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A B S T R A C T   

The estimation of surface urban heat island intensity (SUHII) is crucial for studying the urban thermal envi-
ronment, which is influenced not only by the commonly known definition of rural reference but also by the 
delineation of urban extent. Existing studies relies on various urban extent products defined in different ways, 
and the influence of urban extent discrepancy (UED) on SUHII estimates still remains unclear. In this study, we 
collected five open-source global urban extent products (GUEPs) for the year 2015 and corresponding daily land 
surface temperature (LST) observations (MYD11A1). Based on these products, we quantified the UED-induced 
uncertainty in SUHII estimates by comparing absolute difference (ΔSUHIIAD) and relative difference 
(ΔSUHIIRD) in SUHII among GUEPs across 892 global cities. Besides, we introduced an ISF-constrained (ISF–C) 
method to reduce SUHII differences among GUEPs by constraining the impervious surface fraction (ISF) within 
urban and rural extents. The results show that urban extents delineated by different GUEPs are not consistent, 
leading to their difference in ISF as well as LST, which in turn causes uncertainties in the estimated SUHII. On 
average for global cities, the annual daytime and nighttime ΔSUHIIAD are 0.46 ± 0.02 ◦C (mean ± 95% confi-
dence interval) and 0.24 ± 0.01 ◦C, with corresponding ΔSUHIIRD of 42.0 ± 2.7% and 35.2 ± 2.3%, respec-
tively. The UED-induced uncertainty in SUHII estimates varies among climate zones, and the annual daytime 
ΔSUHIIRD averaged for cities located in the arid zone reaches up to 60.8 ± 6.6%, which is nearly twice as high as 
that in other climate zones. More importantly, both ΔSUHIIAD and ΔSUHIIRD show lower values when using the 
ISF-C method, implying the effectiveness of this method. This study highlights the non-negligible impact of UED 
on the estimation of SUHII, which requires more attention due to the inconsistency of urban extents among 
current products.   

1. Introduction 

The urban heat island (UHI) effect refers to the phenomenon where 
the temperature in urban areas is higher than that in rural areas. The 
temperature alteration induced by the UHI effect is of concern due to its 
impacts on vegetation phenology, soil environment, air quality, and 

health of residents in cities (Chen et al., 2015; Liu et al., 2021; Rizwan 
et al., 2008; Zhou et al., 2016b). The UHI intensity (i.e., the average 
temperature difference between urban and rural areas) is a typical in-
dicator of the UHI effect, and has been widely used in various studies 
(Hu et al., 2022; Rizwan et al., 2008; Schwarz et al., 2011; Zhou et al., 
2018). Therefore, accurate estimation of the UHI intensity is essential 
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for better understanding the urban thermal environment. 
Traditional studies based on in-situ air temperature observations 

have shown that the UHI intensity can be significantly influenced by the 
selection of urban and/or rural stations (Jin, 2012; Mohsin and Gough, 
2012). The development of thermal infrared remote sensing technology 
allows us to calculate the surface UHI intensity (SUHII) with the help of 
spatially continuous land surface temperature (LST) data (Zhou et al., 
2018). The LST-based SUHII can avoid the limitation of sparse distri-
bution of in-situ stations, but still requires the delineation of urban ex-
tents and their rural references (Li et al. 2018, 2019a, 2022; Liu et al., 
2023; Yao et al., 2018a; Yang et al., 2023). Existing studies have mostly 
focused on the uncertainties caused by different definitions of the rural 
reference. For instance, through an analysis of 100 Chinese cities, Li 
et al. (2019a) found the variation in SUHII induced by rural reference 
discrepancy exceeded 0.5 K in a large number of cities. Besides, a global 
analysis by Li et al. (2022) pointed out that the daytime SUHII difference 
caused by different rural definitions reached 0.62 K, accounting for 42% 
of the global average SUHII. 

The estimation of SUHII can be influenced not only by the rural 
reference definition but also potentially by the urban extent discrepancy 
(UED), for the following two reasons. First, the UED can lead to direct 
variations in land cover within urban areas, potentially influencing the 
average urban LST and introducing uncertainties in the SUHII estimates. 
Taking impervious surface, the most typical land cover in cities, as an 
example, its proportion generally decreases along the urban-rural gra-
dients (Jia and Zhao, 2019). Hence, a smaller urban extent is often 
associated with a higher percentage of impervious surfaces within the 
urban area, which in turn often leads to elevated urban LST and corre-
sponding estimated SUHII (Imhoff et al., 2010; Zhou et al., 2016a). 
Second, the UED can lead to changes in the corresponding rural refer-
ence areas, since the definition of rural reference generally relies on the 
central urban area. For instance, numerous studies have employed the 
equal-area buffer located in close proximity to the central urban area as 
the corresponding rural reference (Peng et al., 2012; Yang et al., 2017; 
Yao et al., 2018b; Zhou et al., 2014). Obviously, the UED will cause 
variations in rural references, and further influence rural average LST 
and the estimated SUHII. 

In existing studies, there are generally two ways to access the urban 
extents for estimating SUHII. In the first one, researchers independently 

