportant, one hot encoding is used to covert to binary repre-
sentations before surrogate model training. For the parameters, a continuous uniform distribution, U [a,b], is
chosen to range between deemed plausible values a and b. The parametric priors for the coupled lake‐atmosphere‐
land model are summarized in Table 1.

To generate the surrogate model for the uncertainty analysis, a training set is required from samples of the physics
model. To form this training set, the joint distribution of the parametric priors must be sampled efficiently to
minimize the number of expensive coupled model simulations, typically using Quasi‐Monte Carlo (QMC) or
Latin hypercube sampling (Qian et al., 2015). The sampling method used in this study (QMC) is detailed in
Section 2.3. From this training set, a surrogate model is generated to approximate the quantity of interest (QoI),

Z = f (λ,x, t)≈ g(λ,x, t) (1)

Table 1
Uncertain Physics Parameterizations and Parameters in the Coupled WRF‐FVCOM Model

Parameter(ization) Definition Options Priors

PBL + SFC WRF planetary YSU + MM5reva Ud[1,3]

boundary layer MYJ + MOJ

and surface scheme MYNN‐2.5 + MYNN

MP WRF cloud Morrison Ud[1,3]

microphysics Thompsona

scheme WSM6

LW + SW Rad WRF longwave and RRTM + CAM3 Ud[1,3]

shortwave radiation RRTMG + RRTMGa

scheme Goddard + Goddard

z0w WRF surface COARE 3.5 Ud[1,3]

roughness length Charnock = 0.0185a

over water scheme Depth‐dependent

LSM WRF land surface Noaha Ud[1,2]

model Noah‐MP

VM FVCOM vertical MY‐2.5a Ud[1,2]

mixing scheme GOTM k‐ϵ

WS FVCOM bulk wind Large and Pond (1981)a Ud[1,2]

stress parameterization Andreas et al. (2012)

Prt FVCOM turbulent Value from 0.1 to 1a U [0.1,1]
Prandtl number

R FVCOM shortwave Value from 0.74 to 0.78a U [0.74,0.78]
radiation absorption fraction

Note. Detailed descriptions of WRF parameterizations can be found in Skamarock et al. (2021). See text for description of
FVCOM parameterizations and parameters.YSU: Yonsei University PBL, MYJ: Mellor‐Yamada‐Janjic PBL, MYNN‐2.5:
Mellor‐Yamada‐Nakanishi‐Niino Level 2.5 PBL, MM5rev: revised fifth‐generation PSU–NCAR Mesoscale Model SFC,
MYJ: Monin‐Obukhov‐Janjic SFC, MYNN: Mellor‐Yamada‐Nakanishi‐Niino SFC, Morrison: Morrison double‐moment
6‐class MP, Thompson: Thompson double‐moment 6‐class MP, WSM6: WRF single‐moment 6‐class MP, RRTM: Rapid
Radiative Transfer Model RAD, RRTMG: Rapid Radiative Transfer Model for General Circulation Models RAD, CAM3:
NCARCommunity Atmosphere Model 3.0 RAD, Goddard: NewNASAGoddard RAD, Noah: Unified Noah LSM, Noah‐MP:
Noah‐multiparameterization LSM,MY‐2.5:Mellor‐Yamada Level 2.5 VM, GOTM k‐ϵ: General Ocean TurbulenceModel k‐ϵ
VM.
aIndicates settings of the default setup from Kayastha et al. (2023).
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where Z is the spatiotemporally (x indicates spatial location and t is time) varying modeled QoI as a function of
the parametric priors λ, and can be approximated by the surrogate model, g. In this study, we use a multilayer
perceptron artificial neural network (NN) surrogate model with a Rectified Linear Unit (ReLu) activation
function, implemented with PyTorch (Paszke et al., 2019). We also implemented a Polynomial Chaos (Sargsyan
et al., 2014) surrogate model in the code distributed with this study. However, it did not perform as well as the NN
model, so we do not show those results here. This is expected for polynomials, as they are not well‐suited to
discrete inputs that we use for physics parameterizations, but we included it in the code for potential future use in
an analysis with only continuous parameter inputs (e.g., Ricciuto et al., 2018).

Based on the formation of g, a global sensitivity analysis (GSA) and the determination of the QoI distribution can
be performed rapidly throughMonte Carlo sampling of the surrogate models. For the GSA, we use variance‐based
Sobol sensitivity indices to indicate the fractional contributions of each parameter or group of parameters to the
total variance of the QoI (Sargsyan, 2017). The indices are defined as,

Si =
V[E(f (λ|λi)]
V[(f (λ)]

(2)

STi = 1 −
V[E(f (λ|λ− i)]
V[(f (λ)]

(3)

SJij =
V[E(f (λ|λi,λj)]
V[(f (λ)]

− Si − Sj (4)

where V is the variance with respect to the fixed parameter (λi, (λi,λj) pair, or the rest of the parameters, λ− i), and
E is the expectation with respect to the rest of the parameters (Sargsyan et al., 2014). Si is the main effect
sensitivity index of parameter i, which measures the first‐order effect; STi is the total effect index of parameter i,
which measures the total effect of a parameter including the interactions with all other variables; and SJij is the
joint‐effect index of parameter i interacting with parameter j. In this work, we use the Saltelli et al. (2010)
sampling‐based approach to compute Equations 2–4. This method requires generating two random samples each
of size M and (Nd + 2)M corresponding surrogate model evaluations (Sargsyan, 2017). We determined that
M = 10,000 is sufficient for convergence in the current study. The GSA samples are also used to calculate the
uncertainty, which we define as the 90% interval, that is, the range between the 5th and 95th percentiles of the
distribution.

