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Exacerbated heat stress induced by urban 
browning in the Global South

Huilin Du1, Wenfeng Zhan    1,2,3  , Bingbing Zhou    4, Yang Ju    5, Zihan Liu6, 
Ariane Middel    7, Kangning Huang    8, Lei Zhao    9, TC Chakraborty    10, 
Zhihua Wang    11, Shasha Wang1, Jiufeng Li1, Long Li1, Fan Huang    12, 
Yingying Ji1, Xuecao Li    13 & Manchun Li5 

Cities in the Global South face dual pressures from intensifying heat stress 
and widespread urban browning. However, the specific trends in urban 
heat stress across these cities, alongside those induced by urban browning, 
remain inadequately quantified, hampering effective urban planning and 
intervention strategies. Here we present a data-driven methodology to 
generate high-resolution (1 km) summertime Heat Index (HI) maps for over 
2,300 Global South cities (2003–2020). This dataset recalibrates HI-based 
warming rates, revealing a mean trend (KHI) of 0.41 ± 0.01 °C per decade (mean 
± standard error) across these cities. Urban browning exacerbates heat stress 
significantly, with KHI increases surpassing 0.05 °C per decade in cities such as 
those in Nigeria, contrasting starkly with greening-induced cooling observed 
in many Global North cities. Our analysis pinpoints cities in dire need of 
intervention, such as those in Botswana and Côte d’Ivoire facing browning-
driven HI increases without commensurate economic growth. Contrastingly, 
Chinese and Indian cities exhibit a paradoxical cooling trend, potentially 
linked to greening initiatives amid economic development. Our findings 
highlight key action imperatives for South–South knowledge exchange to 
develop targeted governance strategies for achieving urban sustainability.

More than 75% of the world’s urban population currently resides in the 
Global South, a region anticipated to witness nearly 96% of future urban 
population growth by 2050 (ref. 1). In this regard, a critical challenge 
to urban sustainability stands out—the compounding effects of rising 
temperature and humidity are pushing urban moist heat stress to critical 
human tolerance thresholds2–5. This challenge is compounded by the 
relatively underdeveloped socio-economic and infrastructural condi-
tions in these regions6,7. Unlike the Global North, urban browning (that is, 

widespread vegetation loss) is prevalent across most Global South cities8, 
leading to exacerbated heat stress and associated health risks3,9. To foster 
climate-resilient and sustainable urban development, it is imperative to 
accurately monitor and strategically address urban heat stress trends 
induced by vegetation change over these rapidly urbanizing areas.

Across the Global South, conventional urban heat stress assess-
ments have predominantly relied on in situ surface air temperature 
(SAT) data obtained from monitoring stations in selected cities10–12.  
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moist heat profiles5,24. Nonetheless, their relatively coarse spatial resolu-
tion (approximately 5 km) presents a challenge in accurately capturing 
fine-scale intra-city heat stress trends, particularly in medium- and 
small-sized cities. As a result, high-resolution trends in physiologically 
relevant urban warming remain largely unknown across the Global 
South. Second, vegetation loss and degradation, as a consequence of 
urbanization, not only elevates urban air temperature but also reduces 
humidity20,25. The net impacts of vegetation loss and degradation on heat 
stress trends remain unclear across diverse Global South cities. Third, 
whereas case studies underscore the importance of socio-economic 
factors in prioritizing urban greening strategies16, existing frameworks 
remain insufficient for identifying Global South cities that warrant the 
most urgent intervention due to the intricate interplay among physical, 
physiological and socio-economic factors. In light of these challenges, 
our study seeks to answer three fundamental research questions:

	1.	 What are the prevailing trends in urban heat stress at a refined 
spatial resolution across Global South cities, and how do these 
trends diverge from urban heating trends derived from LST and 
SAT data?

	2.	 To what extent does urban browning in Global South cities 
modulate urban heat stress, and what are the underlying spatio-
temporal dynamics?

	3.	 Which cities in the Global South should be prioritized for inter-
vention to mitigate heat stress induced by urban browning, con-
sidering the economic and technological constraints specific to 
the Global South?