extracted the urban extents based on their own criteria. Zhou et al. 
(2014) extracted high-intensity (>50%) built-up polygons, and aggre-
gated them with a distance of 2 km (km) to form the urban extents. Cao 
et al. (2016) manually selected 3 × 3 pixels in the center of the city, and 
regarded the patch formed by these pixels as the urban extent. The cases 
above show that current studies differ greatly in terms of urban defini-
tion, which will inevitably lead to the differences in the extracted urban 
extents. In addition, self-extraction of urban extents can greatly increase 
the computational workload and create challenges for large-scale 
multi-city studies. In view of the above situations, most studies have 
opted for the alternative way of directly utilizing existing products to 
determine urban extents. For instance, based on the Moderate-resolution 
Imaging Spectroradiometer (MODIS) land cover products (MCD12Q1), 
Yao et al. (2019) identified the category of “urban and built-up lands” as 
the urban extent, and analyzed the SUHII trend and its drivers in 397 
global cities. Similarly, based on the MCD12Q1 product, Chakraborty 
and Lee (2019) quantified the SUHII as the average LST difference be-
tween “urban and built-up lands” and other land cover types, and 
applied it to more than 9500 cities worldwide. In addition to the MODIS 
land cover products, the Global Human Settlement Layer (GHSL) 
products have also been used in the SUHI studies. For example, Venter 
et al. (2021) aggerated the low- and high-density urban pixels from the 
GHSL product to obtain urban extents, and analyzed the spatiotemporal 
patterns of SUHII in 342 European cities. Similarly, Chakraborty et al. 
(2022) defined urban extents as the contiguous low- and high-density 
urban patches when analyzing the European heat stress. Recently, Li 
et al. (2020b) published a free-access product of the Global Urban 
Boundary (GUB), which has been widely used to get urban extents due to 
its advantages of good accuracy and high resolution. For example, Liu 
et al. (2022) analyzed the diurnal and seasonal patterns of the SUHII in 
more than 2000 global cities by using the urban extents selected from 
the GUB product. Du et al. (2021) compared the SUHII with the canopy 
UHI intensity in 366 global cities based on the urban extents from the 
GUB product. Besides, the nighttime light intensity is a good indicator 
for human activities, and can provide important information for urban 
extent delineations. As a result, the nighttime light observations and 
corresponding urban extent products have been widely used in SUHI 
studies (Li et al., 2020a; Sun et al., 2020; Zhang et al., 2014). Finally, 
some studies have produced urban extent products from the perspective 

Fig. 1. Location of 892 global cities and their urban extent discrepancy. (A) Global map of the selected 892 cities and the climate zones. (B) Frequency distribution of 
the area of urban extents for the 892 cities corresponding to the five global urban extent products. (C1–C6) Examples of urban extent discrepancy in 6 typical cities. 
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of the physical morphology for cities (Taubenböck et al., 2019; Wang 
et al., 2022), which can provide new insights for heat island studies 
considering the potential impact of the urban form on SUHII (Zhou et al., 
2017). 

In summary, various urban extent products were produced in 
different ways, and have been widely used in urban thermal environ-
ment studies. The difference in the data and methods among existing 
products can lead to discrepancy in urban extents, and probably influ-
ence the estimated SUHII. For example, Imhoff et al. (2010) compared 
LST differences between urban core and non-core areas with rural 
reference areas in 38 most populous cities in North America, and their 
results showed that the SUHII calculated based on urban core areas was 
higher than the SUHII calculated based on urban non-core areas. Simi-
larly, Zhou et al. (2016a) noted substantial variations in the estimated 
SUHII resulting from different definitions of urban areas in a study 
covering 32 cities in China. However, there is still a lack of compre-
hensive, large-scale (such as global) quantitative analyses to assess in-
fluence of UED (i.e. urban extent discrepancy) on the estimation of 
SUHII. Consequently, the uncertainty in SUHII estimates resulting from 
UED (termed as the “UED-induced uncertainty in SUHII estimates”), as 
well as potential approaches to mitigate this uncertainty, remains 
unclear. 

Therefore, this study presents a global-scale quantitative analysis of 
the influence of UED on the estimation of SUHII. The aims of this study 
include: 1) quantify the UED-induced uncertainty in SUHII estimates; 2) 
analyze its spatiotemporal variation; 3) and explore possible methods to 
reduce the UED-induced uncertainty in SUHII estimates. The data used 
in this study include MODIS LST products (MYD11A1), five global urban 
extent products, and other ancillary data (further details are available in 
the subsequent section). All of the data products were acquired in the 
year of 2015 (with the exception of elevation data and climate map) and 
encompass a total of 892 global cities (Fig. 1(A)). Table 1 lists the main 
abbreviations used in this paper to make the paper easy to understand. 

2. Data and methods 

2.1. Data 

2.1.1. Global urban extent products 
In this study, we considered a total of five publicly available global 

urban extent products (GUEPs): the Global Human Settlement Layer 
(GHSL) produced by the European Space Agency, the Global Urban 
Boundary (GUB) produced by Li et al. (2020b), the MODIS land cover 
product (MCD12Q1, referred as MCD) from the United States Geological 
Survey, the global Morphological Urban Area (MUA) shared by Tau-
benböck et al. (2019), and the global datasets of Nighttime-Light-based 
Urban Area (NLUA) published by Zhao et al. (2022). Table 2 provides 
brief descriptions of all the GUEPs, and more detail information can be 
found in Text A.1 of Supplementary Material. 

In order to fairly compare the urban extents of the above five GUEPs, 
we standardized the acquisition year of the GUEPs to 2015, and per-
formed the subsequent processing. First, we converted raster into vector 
to get the urban extent patches, eliminated inner holes of each patch, 
and removed isolated patches smaller than 1 km2. Second, we combined 
all the five GUEPs, and merged patches that were spatially overlapped. 
Third, we searched for isolated patches that must be merged by all the 
five GUEPs from the global merged map, and a total of 892 isolated 
patches were obtained (Fig. 1(A)). The ith selected patch is labelled as 
Mi, indicating the potentially maximum urban extent of the ith selected 
city. Finally, we separately extracted all the patches corresponding to 
each GUEP within the spatial extent of Mi. For the ith city, suppose that 
the extracted patches corresponding to the kth GUEP is Mik, and the Mik 
refers to the urban extent of the kth GUEP in the ith city. 