2.3. Computational Design and Surrogate Model Construction

Our simulations target the analysis of 2018 summer season (JJA), with May 2018 used as the spinup period
(Kayastha et al., 2023). During this period, the lakes go through a rapid spring warming phase due to radiatively
driven convection (Austin, 2019) and become strongly stratified with stable lake temperatures for the rest of the
season. The warming phase occurs earliest in May‐June for the southern shallow lakes (Erie and Ontario) and
latest in June–July for the northern deep lakes (Superior, Huron, and Michigan). This season thus presents an
interesting period of time to investigate the lake‐atmosphere coupling and its sensitivity to different forms of
physics parameterizations and parameter quantities. The model performance has been evaluated compared to
observations in Kayastha et al. (2023).

An ensemble of simulations is performed by sampling the 9(=Nd) parametric priors (Table 1) with a QMC low‐
discrepancy Korobov sequence from chaospy. A total of 18 ensemble members (=Ne) are requested for training.
This number was chosen because, (a) close to 90% (actually 89.5%) of the distribution of a continuous variable is
sampled using the Korobov sequence (W. J. Pringle et al., 2023), and (b) the discrete variables have either 2 or 3
unique values, so 18 samples each parameterization option an equal number of times (6 or 9), which is a
requirement of uniform design (Fang et al., 2000), a method akin to the present approach given our assumption of
uniformly distributed priors. A test set of nine ensemble members (=Net) generated using Latin hypercube
sampling is also produced for validation purposes only.

The QoIs chosen for the sensitivity assessment are daily mean 2‐m air temperature (T2m) and LST. Hourly
outputs from the WRF‐FVCOM at each available grid point are processed into the daily quantities. Analysis is
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performed on the full spatiotemporal data set for each QoI. In total we haveNt = 92 days with Np = 262,812WRF
grid points for T2m and Np = 35,749 FVCOM grid points for LST. Ne = 18 ensemble members, producing a
[Ne × Nt × Np] matrix, which is reshaped to [Ne × Nt ∗Np] for generality. However, training a surrogate model
for each point in space‐time (Nt ∗Np) is computationally costly, so we first apply a dimensionality reduction of
the problem using Karhunen‐Loève expansions (KLE). Using this decomposition, the QoI approximation can be
written as,

Z = f (λ,x, t) ≈ f (x, t) +∑
L

j=1
ξj(λ)

̅̅̅̅μj
√ ϕj(x, t) (5)

in terms of uncorrelated, zero‐mean, unit‐variance random variables ξj(λ) and eigenvalue‐eigenfunction pairs
(μj,ϕj(x, t)) of the covariance, truncated at eigenvalue L that explains a user‐defined level of variance. f (x, t)
indicates the ensemble mean. In the current problem, we truncate to L = Nd modes of variation that require
surrogate approximation. This explains 91% and 93% variance for LST and T2m training sets, respectively.
Truncating here produces inverse KLE transform errors of similar magnitude between the training and test sets,
limiting overfitting to the training set.

We make a prediction for all the eigenmodes using a single NN surrogate model, minimizing the following
weighted smooth L1 loss function,

L =
∑Nb
n=1∑L

j=1 lj,nμj
Nb∑

∞
j=1μj

(6)

where,

lj,n =
⎧⎨

⎩

0.5( ξ̂j,n − ξj,n)
2, if |ξ̂j,n − ξj,n|< 1

|ξ̂j,n − ξj,n| − 0.5, otherwise.
(7)

in which ξ̂j,n is the predicted value for the eigenmode, j of the ensemble member n in the batch of size, Nb (⊆Ne).
The training set is divided into three equal‐sized batches for training. Ensemble members that are not included in
each batch are used as the validation set for that batch. The NN model uses two hidden layers with 15 neurons in
each, which is the midpoint between the size of the input layer (=20 after one hot encoding) and the output layer
(L = 9). A small dropout level (=0.001), is used to reduce overfitting to the small training set (a higher dropout
level produces surrogates with unreasonably high joint effect sensitivity indices). The process above is repeated
nine times with different random seeds (111, 222, …, 999) to provide an uncertainty range for surrogate pre-
diction that can be incorporated into the uncertainty analysis.

The surrogate approximations in KLE space can be converted back to space‐time dimensions through the inverse
KLE transform. As the full space‐time dimension is very large, for our analysis we manipulate ϕj(x, t) and f (x, t)
for a subset of interest such as by averaging these functions across x and/or t, and by selecting a subset of x
corresponding to a specific lake or area of land. By averaging across both x and t, we obtain the spatiotemporal
average for a set of input parametric priors, f (λ), and use this to summarize the surrogate model errors (Figure 2).
From this summary perspective, the surrogate models for LST and T2m are shown to be able to predict the test set
with moderate to strong correlation, respectively. The weaker correlation for LST could indicate that some
nonlinear physical mechanisms in the lake or atmosphere‐lake exchange are not fully represented by the para-
metric priors.

3. Results
3.1. Overall

The overall physics uncertainties are estimated as 1.50°C, 1.87°C and 1.47°C for LST, T2m over lake, and T2m
over land, respectively, in terms of the 90% interval of f (λ) according to the surrogate model (Figure 3). This
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highlights the important role that the Great Lakes play on the atmosphere by contributing to greater uncertainty of
T2m over the lakes even though the average air temperature over lakes is smaller. Comparing to the distribution of
the training set, we find that the 90% interval is reduced in the surrogate model, mostly as a result of a reduction in
the 95th percentile value. On the other hand, the surrogate model produces a wider absolute range (maximum
minus minimum) and is especially less constrained at the low end of the distribution than the training set.

Figure 2. Accuracy of surrogate model predictions of the spatiotemporally averaged lake surface temperature and T2m for the
training set (Ne = 18) and test set (Net = 9) with error bars showing the mean and range across the nine random seeds.