Here we developed a unique, fine-resolution (1-km) summertime 
urban Heat Index (HI) dataset for over 2,300 Global South cities from 

In situ SAT data have also been integrated with humidity information 
to assess moist heat trends for a limited subset of Global South cities13. 
Unfortunately, most Global South cities have a scarce weather station 
network or lack monitoring infrastructure entirely (Supplementary 
Fig. 1). This data scarcity, compounded by the inherent heterogeneity 
of urban landscapes, hinders the accurate monitoring of heat stress 
trends over this vast region. In contrast to the limited availability of 
SAT from ground-based stations, satellite-derived land surface tem-
perature (LST) data offer thermal observations with extensive spatio-
temporal coverage14. Recent investigations have revealed that the 
LST-based warming rate in Global South cities can reach up to 0.5 °C 
per decade15–17. Importantly, the warming rate is not uniform—more 
pronounced in urban peripheries compared to urban cores15 and in 
cities with higher economic levels16. The presence of variations in urban 
browning (or the opposite, urban greening) introduces an additional 
layer of complexity. Satellite observations suggest a marginal green-
ing trend in most Asian cities, particularly those in China18, which 
has reduced LST-based urban warming15,19. Conversely, numerous 
cities in Africa and South America have witnessed substantial urban 
browning8, exacerbating LST-based warming15. The phenomenon of 
browning-induced warming is particularly prevalent in economically 
disadvantaged cities within South America16.

Three issues impede our understanding and interventions of urban 
heating across the Global South (Fig. 1). First, satellite thermal data often 
inadequately characterize heat stress20–22. Similarly, heat estimates from 
sparse in situ observations (Supplementary Fig. 1) or coarse-resolution 
reanalysis data23 frequently fail to capture the heterogeneous urban 
environment and the experienced actual outdoor heat. Integration of 
these diverse datasets has been commendably utilized to generate urban 
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Fig. 1 | Three interconnected issues regarding browning-induced urban 
heating across the Global South cities. Satellite-based LST and sparse in 
situ SAT both cannot accurately characterize urban heat stress, leading to 
uncertainties in heat stress trends in the urban Global South (Issue 1). Vegetation 
loss has two opposite effects on heat stress—it amplifies heat stress by elevating 
temperature (represented by ‘+’) and alleviates it by reducing absolute humidity 

(denoted by ‘−’). This dual urban climate response to vegetation loss highlights 
a critical knowledge gap, particularly for the urban Global South (Issue 2). 
Furthermore, the complex interplay of multiple city-level characteristics 
(including physical, physiological and socio-economic factors) in modulating 
heat stress makes it challenging to identify cities for the most urgently requiring 
interventions (Issue 3).
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2003 to 2020. We leveraged data from openly accessible in situ obser-
vations, reanalysis data and remote sensing products and employed 
data-driven spatio-temporal estimation models to enhance accuracy. 
On the basis of these datasets, we conducted a comprehensive analysis 

of urban heat stress trends (KHI) and quantified the impact of urban 
browning on these trends (βHI). Subsequently, we identified priority 
cities/countries for intervention by considering the complex interplay 
between physical, physiological and socio-economic factors. Our study 
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Fig. 2 | Summertime urban heat stress trends in 2,341 Global South cities 
between 2003 and 2020. a,b, Spatio-temporal patterns of KHI for daytime (a) 
and nighttime (b). c–f, Zooming into typical regions, including Saudi Arabia (c) 
and Malaysia (d) for daytime, and Egypt (e) and Saudi Arabia (f) for nighttime. 
g,h, Year-to-year variations of urban HI, SAT and LST (represented by dashed 
lines), along with their trend lines (depicted by solid lines) for daytime (g) and 
nighttime (h), with shading indicating 95% confidence intervals. i,j, Boxplots 
depicting daytime (i) and nighttime (j) KHI in cities within various subcontinents, 
with abbreviations representing various regions: SE-AS (southeastern Asia; with 
the city sample size of 118), S-AS (southern Asia; 288 cities), W-AS (western Asia; 
88 cities), E-AS (eastern Asia; 902 cities), C-AS (central Asia; 64 cities), W-AF 
(western Africa; 80 cities), S-AF (southern Africa; 117 cities), N-AF (northern 
Africa; 142 cities), M-AF (middle Africa; 22 cities), E-AF (eastern Africa; 34 cities), 
Caribbean (25 cities), C-AM (Central America; 112 cities) and S-AM (South 