As depicted in Fig. 1(B), there are obvious differences in the distri-
bution curves of the area of urban extents corresponding to different 
GUEPs. The average area of urban extents of 892 cities reaches 450.6 ±
46.6 km2 for MUA, followed by NLUA (393.6 ± 44.4 km2), GHSL (391.5 
± 48.9 km2), GUB (356.4 ± 51.6 km2), and MCD (351.5 ± 48.4 km2). 
The difference in area reveals the inconsistency of the urban extents 
delineated by the different GUEPs. The UED (i.e., urban extent 
discrepancy) for six typical cities is shown in Fig. 1(C). Since the SUHII is 
defined as the average LST difference between urban and surrounding 
rural areas, the UED will inevitably have an impact on the quantified 
SUHII. 

2.1.2. Land surface temperature 
The LST data used in this study were derived from the MODIS 

Table 1 
The main abbreviations in this paper.  

Type Abbreviation Definition 

High-frequency 
phrases 

GUEP Global urban extent product 
ISF Impervious surface fraction 
LST Land surface temperature 
MODIS Moderate-resolution Imaging 

Spectroradiometer 
SUHII Surface urban heat island intensity 
UED Urban extent discrepancy 
UHI Urban heat island 

Global urban extent 
products 

GHSL Global Human Settlement Layer 
GUB Global Urban Boundary 
MCD MODIS land cover product datasets 

(MCD12Q1) 
MUA Morphological Urban Area 
NLUA Nighttime-Light-based Urban Area 

Indicators and 
parameters 

DiffISF Urban-rural difference in ISF 
ΔDiffISF Difference in DiffISF between GUEPs 
ISF-C ISF-constrained 
ISFU The threshold of minimum ISF in urban 

extents for the ISF-C method 
ISFR The threshold of maximum ISF in rural 

extents for the ISF-C method 
ΔSUHIIAD Absolute difference in SUHII between 

GUEPs 
ΔSUHIIRD Relative difference in SUHII between 

GUEPs  

Table 2 
Summary of datasets used in this study.  

Type Product 
(abbreviation) 

Source Usage 

LST data MODIS LST product 
(MYD11A1) 

United States 
Geological Survey 
(USGS) 

Calculation of 
SUHII 

Global urban 
extent 
products 

Global Human 
Settlement Layer 
(GHSL) 

European Space 
Agency 

Delimitation of 
urban extents in 
global cities 

Global Urban 
Boundary (GUB) 

Li et al. (2020b) 

MODIS land cover 
product (MCD) 

USGS 

Morphological 
Urban Area (MUA) 

Taubenböck et al. 
(2019) 

Nighttime-Light- 
based Urban Area 
(NLUA) 

Zhao et al. (2022) 

Auxiliary 
data 

Global 30 arc- 
second elevation 

USGS Remove the 
influence of 
topographic relief 

Global surface 
water dataset 

Joint Research 
Center of the 
European 
Commission 

Remove the 
influence of water 
bodies 

Global impervious 
surface area dataset 

Huang et al. 
(2022) 

Construction of the 
ISF-C method 

Köppen–Geiger 
climate map 

Beck et al. (2018) Determination of 
the climate zone of 
cities  
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version-6 LST product (MYD11A1). This product provides per-pixel LST 
measurements globally, with a spatial resolution of 1 km, for both 
daytime (~13:30) and nighttime (~1:30) periods. Previous studies 
proved the overall good accuracy of the MODIS LST product (Duan et al., 
2018; Wan, 2014). Consistent with the GUEPs, we included the 
MYD11A1 LST images covering the entire year of 2015. The MODIS LST 
dataset, marked by diverse degrees of precision, has been distinctly 
differentiated using a quality control (QC) band. Each QC value has been 
encoded as an 8-bit binary number, encompassing four distinct flags 
denoting the mandatory QA (quality assurance), data quality, emissivity 
error, and LST error. Pixels flagged with a mandatory QA values of “10” 
or “11” were excluded from analysis because the LST of these pixels were 
invalid due to cloud coverage. Besides, the LST pixels with errors higher 
than 3K were also filtered out (Lai et al., 2018). Then, these daily LST 
observations were annually and seasonally averaged. For northern 
(southern) hemisphere cities, the periods of summer and winter are 
June–August (December–February) and December–February (June-
–August), respectively. 

2.1.3. Auxiliary data 
Surface elevation data: The Global 30 Arc-Second Elevation is a 

global digital elevation model developed by the United States Geological 
Survey in collaboration with many research institutes worldwide (Mil-
iaresis and Argialas, 1999). The digital elevation model was used to 
remove or reduce the effect of topographic relief on the estimation of 
SUHII. 

Surface water data: The datasets of the global surface water can be 
freely accessed from the Joint Research Center of the European Com-
mission. Validation results reveal that the overall accuracy of the global 
surface water datasets is good, with errors of omission less than 5% and 
commission less than 1% (Pekel et al., 2016). We used the maximum 
extent of global surface water in 2015 to remove the influence of water 
bodies on SUHII estimates. 

Impervious surface data: The global impervious surface area is pro-
vided by Huang et al. (2022), which has a spatial resolution of 30 m and 
an F1-score score of 0.935. We used this product for the year 2015 and 
calculated the impervious surface fraction (ISF) in a 1 km spatial grid to 
obtain the global ISF map. This data was used to construct possible 
strategies for mitigating the UED-induced uncertainty. 

Fig. 2. Examples of the SUHII uncertainty caused by urban extent discrepancy. (A1-A4) Mean values of annual daytime LST in urban and rural areas. (B1–B4) Annual 
daytime SUHII estimated by different global urban extent products (GUEPs). (C1–C4) Absolute difference in SUHII (ΔSUHIIAD) for each GUEP pair. (D1-D4) Relative 
difference in SUHII (ΔSUHIIRD) for each GUEP pair. The four sample cities (Goiania, Torreon, Nanjing, Moscow) belong to different climate zones (tropical, arid, 
temperate, cold), and their locations are marked on the map in the bottom-right corner. 
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Climatic classification data: The Köppen climate classification 
encompassing five primary climate zones based on precipitation and 
temperature patterns across the global terrestrial surface (Kottek et al., 
2006). As shown in Fig. 1(A), the 892 cities of this study spread across 
four main climate zones, including tropical zone (155 cities), arid zone 
(210 cities), temperate zone (316 cities), and cold zone (211 cities), 
according to the publicly available Köppen–Geiger climate map (Beck 
et al., 2018). 