Figure 3. Comparison of the distribution of the spatiotemporally averaged lake surface temperature and T2m over the lake
and land surface, f (λ), between the surrogate model and the physical model training set. Surrogate model distribution is the
concatenation across the nine random seeds. Triangle markers indicate maximum/minimum values. The range between the 95%
and 5% lines are used to define the overall uncertainty in this study.
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A plurality of the physics uncertainty is driven by parameterizations in the atmosphere for both LST and T2m
(45%–53%, Figure 4). Depending on the QoI, the impact of lake and land physics and the three‐way interactions
are also important. On average, LST is more sensitive to lake physics (33%) than land physics (11%) and vice
versa for T2m over land (38% vs. 5%), but note that spatial variations exist (see Section 3.2). For T2m over lake
we find that the relative importance of the land and the lake are near equal. Furthermore, atmosphere‐lake physics
interactions (13%) are found to be more important than land physics (11%) for LST. For T2m over the lake, both
atmosphere‐lake (9%) and atmosphere‐land (7%) interactions are significant, approximately half the main effect
sensitivity of land and lake physics. For T2m over land, atmosphere‐lake interaction sensitivity (5%) is the same
as the main effect lake sensitivity and only slightly less than the atmosphere‐land interaction effect (7%). The
land‐lake interaction sensitivity is understandably very small for all QoIs (1%–2%) as there is only an indirect
connection through the atmosphere.

For both LST and T2m, we find that the four most significant parameterizations are LW + SW Rad, PBL + SFC,
LSM, and WS (Figures 4 and 5). This makes physical sense, as the radiative heat fluxes are the main energy
source, and the other parameterizations control how the heat is distributed at the surface. LSM is totally repre-
sentative of the land contribution, and WS is mostly representative of the total lake contribution. While the
importance of atmospheric physics is similar across the QoIs, the contribution from LW + SW Rad and
PBL + SFC schemes changes. For LST, the LW + SW Rad is dominant and the effect of PBL + SFC is small,
since WS is more important for control of the lake surface. Here, both LW + SW Rad and WS account for 30%–
40% of the total variance. The opposite is true for T2m over land where the LSM and PBL + SFC scheme
dominate, accounting for approximately 40% and 50% of the total variance, respectively. This also makes
physical sense as T2m is a quantity interpolated between skin temperature and the lowest atmospheric layer,
which are both modulated by LSM and PBL+ SFC.While for T2m over lake, the PBL+ SFC and LW+ SWRad
schemes have comparable impacts of around 30% explained variance. Here, WS explains just below 20% of the
variance and LSM explains just above 20%.

The most important joint effect sensitivities for LST are between LW + SW Rad, PBL + SFC and WS as these
interactions control the available heat flux into the lake. The same is mostly true for T2m over lake except these
sensitivities are reduced while the interaction effect between PBL + SFC and LSM is increased. For T2m over
land, this interaction between LSM and PBL + SFC becomes the most significant joint effect sensitivity. The
other WRF schemes, PBL + SFC, MP, z0w and the LSM all have similar magnitudes of sensitivity that explain

Figure 4. Relative importance of parameterizations/parameters and their interactions to lake surface temperature and T2m
over the lake and land according to the surrogate model. Top: Combined atmosphere, land, and lake parameterizations/
parameters. Bottom: Top four important parameterizations (refer Figure 5). The radius of circle corresponds to main effect
sensitivity while the width of the gray line corresponds to joint effect sensitivity (same scaling).
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between 10% and 20% of the variance. Much of this is composed of joint effect sensitivity (except for LSM),
meaning a large part of that uncertainty arises from their interactions across different combinations because the
coupling does not directly involve the output from these physical parameterizations.

3.2. Spatial Variations

The uncertainty of LST is shown to be largest in the deeper central areas of Lake Superior (Figure 6). Indeed, the
uncertainty tends to correlate with the size of the lake, with Lakes Erie and Ontario having the smallest uncertainty
on average. This emphasizes the importance of being able to realistically model large and deep lakes with a 3‐D
hydrodynamic model such as that used in this study.

The higher uncertainty of LST over central Lake Superior is not attributable to any one particular parameteri-
zation, but the sensitivity from most of the parameterizations are somewhat elevated here (Figure 7). In general,
though, offshore regions are more sensitive to radiation while coastal regions in the northern larger lakes are more
sensitive to the lakeWS parameterization. This could be explained by the cyclonic summer circulation patterns of
the lakes, where currents are generally faster along coastal areas than offshore (Bai et al., 2013). The PBL + SFC
scheme is shown to produce higher sensitivity values in specific shallow areas of lakes such as western Lake Erie
and the western tip of Lake Huron, where current speeds are very low (Bai et al., 2013). Southeast Lake Michigan
is the one area particularly sensitive to the LSM. Although not particularly important, the effect of z0w is most
significant in the shallower southern lakes, which matches the increase in surface roughness as the lake depth
decreases for the depth‐dependent scheme.

The spatial map shows that T2m uncertainty is highest over land near the northern Great Lakes, over central Lake
Superior and in urban areas (Figure 6). The uncertainty of T2m is lowest over land in the southern half of the
domain, which explains why the uncertainty of T2m over land is found to be generally lower than over lake
(Figure 5). There is a strong correlation between the uncertainty of T2m and LST over Lake Superior (i.e., lower
uncertainty in the eastern and western potions of Lake Superior and high uncertainty in the deep central area).
T2m is especially uncertain to the west and east of central LakeMichigan and over Chicago and Detroit, which are
the largest urban areas in the domain.

For T2m, we see that the radiation and lake WS parameterizations are the most important over the lakes, in
agreement with LST (Figure 8). There is also some minor effect of z0w over some regions of the lakes and coastal
urban areas such as Chicago and Detroit, where T2m can be modulated by lake breezes (J. Wang, Qian,
et al., 2023). The LSM dominates T2m sensitivity over land around the Great Lakes and to the north where there is
a high density of forested area. Noah‐MP LSM incorporates several relevant augmentations to Noah, such as a

Figure 5. Relative importance (contributions to the total variance, split into main and joint effect Sobol sensitivity
components) of all Weather Research and Forecasting and Forecasting‐Finite Volume Community Ocean Model
parameterizations/parameters (see Table 1 for explanations) to lake surface temperature and T2m over the lake and land
according to the surrogate model. Error bars show the range across the nine random seeds.
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separate vegetation canopy layer with canopy gaps that could produce this effect (Niu et al., 2011). On the other
hand, the land around the southern lakes and further south is mainly agricultural, in which differences between the
LSMs are small. PBL + SFC is dominant in the south and over urban areas. This makes physical sense due to the
southwesterly prevailing winds in the summer (Bai et al., 2013) that the PBL + SFC scheme can have an impact
on. Further, urban areas like Chicago are very sensitive to treatment at the surface and can be improved by
coupling to an urban canopy model (J. Wang, Qian, et al., 2023).

