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Text A.1. Descriptions of five global urban extent products used in this study 

The urban extents of Global Human Settlement Layer (GHSL) are delineated as 

the spatially-generalized dense groupings of adjacent grid squares measuring 1 km2, 

exhibiting a population density of no less than 1500 residents per km2 of land surface 

or a minimum of 50% coverage of built-up surfaces per km2 of land surface, along with 

a requisite populace of at least 50000 individuals (Florczyk et al. 2019). The GHSL 

product includes over 10,000 urban centers worldwide, providing important basic data 

for large-scale urban heat island studies (Tuholske et al. 2021; Venter et al. 2021). 

The extraction of Global Urban Boundary (GUB) relies on the 30-m resolution 

global artificial impervious area produced by Gong et al. (2020). This data was firstly 

transformed into a kernel density map using the kernel density estimation technique. 

Regions exhibiting kernel density values surpassing 20% were classified as urban zones. 

Subsequently, the urban extents were derived through morphological operations 

(specifically dilation and erosion), followed by post-processing steps such as 

elimination of small clusters and inner holes (Li et al. 2020). The GUB shows 

advantages in terms of spatial resolution, and has been widely used in recent SUHI 

studies (Du et al. 2021; Hu et al. 2022; Liu et al. 2022b; Yang et al. 2021) 

The MODIS land cover product (MCD12Q1, referred as MCD) is obtained by a 

decision tree classification of the supervised learning method and contains five different 

land cover classification schemes (Sulla-Menashe and Friedl 2018). In this study, the 

categorizations employed stem from the International Geosphere-Biosphere 

Programme (IGBP) framework. This categorization system encompasses a total of 17 



distinct land cover categories. The classification labeled as the “Urban and Built-up 

Lands” is used to delineate urban extents (Sulla-Menashe and Friedl 2018). The MCD 

product can provide annual global urban extents from the year of 2001, and has long 

been an important data source for urban heat island studies (Chakraborty and Lee 2019; 

Clinton and Gong 2013; Liao et al. 2022; Liu et al. 2022a; Peng et al. 2012; Yao et al. 

2019). 

The global Morphological Urban Area (MUA), similar to above products, is 

produced mainly based on the artificial impervious surface data. However, the MUA 

product is unique because its urban area is extracted from the perspective of 

morphological characteristics. The core idea is to assume that urban boundaries can be 

determined by the morphological settlement index along the urban-rural transition 

(Taubenböck et al. 2019). The MUA product focuses primarily on the morphological 

characteristics of urban extents, and provides a new viewpoint for urban heat island 

studies (Taubenböck et al. 2019). 

Unlike all the above GUEPs, the global datasets of Nighttime-Light-based Urban 

Area (NLUA) is extracted from nighttime light images. Compared with traditional 

remotely sensed satellite observations, the nighttime light observations possess distinct 

characteristics in their capacity to characterize urbanized regions by providing a proxy 

for anthropogenic activities beyond alterations in land cover (Zhao et al. 2019). 

Currently, there exist a variety of nighttime light -based urban extent products, and this 

study used the latest product created by Zhao et al. (2022) based on the harmonized 

nighttime light time-series composites.   



 

Fig. A.1. Comparison of SUHII estimated from different sizes of rural areas. (A) 

Annual daytime results. (B) Annual nighttime results. Double-area buffer refers to the 

rural area twice the size of the central urban area. Equal-area buffer refers to the rural 

area equal in size to the central urban area. 

 



 

Fig. A.2. Global spatial distribution of annual daytime ∆SUHIIRD. ∆SUHIIRD represents 

the relative difference in SUHII between global urban extent products. 

 



 

Fig. A.3. Global spatial distribution of annual nighttime ∆SUHIIRD. ∆SUHIIRD 

represents relative difference in SUHII between global urban extent products. 

 



 

Fig. A.4. Associations between ∆SUHIIAD and ∆DiffISF across global cities. (A) 

Annual daytime results. (B) Annual nighttime results. ∆SUHIIAD represents the 

absolute difference in SUHII between global urban extent products (GUEPs). ∆DiffISF 

represents the difference in DiffISF (urban-rural difference in mean impervious surface 

fraction) between GUEPs. Colored numbers show the correlation coefficients between 

∆SUHIIAD and ∆DiffISF, and asterisks (*) indicate statistically significant (p < 0.01). 

  



 

Fig. A.5. Sensitivity of the normalized number of the retained urban pixels to ISFU of 

the ISF-C method. ISFU represents the minimum impervious surface fraction (ISF) 

threshold of pixels that can be retained within urban extents. For comparison, number 

of the retained urban pixels is normalized to the initial one (ISFU = 0). The colored 

circles and bars represent the mean values and 95% confidence intervals, respectively. 

  



 

Fig. A.6. Comparison between ∆LSTUrban and ∆LSTRural. ∆LSTUrban refers to the 

difference in urban mean LST between global urban extent products (GUEPs). (A) 

Annual daytime results. (B) Annual nighttime results. ∆LSTRural refers to the difference 

in rural mean LST between GUEPs. The colored numbers (mean ± 95% confidence 

interval) represent the average ∆LSTUrban or ∆LSTRural of all GUEP pairs. The central 

lines in the boxes are the median values. The colored circles and bars represent the 

mean values and 95% confidence intervals, respectively. Outliers are removed from the 

boxplot for presentation purposes. 

  



 

Fig. A.7. Comparison of ISF-C method and Li’s method for reducing the UED-induced 

uncertainty in SUHII estimates. (A) Annual daytime results. (B) Annual nighttime 

results. ∆SUHIIAD represents the absolute difference in SUHII between global urban 

extent products (GUEPs). The colored numbers (mean ± 95% confidence interval) 

represent the average ∆SUHIIAD of all GUEP pairs. The central lines in the boxes are 

the median values. The colored circles and bars represent the mean values and 95% 

confidence intervals, respectively. Outliers are removed from the boxplot for 

presentation purposes. 

  



 

Fig. A.8. Stacked frequency distributions of R2 for global 892 cities. (A) Annual 

daytime results. (B) Annual nighttime results. R2 refers to the proportion of the variance 

in the land surface temperature (LST) explained by the impervious surface fraction (ISF) 

in a linear regression model. The range of R2 is between 0 and 1, and a higher value 

indicating a better fit of the linear regression model. 

  



 

Fig. A.9. Comparison of the performance of ISF-C method and Li’s method across 

different R2 intervals. (A) Annual daytime average ∆SUHIIAD for all global urban extent 

products (GUEPs). (B) Annual nighttime average ∆SUHIIAD for all GUEPs. ∆SUHIIAD 

represents the absolute difference in SUHII between GUEPs. R2 refers to the proportion 

of the variance in the land surface temperature (LST) explained by the impervious 

surface fraction (ISF) in a linear regression model. Error bars represent the 95% 

confidence intervals. 
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