2.2. Methods 

2.2.1. Calculation of SUHII 
The prerequisite for estimating SUHII is the delineation of urban and 

rural extents. The urban extents can be obtained from existing GUEPs, 
while the rural extents are generally obtained by constructing buffers 
around the central urban. Buffers are commonly created using two ap-
proaches: the distance-based method and the area-based method. In the 
distance-based approach, a buffer ring is formed around the central 
urban area at a specific distance (d) with a designated width (w). 
However, recent studies have shown variability in the choice of pa-
rameters for w and d, leading to significant uncertainties in estimating 
SUHII (Li et al., 2019a). The area-based method determines the rural 
extent as the neighboring buffer ring with a certain time of the urban 
size. Compared with the distance-based method, the area-based method 
has fewer parameters and is more suitable for studies with cities of 
different sizes (Chakraborty et al., 2021; Li et al. 2019a, 2022). There-
fore, the area-based method was chosen for this study to define the rural 
reference. Considering the need to remove the areas covered by water 
bodies or disturbed by topographic relief (i.e., higher or lower than the 
median elevation of urban areas by 50 m), we defined the rural reference 
area as the neighboring buffer ring that is twice the size of the central 
urban area. In addition, we also defined rural area as the neighboring 
equal-area buffer and found similar results (Fig. A1). 

A total of 892 cities were included in this study, and each city has five 
different urban extents derived from the corresponding GUEPs. For each 
city, the rural extent corresponding to every urban extent was obtained 
by the above method. Assuming the mean values of LST within urban 
extent and its corresponding rural extent are LSTUrban and LSTRural, 
respectively, and the SUHII can be calculated by the following equation: 

SUHII=LSTUrban − LSTRural (1)  

2.2.2. Quantification of the UED-induced uncertainty in SUHII estimates 
Based on the five GUEPs, we can obtain five sets of urban and rural 

extents and corresponding SUHII of the selected 892 cities. We calcu-
lated the SUHII difference between each GUEP pair, and used their ab-
solute difference to measure the UED-induced uncertainty in SUHII 
estimates. For a given city, if the SUHII corresponding to any two sets of 
GUEPs are SUHII1 and SUHII2, then the absolute difference between 
them (denoted as ΔSUHIIAD) can be expressed as the following equation: 

ΔSUHIIAD = |SUHII1 − SUHII2| (2) 

A larger ΔSUHIIAD indicates a higher UED-induced uncertainty in 
SUHII estimates. In addition to the absolute difference, we should also 
focus on the relative difference in SUHII. Here we use the percentage 
difference indicator to quantify the relative difference in SUHII (denoted 
as ΔSUHIIRD), which can be expressed as the following equation: 

ΔSUHIIRD =
|SUHII1 − SUHII2|

(|SUHII1| + |SUHII2|)/2
× 100% (3) 

The ΔSUHIIRD ranges from 0 to 200%. When ΔSUHIIRD reaches 
200%, it means the signs of SUHII1 and SUHII2 are opposite, implying a 
transition between heat and cold islands. 

Paired combination of the five GUEPs and corresponding SUHIIs 
yields ten sets of ΔSUHIIAD or ΔSUHIIRD. Fig. 2 shows urban extents and 
annual daytime ΔSUHIIAD and ΔSUHIIRD in four typical cities. It can be 
seen that the difference in urban extents causes a change in the urban 
and rural average LST, which in turn influences the estimated SUHII. 
More importantly, ΔSUHIIAD and ΔSUHIIRD differ greatly among cities 
and GUEP pairs. It is therefore necessary to make a more comprehensive 
analysis of the UED-induced uncertainty in SUHII estimates across 
global cities. 

2.2.3. Methods to reduce the UED-induced uncertainty in SUHII estimates 
The fundamental reason for the SUHII difference caused by UED is 

that changes in urban extents can pose a direct impact on both urban and 
rural land covers. Therefore, trying to reduce the land cover difference 
caused by changes in urban/rural extents is a potential way to reduce the 
UED-induced uncertainty in SUHII estimates. Based on this idea, we first 

Fig. 3. Inconsistency of impervious surface fraction (ISF) among global urban extent products. (A1-A3) Frequency distribution of urban mean ISF, rural mean ISF, 
and urban-rural difference in mean ISF corresponding to the five global urban extent products. (B1–B5) Spatial distribution of ISF within urban and rural extents, 
taking the city of Beijing as an example. 
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turn our attention to the most typical urban land cover type, the 
impervious surface. Impervious surface fraction (i.e., ISF) reflects the 
degree of urbanization, and its distribution not only directly affects the 
ground cover, but also is closely related to the urban population and its 
heat source emissions (Huang et al., 2022). On average for the 892 cities, 
the mean ISF of urban (rural) areas reaches 77.4% (22.7%) for GUB, but 
only 49.1% (11.4%) for MUA. The UED-induced change in urban and/or 
rural ISF can result in the variation of urban-rural difference in ISF 
(DiffISF) (Fig. 3). 

Considering the close relation between LST and ISF (Yang et al., 
2021), the difference in DiffISF between GUEPs (referred as ΔDiffISF) is 
likely to be the key driver for the UED-induced uncertainty in SUHII 
estimates. Therefore, we designed an ISF-constrained (ISF–C) method, 
which is able to reduce the ΔDiffISF when estimating SUHII. The ISF-C 
method is based on the basic assumption that the ISF is generally higher 
in urban areas and lower in rural areas. The first is to screen urban and 
rural extents as follows: for urban extents, only pixels with the ISF 
greater than a certain threshold (ISFU) are retained; for rural extents, 
only pixels with the ISF less than a certain threshold (ISFR) are retained. 
Then, the average LST of the retained pixels within urban and rural 
extents are calculated separately, and their difference is the SUHII 
processed by the ISF-C method. According to previous SUHI studies 
(Imhoff et al., 2010; Li et al., 2019b; Zhang et al., 2014), the ISF within 
rural extents shall be less than 5%, so we set the ISFR to 5%. In contrast, 
the lower limit of ISF within urban extents varies from study to study 
and generally includes values such as 25%, 50% and 75% (Imhoff et al., 
2010; Zhou et al., 2016a). In this study, we set the ISFU to 50%. Please 
refer to section 3.2 for the results of the other values of ISFU. 