3.3. Temporal Variations

The uncertainty of LST is shown to be fairly consistent across time for each of the lakes during the summer
months studied here (Figure 9). Slightly higher uncertainty is present during the rapid warming phase, which
occurs in late June–July for Lake Superior and in June (and earlier) for the other lakes. Lake Superior is shown to
have the highest LST uncertainty on average (1.77± 0.52°C) while Lake Ontario has the lowest (1.51± 0.31°C).
The high uncertainty in the rapid spring warming phase coincides with elevated sensitivity to WS across all the
lakes, highlighting how parameterization of momentum flux at the surface affects the way excess heat entering the
lake during that period is distributed. The importance ofWS also seems to correlate with lake size or latitude, with
Lake Superior and Huron showing the highest sensitivity to WS. The magnitudes of sensitivity across the
different parameterizations are more equal in LakeMichigan and Ontario than in the other lakes. They are also the
two lakes where we see the largest spikes in LSM sensitivity in mid‐July and mid‐August (although all lakes show
this spike but to a lesser degree), that are spatially focused on their east coasts according to Figure 8. Both times

Figure 6. Spatial distribution of lake surface temperature and T2m physics uncertainty, defined as the 90% interval of the
time‐averaged surrogate model distribution.
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Figure 7. Spatial variation of lake surface temperature total effect Sobol sensitivity indices for the six most important physics
parameterizations (refer Figure 5) according to the time‐averaged surrogate model.

Figure 8. Spatial variation of T2m total effect Sobol sensitivity indices for the six most important physics parameterizations
(refer Figure 5) according to the time‐averaged surrogate model.
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correspond to a sustained cooling of LST (and T2m) over multiple days and could be related to different treat-
ments of runoff and surface soil thermal conductivity in the LSMs (Niu et al., 2011).

The LST uncertainty tends to decrease with average lake latitude. This trend is bucked by Lake Erie, which has the
second highest LST uncertainty on average (1.70± 0.20°C). Erie is easily the shallowest lake and can therefore be
most directly impacted by atmospheric radiation, as shown by an elevated total effect sensitivity index especially
during the rapid spring warming phase. Similarly, Erie is less sensitive to WS than the other lakes. The effect of
the PBL+ SFC scheme from late July–August in Erie is far higher than seen for the other lakes. Spatial plots show
that this sensitivity is strongest over the extremely shallow western Lake Erie (Figure 7). This influence could be
coming from the nearby Detroit urban area and/or northern Indiana to the southwest that has a high sensitivity to
PBL + SFC (Figure 8).

The uncertainty of T2m over the lakes is consistent with LST in that higher uncertainty is present during the rapid
spring warming phase and correlates with higher latitude lakes (Figure 10). Indeed, Lake Superior has the highest
average T2m uncertainty (2.39±0.53°C) while Lake Erie has the lowest (1.77± 0.52°C). This latter fact is
different from LST where Erie had the second highest average uncertainty. The higher T2m uncertainty in the
rapid warming phase is associated with elevated sensitivity to the PBL + SFC scheme. Later in the season,
starting from July, the importance of the LSM increases, particularly in the southern lakes. The impact of the
radiation parameterization is fairly consistent across the lakes and throughout the season.

Over land, T2m is shown to warm up in June in the northern areas before maintaining a fairly constant temperature
until late August. While in the southern areas, T2m maintains a more elevated temperature throughout the season.
The average uncertainty of T2m in the northern land areas (NW = 1.80± 0.40°C, NE = 1.76± 0.45°C) is higher
than in the southern areas (SW= 1.60± 0.41°C, SE= 1.37± 0.34°C), and also higher in the west than in the east.
We mostly find that the uncertainty of T2m over land has no clear time variation like over the lakes, except for the
SW area, where the uncertainty is significantly larger between early July and mid‐August. The uncertainty of T2m

Figure 9. Temporal variation of lake surface temperature physics uncertainty (the range of the shaded area between the 5th
and 95th percentiles) and total effect Sobol sensitivity indices for the six most important parameterizations (refer Figure 5)
according to the spatially averaged surrogate model across each of the five Great Lakes (refer Figure 1).
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Figure 10. Temporal variation of T2m physics uncertainty (the range of the shaded area between the 5th and 95th percentiles) and total effect Sobol sensitivity indices for
the six most important parameterizations (refer Figure 5) according to the spatially averaged surrogate model across each of the five Great Lakes and the four land
quadrants (refer Figure 1).

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004337

PRINGLE ET AL. 13 of 16

 19422466, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004337, W
iley O

nline L
ibrary on [26/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



over land is mostly being driven by the LSM and PBL + SFC as also shown clearly in Figure 8. The sensitivity to
PBL + SFC is consistent throughout the season for the four land areas. In contrast, sensitivity to LSM is more
variable with time, especially in the southern areas. The magnitude of this sensitivity increases during July and
into August, the same time as the higher uncertainty in the SW. As noted previously with regards to the LST, this
is correlated with a reduction in temperature over multiple days. The rate of land surface cooling computed by the
LSMs can vary due to soil water content and thermal conductivity differences.