To validate the ISF-C method, we conducted comparative analysis as 
follows. First, we estimated the SUHII corresponding to each GUEP 

processed by the ISF-C method in 892 global cities. Second, we calcu-
lated ΔSUHIIAD and ΔSUHIIRD the for all GUEP pairs using the SUHII 
obtained in the previous step. Finally, we compared ΔSUHIIAD and 
ΔSUHIIRD processed by the ISF-C method with the regular estimates. If 
the former is smaller than the latter, it indicates that our proposed ISF-C 
method is effective for reducing the UED-induced uncertainty in the 
estimation of SUHII. 

3. Results 

3.1. Spatiotemporal patterns of the UED-induced uncertainty in SUHII 
estimates 

Figs. 4 and 5 show the spatial patterns of annual daytime and 
nighttime ΔSUHIIAD (i.e., absolute difference in SUHII) in 892 global 
cities. The annual daytime ΔSUHIIAD is greater than 0.5 ◦C in about one- 
third to one-half of the cities, with specific values related to GUEP pairs 
(Fig. 4(B)). On average for all cities, the annual daytime ΔSUHIIAD has a 
minimum value of 0.32 ± 0.02 ◦C (MCD_GUB, refers to the SUHII dif-
ference for GUEP pair of MCD and GUB, hereinafter), a maximum value 
of 0.62 ± 0.03 ◦C (MUA_GUB), and a mean value of 0.46 ± 0.02 ◦C 
(averages for all GUEP pairs) (Fig. 6(A1)). 

In addition to the absolute difference in SUHII among GUEPs, we also 
focus on their relative difference (i.e., ΔSUHIIRD). The annual daytime 
ΔSUHIIRD is larger than 10% in most cities (Fig. A2), accounting for 57% 
(MCD_GHSL) to 84% (MUA_MCD) of all cities (Fig. 4(C)). It is worth 
noting that the annual daytime ΔSUHIIRD is greater than 50% in about 
17% (MCD_GUB) to 34% (MUA_GUB) of all cities (Fig. 4(C)). Besides, 
approximately 10% cities have an annual daytime ΔSUHIIRD larger than 
100% (or even up to 200%, i.e., the sign of SUHII flips) (Fig. 4(C)). On 

Fig. 4. Annual daytime ΔSUHIIAD and ΔSUHIIRD for global cities. (A1-A10) Spatial distributions of ΔSUHIIAD. (B) Stacked frequency distributions of ΔSUHIIAD. (C) 
Stacked frequency distributions of ΔSUHIIRD. ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII between global urban extent products, 
respectively. 
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average for all cities, the annual daytime ΔSUHIIRD ranges from 30.8 ±
3.1% (MCD_GUB) to 52.2 ± 3.6% (MUA_GUB), with a mean value of 
42.0 ± 2.7% (averages for all GUEP pairs) (Fig. 6(B1)). 

The annual nighttime ΔSUHIIAD and ΔSUHIIRD appear to be smaller 
than that of annual daytime (Fig. 5 & Fig. A3). The vast majority of cities 
have an annual nighttime ΔSUHIIAD within 0.5 ◦C, accounting for 82% 
(MUA_MCD) to 96% (MCD_GUB) of all cities (Fig. 5(B)). On average for 
global cities, the annual nighttime ΔSUHIIAD has a minimum value of 
0.17 ± 0.01 ◦C (MCD_GUB), a maximum value of 0.30 ± 0.02 ◦C 
(MUA_MCD), and a mean value of 0.24 ± 0.01 ◦C (averages for all GUEP 
pairs) (Fig. 6(A2)). In terms of the relative difference in SUHII, cities 
with an annual nighttime ΔSUHIIRD above 10% account for 55% 
(MCD_GUB) to 81% (MUA_MCD) of all cities (Fig. 5(C)). On average for 
all cities, the annual nighttime ΔSUHIIRD varies between 25.3 ± 2.5% 
(MCD_GUB) and 42.2 ± 3.1% (MUA_MCD), with a mean value of 35.2 ±
2.3% (averages for all GUEP pairs) (Fig. 6(B2)). 

Fig. 7 shows the seasonal variations of the UED-induced uncertainty 
in SUHII estimates. The average daytime ΔSUHIIAD is highest during 
summer and lowest in winter, and a reverse seasonal pattern is observed 
for the average nighttime ΔSUHIIAD. The situation changes when we 
consider the relative difference, and it is found that wintertime 
ΔSUHIIRD is stronger than summertime ΔSUHIIRD for both daytime and 
nighttime averages. 

Figs. 8 and 9 show the spatiotemporal patterns of ΔSUHIIAD and 
ΔSUHIIRD in different climate zones. It is noted that the SUHII uncer-
tainty caused by UED tends to be higher in cities located in the arid zone 
(Fig. 8). In the arid zone, the annual daytime and nighttime average 
ΔSUHIIAD values surpass the global averages, reaching 0.52 ± 0.05 ◦C 
and 0.31 ± 0.02 ◦C, respectively (Fig. 8(A)). More notably, the annual 
daytime ΔSUHIIRD for cities located in the arid zone averagely reaches a 

remarkable 60.8 ± 6.6%, nearly double that of other climatic zones 
(Fig. 8(B1)). In terms of seasonal variability, the patterns of the average 
ΔSUHIIAD and ΔSUHIIRD for each climatic zone are mostly similar to 
those of the global-scale averages (Fig. 9). 