4. Discussion and Conclusions
In this study, we presented a surrogate‐based approach to evaluate the physics uncertainty in a coupled lake‐
atmosphere‐land model of the GLR. We assessed surface air and lake temperatures using a NN surrogate
model that can be rapidly queried to obtain sensitivity and uncertainty information. The sensitivity information
from the surrogate model agrees with physical intuition such as producing logical ranking of the relative
importance of atmosphere, lake, and land contributions to LST and T2m over lake and land, and describing how
atmospheric radiation and lake surface WS is the dominant control on LST. This indicates that the surrogate
model applied here is robust and physically reasonable for understanding the uncertainties. Correlation of the NN
model to the test set was weaker for LST than for T2m. This motivates exploring more lake and lake‐atmosphere
exchange parameterizations and parameters not used as a parametric prior in this study that may be having a
nonlinear influence on LST.

We showed that the physics uncertainty in T2m is on average greater over the lakes than over land, although the
uncertainty for T2m over land in the vicinity of the Great Lakes is highest overall. The uncertainty of both LST
and T2m tends to be higher in the northern lakes and land areas than in the south. One exception to this rule is that
Lake Erie LST is the second most uncertain after Lake Superior, although this higher level of uncertainty arises
from different physics (PBL + SFC for Erie and WS for Superior). In regards to temporal variations, uncertainty
is highest during the rapid spring warming phase for LST and T2m over the lakes, while T2m over the SW land
area is higher between early July and mid‐August.

The primary source of this uncertainty for surface temperatures arises from parameterizations in the atmosphere
(mostly LW+ SWRad and PBL+ SFC) and their interactions with lake (mostlyWS) and land (LSM) physics. As
expected, LW + SW Rad is important as it controls the heat available to the surface for heating, and there is
relatively little spatial and temporal variation of this sensitivity. The other parameterizations are all related to
surface fluxes in each of the atmosphere, lake, and land model components. Naturally, we find that WS is
important for surface temperatures over the lake but unimportant over land, consistent with J. Wang et al. (2022),
who found that LST affects air temperature mainly locally. This sensitivity to WS is most pronounced during the
rapid spring warming phase and for the larger northern lakes. The effect of PBL + SFC is important especially to
the T2m over land in the southern areas, and to LST over Lake Erie, perhaps related to the southwesterly pre-
vailing summer winds. PBL+ SFC has the highest sensitivity to T2m over urban areas which can be improved by
coupling to an urban canopy model (J. Wang, Qian, et al., 2023). The effect of LSM is, in general, greatest on T2m
over the northern land areas, which is more forested than the agricultural south. This makes sense based on the
several canopy‐based augmentations of the Noah‐MP LSM. The temperatures in the southern lakes and land areas
also become more sensitive to LSM from early July to mid‐August, coinciding with sustained multiday tem-
perature declines.

One hypothesis of this study was that the z0w scheme would be important for the Great Lakes as they are much
shallower than the open ocean, and the depth‐dependent scheme was shown to be important over the shallower
continental shelves (Jiménez & Dudhia, 2018). We see here that, at least for surface temperature, the effect of z0w
is relatively minor. However, this could be at least partially because the momentum flux on the atmosphere side
and the lake side are calculated independently. If we instead transfer the fluxes computed in WRF (which uses
z0w) to FVCOM directly instead of state variables, we should see z0w assume the higher sensitivity of the WS
scheme. We therefore recommend exploring this type of consistent flux‐exchange coupling in future iterations of
the coupled WRF‐FVCOM model.

Other physics of the lake—the attenuation of the shortwave radiation, the vertical mixing scheme and the tur-
bulent Prandtl number—were shown to be relatively unimportant to both lake and atmospheric (near‐)surface
temperatures. Therefore, careful treatment of atmospheric radiation and surface fluxes, as well as the numerical
scheme (J. Wang, Fujisaki‐Manome, et al., 2023), should be the focus of further attention in the development and
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assessment of the coupled WRF‐FVCOM model (Kayastha et al., 2023) or similar coupled modeling systems of
the GLR (e.g., Sun et al., 2020; Xue et al., 2022). Additionally, other parameterizations should become more
important for different QoIs that we intend to look at in future work, such as microphysics (MP) for precipitation
(Qian et al., 2015), among others. We also aim to extend the current framework to obtain a posterior estimate of
uncertainty and physics parameterizations (calibration; Lu et al., 2018; Xu et al., 2022) using observations in a
subsequent study.

Data Availability Statement
The metarepository for this study is available from https://github.com/COMPASS‐DOE/GreatLakes_Cou-
pledModel_Uncertainty (W. Pringle, 2025). It contains the uncertainty analysis codes and figures as well as links
to source codes and processed data.

References
Andreas, E. L., Mahrt, L., & Vickers, D. (2012). A new drag relation for aerodynamically rough flow over the ocean. Journal of the Atmospheric
Sciences, 69(8), 2520–2537. https://doi.org/10.1175/JAS‐D‐11‐0312.1

Austin, J. A. (2019). Observations of radiatively driven convection in a deep lake. Limnology & Oceanography, 64(5), 2152–2160. https://doi.org/
10.1002/lno.11175

Bai, X., Wang, J., Schwab, D. J., Yang, Y., Luo, L., Leshkevich, G. A., & Liu, S. (2013). Modeling 1993‐2008 climatology of seasonal general
circulation and thermal structure in the Great Lakes using FVCOM. Ocean Modelling, 65, 40–63. https://doi.org/10.1016/j.ocemod.2013.
02.003

Bellprat, O., Kotlarski, S., Lüthi, D., & Schär, C. (2012a). Exploring perturbed physics ensembles in a regional climate model. Journal of Climate,
25(13), 4582–4599. https://doi.org/10.1175/JCLI‐D‐11‐00275.1

Bellprat, O., Kotlarski, S., Lüthi, D., & Schär, C. (2012b). Objective calibration of regional climate models. Journal of Geophysical Research,
117(23), 1–13. https://doi.org/10.1029/2012JD018262

Briley, L. J., Rood, R. B., & Notaro, M. (2021). Large lakes in climate models: A Great Lakes case study on the usability of CMIP5. Journal of
Great Lakes Research, 47(2), 405–418. https://doi.org/10.1016/j.jglr.2021.01.010