3.2. Performance of the ISF-C method for reducing the UED-induced 
uncertainty in SUHII estimates 

Fig. 10 shows the histogram distributions of ΔDiffISF (i.e. difference 
in DiffISF among GUEPs) before and after processed by the ISF-C 
method. It can be seen that ΔDiffISF tends to be more concentrated 
around zero after using the ISF-C method. Due to the close relation be-
tween ΔSUHIIAD and ΔDiffISF (Fig. A4), the ISF-C method has the ability 
to reduce ΔSUHIIAD. As depicted in Fig. 11, both ΔSUHIIAD and 
ΔSUHIIRD have been largely reduced after using the ISF-C method. On 
average for all GUEP pairs across global cities, the implementation of the 
ISF-C method has led to a reduction in the annual daytime ΔSUHIIAD 
(ΔSUHIIRD) from 0.46 ± 0.02 ◦C (42.0 ± 2.7%) to 0.34 ± 0.02 ◦C (24.9 
± 2.4%). Likewise, the annual nighttime ΔSUHIIAD (ΔSUHIIRD) has 
decreased from 0.24 ± 0.01 ◦C (35.2 ± 2.3%) to 0.19 ± 0.01 ◦C (23.0 ±
2.0%). These results imply the effectiveness of ISF-C method in reducing 
the UED-induced uncertainty in SUHII estimates. 

Fig. 12 shows the sensitivity of ΔSUHIIAD and ΔSUHIIRD to the key 
parameter, ISFU (i.e., the lower limit of ISF within urban extents), of the 
ISF-C method. Both ΔSUHIIAD and ΔSUHIIRD show a progressively 
decreasing trend as the ISFU gradually increases from 0% to 75%. This 
suggests that a higher ISFU could achieve a better effect of reducing the 
UED-induced uncertainty in SUHII estimates. Besides, it is found that the 
decreasing trend of ΔSUHIIAD and ΔSUHIIRD is gradually slowing down 
as the ISFU increases. The alteration in ΔSUHIIAD and ΔSUHIIRD appears 

Fig. 5. Annual nighttime ΔSUHIIAD and ΔSUHIIRD for global cities. (A1-A10) Spatial distributions of ΔSUHIIAD. (B) Stacked frequency distributions of ΔSUHIIAD. (C) 
Stacked frequency distributions of ΔSUHIIRD. ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII between global urban extent products, 
respectively. 

Q. Yang et al.                                                                                                                                                                                                                                    



Journal of Cleaner Production 426 (2023) 139032

8

to exhibit a notably slower pace when the ISFU exceeds the value of 50%. 
However, it is also important to note that the increase in ISFU can 
directly reduce the retained urban pixels for estimating SUHII (Fig. A5). 
Balancing the above two aspects, the ISFU was therefore set to 50%, a 
commonly used threshold for the extraction of urban extents. 

4. Discussion 

4.1. Necessity for considering the UED-induced uncertainty in SUHII 
estimates 

The quantification of the SUHI effect is a foundational aspect of 
urban thermal environment research. Presently, there are numerous 
methods available for estimating SUHII, primarily differing in the se-
lection of urban and rural comparisons (Schwarz et al., 2011). In the 
majority of studies, urban areas are commonly delineated using current 
urban extent products, while rural reference areas are selected in close 
proximity to these urban areas (Chakraborty et al., 2022; Clinton and 
Gong, 2013; Du et al., 2021; Venter et al., 2021; Yao et al., 2019). There 
are also studies that categorize the city into different local climate zones 
(LCZs) based on the ground cover information and differentiate between 
urban and rural areas through LCZs (Bechtel et al., 2019; Stewart and 
Oke, 2012; Yang et al., 2020). Previous studies have extensively exam-
ined the SUHII uncertainty resulting from the rural definitions, and 
highlighted notable disparities in the estimated SUHII when employing 
different rural areas (Li et al. 2019a, 2022; Liu et al., 2023; Schwarz 
et al., 2011; Yang et al., 2023). This study focuses on the influence of 
discrepancy in urban extent on SUHII estimates, which has been rarely 

explored in previous studies. 
The difference in urban extents can lead to variations in both the 

computed mean LST for urban areas and the computed mean LST for 
rural reference areas. The UED has led to average differences in urban 
mean LST (ΔLSTUrban) of 0.64 ± 0.03 ◦C and 0.35 ± 0.02 ◦C for annual 
daytime and nighttime, respectively (Fig. A. 6). Notably, these values 
exceed the corresponding UED-induced differences observed in rural 
reference areas (ΔLSTRural), which are measured at 0.52 ± 0.03 ◦C and 
0.28 ± 0.01 ◦C for annual daytime and nighttime, respectively (Fig. A. 
6). This implies that discrepancy in urban mean LST could potentially 
play a more important role in accounting for the UED-induced uncer-
tainty in SUHII estimates. Our results show that the global averages of 
the annual daytime and nighttime ΔSUHIIRD are as high as 42.0% and 
35.2%, respectively (Fig. 6). In particular, about ten percent of cities 
have an annual daytime ΔSUHIIRD of more than 100%, and some cities 
even have an annual daytime ΔSUHIIRD of 200% (the sign of SUHII flips) 
(Fig. 4). Take Torreon, a city located in the arid zone, for example. For 
this city, the estimated annual daytime SUHII is negative when using the 
urban extent of GUB (− 0.34 ◦C), MCD (− 0.14 ◦C) or MUA (− 0.13 ◦C), 
while it turns positive when based on the urban extent of GHSL (0.18 ◦C) 
or NLUA (0.01 ◦C) (Fig. 2). The similar situation also occurs in other 
cities such as Teheran, Luanda, and Tucson. 