Charusombat, U., Fujisaki‐Manome, A., Gronewold, A. D., Lofgren, B. M., Anderson, E. J., Blanken, P. D., et al. (2018). Evaluating and
improving modeled turbulent heat fluxes across the north american great lakes. Hydrology and Earth System Sciences, 22(10), 5559–5578.
https://doi.org/10.5194/hess‐22‐5559‐2018

Chen, C., Beardsley, R. C., Cowles, G., Qi, J., Lai, Z., Gao, G., et al. (2011). An unstructured‐grid, finite‐volume Community Ocean Model:
FVCOM user manual (3rd ed.). Retrieved from http://fvcom.smast.umassd.edu/wp‐content/uploads/2013/11/MITSG_12‐25.pdf

Chen, C., Liu, H., & Beardsley, R. C. (2003). An unstructured grid, finite‐volume, three‐dimensional, primitive equations ocean model:
Application to coastal ocean and estuaries. Journal of Atmospheric and Oceanic Technology, 20(1), 159–186. https://doi.org/10.1175/1520‐
0426(2003)020<0159:AUGFVT>2.0.CO;2

Craig, A., Valcke, S., & Coquart, L. (2017). Development and performance of a new version of the OASIS coupler, OASIS3‐MCT‐3.0. Geo-
scientific Model Development, 10(9), 3297–3308. https://doi.org/10.5194/gmd‐10‐3297‐2017

Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., et al. (2013). On the exchange of momentum over the
open ocean. Journal of Physical Oceanography, 43(8), 1589–1610. https://doi.org/10.1175/JPO‐D‐12‐0173.1

Eidhammer, T., Gettelman, A., Thayer‐Calder, K., Watson‐Parris, D., Elsaesser, G., Morrison, H., et al. (2024). An extensible perturbed parameter
ensemble for the Community Atmosphere Model version 6. Geoscientific Model Development, 17(21), 7835–7853, https://doi.org/10.5194/
gmd-17-7835-2024

Fang, K.‐T., Lin, D. K. J., Winker, P., & Zhang, Y. (2000). Uniform design: Theory and application. Technometrics, 42(3), 237–248. https://doi.
org/10.1080/00401706.2000.10486045

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., et al. (2020). The ERA5 global reanalysis. Quarterly Journal
of the Royal Meteorological Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Huber, M. B., & Zanna, L. (2017). Drivers of uncertainty in simulated ocean circulation and heat uptake. Geophysical Research Letters, 44(3),
1402–1413. https://doi.org/10.1002/2016GL071587

Jiménez, P. A., & Dudhia, J. (2018). On the need to modify the sea surface roughness formulation over shallow waters. Journal of Applied
Meteorology and Climatology, 57(5), 1101–1110. https://doi.org/10.1175/JAMC‐D‐17‐0137.1

Kayastha, M. B., Huang, C., Wang, J., Pringle, W. J., Chakraborty, T., Yang, Z., et al. (2023). Insights on simulating summer warming of the Great
Lakes: Understanding the behavior of a newly developed coupled lake‐atmosphere modeling system. Journal of Advances in Modeling Earth
Systems, 15(7), e2023MS003620. https://doi.org/10.1029/2023MS003620

Large, W. G., & Pond, S. (1981). Open ocean momentum flux measurements in moderate to strong winds. Journal of Physical Oceanography,
11(3), 324–336. https://doi.org/10.1175/1520‐0485(1981)011<0324:OOMFMI>2.0.CO;2

Lu, D., Ricciuto, D., Stoyanov, M., & Gu, L. (2018). Calibration of the E3SM land model using surrogate‐based global optimization. Journal of
Advances in Modeling Earth Systems, 10(6), 1337–1356. https://doi.org/10.1002/2017MS001134

Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and
Space Physics, 20(4), 851–875. https://doi.org/10.1029/RG020i004p00851

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., et al. (2011). The community Noah land surface model with multi-
parameterization options (Noah‐MP): 1. Model description and evaluation with local‐scale measurements. Journal of Geophysical Research,
116(12), 1–19. https://doi.org/10.1029/2010JD015139

Notaro, M., Zhong, Y., Xue, P., Peters‐Lidard, C., Cruz, C., Kemp, E., et al. (2021). Cold season performance of the NU‐WRF regional climate
model in the Great Lakes region. Journal of Hydrometeorology, 22, 2423–2454. https://doi.org/10.1175/jhm‐d‐21‐0025.1

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019). PyTorch: An imperative style, high‐performance deep learning
library. In Advances in neural information processing systems 32 (pp. 8024–8035). Curran Associates, Inc. Retrieved from http://papers.
neurips.cc/paper/9015‐pytorch‐an‐imperative‐style‐high‐performance‐deep‐learning‐library.pdf

Acknowledgments
This study is supported by COMPASS‐
GLM, a multi‐institutional project
supported by the U.S. Department of
Energy (DOE), Office of Science, Office
of Biological and Environmental Research
as part of the Regional and Global
Modeling and Analysis (RGMA) program,
Multisector Dynamics Modeling (MSD)
program, and Earth System Model
Development program. This study is also
Contribution No. 128 of the Great Lakes
Research Center at Michigan
Technological University. Computational
resources are provided by the DOE‐
supported National Energy Research
Scientific Computing Center and Argonne
Leadership Computing Facility. Argonne
National Laboratory is operated for DOE
by UChicago Argonne LLC under
Contract DE‐AC02‐06CH11357. Sandia
National Laboratories is a multimission
laboratory managed and operated by
National Technology and Engineering
Solutions of Sandia, LLC, a wholly owned
subsidiary of Honeywell International,
Inc., for the U.S. DOE's National Nuclear
Security Administration under Contract
DE‐NA0003525. The Pacific Northwest
National Laboratory is operated for DOE
by Battelle Memorial Institute under
contract DE‐AC05‐76RL01830. The
authors gratefully appreciate the comments
from Dr. David Wright and two
anonymous reviewers who helped to
improve the clarity and quality of the
manuscript.

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004337

PRINGLE ET AL. 15 of 16

 19422466, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004337, W
iley O

nline L
ibrary on [26/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://github.com/COMPASS-DOE/GreatLakes_CoupledModel_Uncertainty
https://github.com/COMPASS-DOE/GreatLakes_CoupledModel_Uncertainty
https://doi.org/10.1175/JAS-D-11-0312.1
https://doi.org/10.1002/lno.11175
https://doi.org/10.1002/lno.11175
https://doi.org/10.1016/j.ocemod.2013.02.003
https://doi.org/10.1016/j.ocemod.2013.02.003
https://doi.org/10.1175/JCLI-D-11-00275.1
https://doi.org/10.1029/2012JD018262
https://doi.org/10.1016/j.jglr.2021.01.010
https://doi.org/10.5194/hess-22-5559-2018
http://fvcom.smast.umassd.edu/wp-content/uploads/2013/11/MITSG_12-25.pdf
https://doi.org/10.1175/1520-0426(2003)020%3C0159:AUGFVT%3E2.0.CO;2
https://doi.org/10.1175/1520-0426(2003)020%3C0159:AUGFVT%3E2.0.CO;2
https://doi.org/10.5194/gmd-10-3297-2017
https://doi.org/10.1175/JPO-D-12-0173.1
https://doi.org/10.5194/gmd-17-7835-2024
https://doi.org/10.5194/gmd-17-7835-2024
https://doi.org/10.1080/00401706.2000.10486045
https://doi.org/10.1080/00401706.2000.10486045
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/2016GL071587
https://doi.org/10.1175/JAMC-D-17-0137.1
https://doi.org/10.1029/2023MS003620
https://doi.org/10.1175/1520-0485(1981)011%3C0324:OOMFMI%3E2.0.CO;2
https://doi.org/10.1002/2017MS001134
https://doi.org/10.1029/RG020i004p00851
https://doi.org/10.1029/2010JD015139
https://doi.org/10.1175/jhm-d-21-0025.1
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf


Paulson, C. A., & Simpson, J. J. (1977). Irradiance measurements in the Upper Ocean. Journal of Physical Oceanography, 7(6), 952–956. https://
doi.org/10.1175/1520‐0485(1977)007<0952:IMITUO>2.0.CO;2

Pringle, W. (2025). COMPASS‐DOE/GreatLakes_CoupledModel_Uncertainty (v1.0) [Workflow]. Zenodo. https://doi.org/10.5281/zenodo.
10806950

Pringle, W. J., Burnett, Z., Sargsyan, K., Moghimi, S., & Myers, E. (2023). Efficient probabilistic prediction and uncertainty quantification of
tropical cyclone‐driven storm tides and inundation. Artificial Intelligence for the Earth Systems, 2(2), e220040. https://doi.org/10.1175/AIES‐
D‐22‐0040.1

Qian, Y., Guo, Z., Larson, V. E., Leung, L. R., Lin, W., Ma, P. L., et al. (2024). Region and cloud regime dependence of parametric sensitivity in
E3SM atmosphere model. Climate Dynamics, 62(2), 1517–1533. https://doi.org/10.1007/s00382‐023‐06977‐3

Qian, Y., Wan, H., Yang, B., Golaz, J. C., Harrop, B., Hou, Z., et al. (2018). Parametric sensitivity and uncertainty quantification in the version 1 of
E3SM atmosphere model based on short perturbed parameter ensemble simulations. Journal of Geophysical Research: Atmospheres, 123(23),
13046–13073. https://doi.org/10.1029/2018JD028927

Qian, Y., Yan, H., Hou, Z., Johannesson, G., Klein, S. A., Lucas, D., et al. (2015). Parametric sensitivity analysis of precipitation at global and
local scales in the Community Atmosphere Model CAM5. Journal of Advances in Modeling Earth Systems, 7(2), 382–411. https://doi.org/10.
1002/2014MS000354

Ricciuto, D., Sargsyan, K., & Thornton, P. (2018). The impact of parametric uncertainties on biogeochemistry in the E3SM land model. Journal of
Advances in Modeling Earth Systems, 10(2), 297–319. https://doi.org/10.1002/2017MS000962

Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., & Tarantola, S. (2010). Variance based sensitivity analysis of model output. design
and estimator for the total sensitivity index. Computer Physics Communications, 181(2), 259–270. https://doi.org/10.1016/j.cpc.2009.09.018

Sargsyan, K. (2017). Surrogate models for uncertainty propagation and sensitivity analysis. In R. Ghanem, D. Higdon, & H. Owhadi (Eds.),
Handbook of uncertainty quantification (pp. 673–698). Springer. https://doi.org/10.1007/978‐3‐319‐11259‐6_22‐1

Sargsyan, K., Safta, C., Najm, H. N., Debusschere, B. J., Ricciuto, D., & Thornton, P. (2014). Dimensionality reduction for complex models via
Bayesian compressive sensing. International Journal for Uncertainty Quantification, 4(1), 63–93. https://doi.org/10.1615/Int.J.
UncertaintyQuantification.2013006821

Sharma, A., Hamlet, A. F., Fernando, H. J., Catlett, C. E., Horton, D. E., Kotamarthi, V. R., et al. (2018). The need for an integrated land‐lake‐
atmosphere modeling system, exemplified by north America’s Great Lakes region. Earth's Future, 6(10), 1366–1379. https://doi.org/10.1029/
2018EF000870

Skamarock, W. C., & Klemp, J. B. (2008). A time‐split nonhydrostatic atmospheric model for weather research and forecasting applications.
Journal of Computational Physics, 227(7), 3465–3485. https://doi.org/10.1016/j.jcp.2007.01.037

Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Liu, Z., Berner, J., et al. (2021). A description of the advanced research WRF model
version 4.3 (Vols. TN–556+STR; Tech. Rep.). https://doi.org/10.5065/1dfh‐6p97