To summarize, differences in urban extents have an asymmetric 
impact on the average LST in urban and rural areas, which in turn in-
troduces non-negligible uncertainty into the estimated SUHII. In the 
context of uncertainty analysis for SUHII estimates, our exploration of 
urban areas represents a noteworthy expansion upon existing studies 
that have predominantly focused on discrepancies in rural definitions (Li 

Fig. 6. Boxplots of ΔSUHIIAD and ΔSUHIIRD for global cities. (A1-A2) Annual daytime and nighttime ΔSUHIIAD. (B1–B2) Annual daytime and nighttime ΔSUHIIRD. 
ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII between global urban extent products (GUEPs), respectively. The black dashed line and 
its above numbers (mean ± 95% confidence interval) represent the average ΔSUHIIAD or ΔSUHIIRD of all GUEP pairs. The central lines in the boxes are the median 
values. The colored circles and bars represent the mean values and 95% confidence intervals, respectively. Outliers are removed from the boxplot for presenta-
tion purposes. 
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et al. 2019a, 2022; Liu et al., 2023; Schwarz et al., 2011; Yao et al., 
2018a). In a broader context, our study, together with previous research, 
collectively highlights the influence of quantification methods on SUHII 
estimates and helps to promote the standardization of SUHII quantifi-
cation in the future. 

4.2. Strategies for reducing the UED-induced uncertainty in SUHII 
estimates 

Given the notable influence of UED on the estimation of SUHII, it 
becomes imperative to explore strategies for reducing the UED-induced 
uncertainty in SUHII estimates. The precise definition and extraction of 
urban extents is the most fundamental way to ensure the accuracy of 
SUHII estimates. However, current studies still have not reached a 
consensus on the definition or extraction of urban extents (Li et al., 
2020b; Taubenböck et al., 2019; Zhao et al., 2022). Nowadays, there are 
numerous urban extent products available at both the regional scale and 
the global scale. Nevertheless, due to inconsistencies in the definition, 
data, and method for the extraction of urban extents, there exist dif-
ferences in the urban extents corresponding to different products 
(Fig. 1). As a result, it is difficult for researchers to ensure the accuracy of 
the urban extents they use, leading to unpredictable uncertainties to the 
estimated SUHII. 

Based on the above status, we proposed the ISF-C method, which is 
not bound to the accuracy of urban extents, but achieves to reducing the 

difference in SUHII corresponding to different GUEPs by imposing strict 
limits on the ISF within urban and rural extents. Moreover, Li et al. 
(2018) has introduced a method (referred as Li’s method) for estimating 
SUHII by leveraging the inherent connection between LST and ISF with 
respect to their spatial distribution. Unlike our proposed ISF-C method, 
Li’s method assumes a linear relationship between LST and ISF, and 
regards the linear regression coefficient of the two as the SUHII (i.e., the 
amount of change in LST corresponding to a 100% change in ISF). Li’s 
method gets rid of the division between urban and rural areas, conse-
quently reducing its susceptibility to the impact of urban extent dis-
crepancies. Comparison demonstrates that Li’s method can attain 
comparable effectiveness to ISF-C method in mitigating the SUHII un-
certainty caused by UED (Fig. A7). However, the linear relationship 
between LST and ISF assumed by Li et al. (2018) might not hold true in 
some cities, due to the complexity of urban surface thermal environ-
ments (Fig. A8). This can hinder the broad applicability of the Li’s 
method in these urban areas. In comparison, our proposed ISF-C method 
is more flexible and is expected to be applied in cities with more complex 
urban thermal environments. Besides, in cities where the linear rela-
tionship between LST and ISF is not well satisfied, the ISF-C method is 
somewhat better than Li’s method at reducing the UED-induced uncer-
tainty in SUHII estimates (Fig. A9). This further underscores the prac-
tical significance of our proposed ISF-C method. 

Overall, this study not only provides a comprehensive examination 
of the influence of UED on the estimation of SUHII, but also introduces 

Fig. 7. Seasonal variations of ΔSUHIIAD and ΔSUHIIRD for global cities. (A1-A2) Annual daytime and nighttime ΔSUHIIAD. (B1–B2) Annual daytime and nighttime 
ΔSUHIIRD. ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII between global urban extent products, respectively. The colored circles and 
bars represent the mean values and 95% confidence intervals, respectively. 
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Fig. 8. Boxplots of ΔSUHIIAD and ΔSUHIIRD for cities located in different climate zones. (A1-A2) Annual daytime and nighttime ΔSUHIIAD. (B1–B2) Annual daytime 
and nighttime ΔSUHIIRD. ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII between global urban extent products (GUEPs), respectively. 
The colored numbers (mean ± 95% confidence interval) represent the average ΔSUHIIAD or ΔSUHIIRD of all GUEP pairs. The central lines in the boxes are the median 
values. The colored circles and bars represent the mean values and 95% confidence intervals, respectively. Outliers are removed from the boxplot for presenta-
tion purposes. 

Fig. 9. Seasonal variations of ΔSUHIIAD and ΔSUHIIRD for cities located in different climate zones. (A1-A2) Seasonal variations of daytime and nighttime ΔSUHIIAD. 
(B1–B2) Seasonal variations of daytime and nighttime ΔSUHIIRD. ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII among global urban 
extent products, respectively. The colored circles and bars represent the mean values and 95% confidence intervals, respectively. 
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Fig. 10. Comparison of ΔDiffISF before and after processed by the ISF-C method. DiffISF is the urban-rural difference in mean impervious surface fraction (ISF), and 
ΔDiffISF represents the difference in DiffISF between global urban extent products. 