Stips, A., Burchard, H., Bolding, K., & Eifler, W. (2002). Modelling of convective turbulence with a two‐equation k‐ɛ turbulence closure scheme.
Ocean Dynamics, 52(4), 153–168. https://doi.org/10.1007/s10236‐002‐0019‐2

Sun, L., Liang, X. Z., & Xia, M. (2020). Developing the coupled CWRF‐FVCOM modeling system to understand and predict atmosphere‐
watershed interactions over the great lakes region. Journal of Advances in Modeling Earth Systems, 12(12), e2020MS002319. https://doi.
org/10.1029/2020MS002319

Wang, C., Qian, Y., Duan, Q., Huang, M., Yang, Z., Berg, L. K., et al. (2021). Quantifying physical parameterization uncertainties associated with
land‐atmosphere interactions in the WRF model over Amazon. Atmospheric Research, 262, 105761. https://doi.org/10.1016/j.atmosres.2021.
105761

Wang, J., Fujisaki‐Manome, A., Kessler, J., Cannon, D., & Chu, P. (2023). Inertial instability and phase error in Euler forward predictor‐corrector
time integration schemes: Improvement of modeling Great Lakes thermal structure and circulation using FVCOM. Ocean Dynamics, 73(7),
407–429. https://doi.org/10.1007/s10236‐023‐01558‐8

Wang, J., Qian, Y., Pringle, W. J., Chakraborty, T. C., Hetland, R., Yang, Z., & Xue, P. (2023). Contrasting effects of lake breeze and urbanization
on heat stress in Chicago metropolitan area. Urban Climate, 48, 101429. https://doi.org/10.1016/j.uclim.2023.101429

Wang, J., Xue, P., Pringle, W. J., Yang, Z., & Qian, Y. (2022). Impacts of lake surface temperature on the summer climate over the great lakes
region. Journal of Geophysical Research: Atmospheres, 127(11), e2021JD036231. https://doi.org/10.1029/2021JD036231

Xu, D., Bisht, G., Sargsyan, K., Liao, C., & Ruby Leung, L. (2022). Using a surrogate‐assisted Bayesian framework to calibrate the runoff‐
generation scheme in the Energy Exascale Earth System Model (E3SM) v1. Geoscientific Model Development, 15(12), 5021–5043. https://
doi.org/10.5194/gmd‐15‐5021‐2022

Xue, P., Pal, J. S., Ye, X., Lenters, J. D., Huang, C., & Chu, P. Y. (2017). Improving the simulation of large lakes in regional climate modeling:
Two‐way lake‐atmosphere coupling with a 3D hydrodynamic model of the great lakes. Journal of Climate, 30(5), 1605–1627. https://doi.org/
10.1175/JCLI‐D‐16‐0225.1

Xue, P., Ye, X., Pal, J. S., Chu, P. Y., Kayastha, M. B., & Huang, C. (2022). Climate projections over the Great Lakes Region: Using two‐way
coupling of a regional climate model with a 3‐D lake model. Geoscientific Model Development, 15(11), 4425–4446. https://doi.org/10.5194/
gmd‐15‐4425‐2022

Zanna, L., Brankart, J. M., Huber, M., Leroux, S., Penduff, T., & Williams, P. D. (2019). Uncertainty and scale interactions in ocean ensembles:
From seasonal forecasts to multidecadal climate predictions.Quarterly Journal of the Royal Meteorological Society, 145(S1), 160–175. https://
doi.org/10.1002/qj.3397

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004337

PRINGLE ET AL. 16 of 16

 19422466, 2025, 2, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2024M

S004337, W
iley O

nline L
ibrary on [26/02/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://doi.org/10.1175/1520-0485(1977)007%3C0952:IMITUO%3E2.0.CO;2
https://doi.org/10.1175/1520-0485(1977)007%3C0952:IMITUO%3E2.0.CO;2
https://doi.org/10.5281/zenodo.10806950
https://doi.org/10.5281/zenodo.10806950
https://doi.org/10.1175/AIES-D-22-0040.1
https://doi.org/10.1175/AIES-D-22-0040.1
https://doi.org/10.1007/s00382-023-06977-3
https://doi.org/10.1029/2018JD028927
https://doi.org/10.1002/2014MS000354
https://doi.org/10.1002/2014MS000354
https://doi.org/10.1002/2017MS000962
https://doi.org/10.1016/j.cpc.2009.09.018
https://doi.org/10.1007/978-3-319-11259-6_22-1
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2013006821
https://doi.org/10.1029/2018EF000870
https://doi.org/10.1029/2018EF000870
https://doi.org/10.1016/j.jcp.2007.01.037
https://doi.org/10.5065/1dfh-6p97
https://doi.org/10.1007/s10236-002-0019-2
https://doi.org/10.1029/2020MS002319
https://doi.org/10.1029/2020MS002319
https://doi.org/10.1016/j.atmosres.2021.105761
https://doi.org/10.1016/j.atmosres.2021.105761
https://doi.org/10.1007/s10236-023-01558-8
https://doi.org/10.1016/j.uclim.2023.101429
https://doi.org/10.1029/2021JD036231
https://doi.org/10.5194/gmd-15-5021-2022
https://doi.org/10.5194/gmd-15-5021-2022
https://doi.org/10.1175/JCLI-D-16-0225.1
https://doi.org/10.1175/JCLI-D-16-0225.1
https://doi.org/10.5194/gmd-15-4425-2022
https://doi.org/10.5194/gmd-15-4425-2022
https://doi.org/10.1002/qj.3397
https://doi.org/10.1002/qj.3397

	description
	Coupled Lake‐Atmosphere‐Land Physics Uncertainties in a Great Lakes Regional Climate Model
	1. Introduction
	2. Methods and Data
	2.1. Model Description and Experimental Design
	2.1.1. Coupled Lake‐Atmosphere Model Configuration

	2.2. Model Uncertainty Analysis
	2.3. Computational Design and Surrogate Model Construction

	3. Results
	3.1. Overall
	3.2. Spatial Variations
	3.3. Temporal Variations

	4. Discussion and Conclusions
	Data Availability Statement