Fig. 11. ΔSUHIIAD and ΔSUHIIRD before and after processed by the ISF-C method. (A1-A2) Annual daytime and nighttime ΔSUHIIAD. (B1–B2) Annual daytime and 
nighttime ΔSUHIIRD. ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII between global urban extent products (GUEPs), respectively. The 
colored numbers (mean ± 95% confidence interval) represent the average ΔSUHIIAD and ΔSUHIIRD of all GUEP pairs. The central lines in the boxes are the median 
values. The colored circles and bars represent the mean values and 95% confidence intervals, respectively. Outliers are removed from the boxplot for presenta-
tion purposes. 
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the ISF-C method for reducing the UED-induced uncertainty in SUHII 
estimates. The ISF-C method stands out for its simplicity, effectiveness, 
and stability, presenting an alternative approach to alleviate the UED- 
induced uncertainty in SUHII estimates. 

4.3. Limitations and future study 

First, five commonly used and open-source GUEPs (i.e., global urban 
area products) were included in this study, and their corresponding 
SUHII differences were used to quantify the UED-induced uncertainty in 
SUHII estimates. These five GUEPs are from different sources, and differ 
in terms of definition, method, and data used for urban extent extrac-
tion. Therefore, the UED reflected by the differences among these five 
GUEPs is highly representative. However, as more urban extent products 
are produced and made freely available, future studies need to incor-
porate more data, which is important for a more comprehensive un-
derstanding of the UED-induced uncertainty in SUHII. 

Second, this study focuses on the impact of difference in urban extent 
on SUHII estimates. However, there are various ways of defining the 
rural reference areas, and the difference in rural extents can also pose a 
significant influence on the estimation of SUHII (Li et al. 2019a, 2022; 
Liu et al., 2023; Schwarz et al., 2011). Future studies should try to 
explore the combined effect of urban extent discrepancy and rural 
definition difference on SUHII in order to gain a more in-depth under-
standing of how SUHII is quantified and its uncertainty. 

Third, the ISF-C method has been proved to effectively reduce the 

UED-induced uncertainty in SUHII, but it also causes the reduction of 
available pixels within urban and rural extents. Besides, considering the 
uncertainty in satellite-derived surface properties, there are also in-
consistencies in the distribution and accuracy of current ISF products 
(Huang et al., 2022). In this study, the effectiveness of the ISF-C method 
for reducing the UED-induced uncertainty in SUHII is verified by using 
the newly released high-resolution ISF products (Huang et al., 2022), 
and future studies should focus on impact of ISF differences on the ISF-C 
method. 

Finally, all of our results utilize the MODIS MYD11A1 LST product. 
However, the magnitude of LST from different products (even different 
products derived from MODIS measurements) are inconsistent (Botje 
et al., 2022; Yao et al., 2020), which may also impact the SUHII esti-
mates. Besides, remotely sensed LST images usually suffer from missing 
values due to the influence of clouds. Despite employing multi-images 
averaging, the variations in timing, location, and extent of LST data 
missing can introduce great uncertainties in the estimated SUHII (Hu 
and Brunsell, 2013; Li et al., 2022). Minimizing the uncertainty intro-
duced by remotely sensed LST data in the estimation of SUHII is a focal 
challenge that warrants prioritization in future studies. 

5. Conclusions 

SUHII is the most typical indicator for studying the urban heat island 
effect, and its value relies on the definition of urban extents and their 
rural references. The impact of difference in the definition of the rural 

Fig. 12. Sensitivity of ΔSUHIIAD and ΔSUHIIRD to ISFU of the ISF-C method. (A1-A2) Results of annual daytime and nighttime ΔSUHIIAD. (B1–B2) Results of annual 
daytime and nighttime ΔSUHIIRD. ΔSUHIIAD and ΔSUHIIRD represent absolute and relative differences in SUHII between global urban extent products, respectively. 
ISFU represents the minimum impervious surface fraction (ISF) threshold of pixels that can be retained within urban extents. ISFU is a key parameter of the ISF-C 
method, and please refer to Methods for more details about this method. The colored circles and bars represent the mean values and 95% confidence intervals, 
respectively. 
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reference on SUHII estimates has been widely explored, but the SUHII 
uncertainty caused by the UED still remains unclear. This study collected 
five commonly used and open-source GUEPs, and quantified the UED- 
induced uncertainty in SUHII estimates through comparing absolute 
SUHII difference (i.e., SUHIIAD) and relative SUHII difference (i.e., 
SUHIIRD) among GUEPs in 892 global cities. In addition, based on the 
strong relation between LST and ISF, the ISF-C method is proposed to 
reduce the SUHII difference between GUEPs by limiting the lower and 
upper limits of ISF within urban and rural extents, respectively. 

The results show that the inconsistent urban extents delineated by 
different GUEPs lead to their difference in ISF as well as LST, which in 
turn causes uncertainties in the estimation of SUHII. On average for 
global cities, the mean values of annual daytime and nighttime SUHIIAD 
for all GUEP pairs are 0.46 ± 0.02 ◦C and 0.24 ± 0.01 ◦C, respectively. 
Meanwhile, the mean values of annual daytime and nighttime SUHIIRD 
for all GUEP pairs reach to 42.0 ± 2.7% and 35.2 ± 2.3%, respectively. 
More notably, the annual daytime ΔSUHIIRD for cities located in the arid 
zone averagely reaches a remarkable 60.8 ± 6.6%, which is nearly twice 
as high as that in other climate zones. Seasonal analysis shows that 
ΔSUHIIAD is generally higher in summer, and ΔSUHIIRD tends to be 
higher in winter. More importantly, both ΔSUHIIAD and ΔSUHIIRD show 
an obvious decreasing trend after processed by the ISF-C method, 
implying this method can serve to reduce the UED-induced uncertainty 
in SUHII estimates. 

In conclusion, our study shows that the UED can have a non- 
negligible influence on SUHII estimates. Considering the inconsistency 
of urban extents among current products, researchers need to pay more 
attention to the possible bias caused by the urban extents themselves 
when estimating the SUHII. This study proposes a method to reduce the 
UED-induced uncertainty in SUHII estimates from the perspective of 
controlling the ISF within urban and rural extents, which can provide a 
valuable reference for future studies. 
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