America; 336 cities). k,l, Boxplots depicting daytime (k) and nighttime KHI (l) 
in cities characterized by different population densities, including small (<630 
persons km−2; 585 cities), medium (630–1,977 persons km−2; 585 cities), large 
(1,977–4,430 persons km−2; 585 cities) and megacities (>4,430 persons km−2; 
586 cities; Methods). m,n, Boxplots showing daytime (m) and nighttime (n) KHI 
across cities with varying economic levels, classified as low-income (LIC; GDP 
per capita < US$1,045; 19 cities), low–middle income (LMIC; US$1,045–4,125; 
184 cities), upper–middle income (UMIC; US$4,126–12,735; 1,078 cities) and 
high-income cities (HIC; >US$12,735; 1,012 cities). In i and j, the gray shading 
highlights the regions with the highest and lowest KHI values. In i–n, the center 
line represents the mean, whereas the lower and upper lines denote 25th and 75th 
quantiles, respectively. The lower and upper bounds of the whiskers indicate one 
standard deviation (SD) below and above the mean, respectively.
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offers methodologies and actionable insights for developing targeted 
and effective strategies to address urban heat risks, fostering climate-
resilient and more sustainable urban development in the Global South.

Results
Urban heat stress trends across the Global South
We generated summertime urban HI datasets at 1-km resolution for 
Global South cities between 2003 and 2020, employing a spatio-tem-
poral estimation model that integrates multi-source data with a ran-
dom forest algorithm (Supplementary Fig. 2 and Methods). Through 
cross-validation with ground-based measurements, we demonstrated 
the robust performance of the generated urban HI datasets (R = 0.98 
for both daytime and nighttime) and the derived interannual trends 
(R = 0.82 and 0.74 for daytime and nighttime, respectively; Supple-
mentary Note 1). Our sensitivity analysis indicates minimal influence 
of estimation errors in urban HI on the derived KHI, contributing to 
an uncertainty of only ~5% (Supplementary Note 1). Moreover, our 
datasets exhibit resilience to variations in location and the number of 
urban stations employed for HI estimation (Supplementary Note 2).

Utilizing this high-quality dataset, we examined the spatio-tem-
poral trends in urban HI (KHI) across two distinct urban zones: urban 
cores (urbanized areas before year 2000) and urban transition zones 
(urbanized areas after year 2000; Methods). Our analysis reveals that 
nearly 90% of Global South cities experience a significant positive KHI 
(Fig. 2a,b). Urban cores exhibit an average daytime KHI of 0.43 ± 0.01 °C 
per decade (mean ± standard error), and this trend translates into 
0.39 ± 0.01 °C per decade at night (Fig. 2g,h). These trends correspond 
to a 2.4% increase in the average day–night urban HI from 2003 to 2020. 
Such a sustained HI increase could substantially elevate the number of 
cities categorized as ‘Danger’ according to NOAA’s risk categorization 
(Discussion and implications). Moreover, these HI-based urban heat 
stress trends slightly exceed those derived from SAT (0.31 ± 0.01 °C per 
decade for both day and night; Fig. 2g,h and Supplementary Fig. 3c,d), 
but are notably lower than the estimates based on satellite-derived LST 
(0.80 ± 0.02 °C per decade for daytime and 0.64 ± 0.01 °C per decade 
for nighttime; Fig. 2g,h and Supplementary Fig. 3a,b). Interestingly, the 
spatio-temporal patterns and magnitudes of KHI in urban transitional 
zones closely resemble those in urban cores (Supplementary Fig. 4). 
This deviates from LST-based studies suggesting that warming rates 
in urban transition zones nearly double those of urban cores15. The dif-
ference between HI and LST responses to urbanization may underlie 
the contrasting warming patterns. LST-based warming manifests the 
direct impact of reduced evapotranspiration following vegetation 
removal during urbanization. By comparison, HI incorporates both 
temperature and humidity—reduced evapotranspiration increases SAT 
indirectly through complex surface–atmosphere interactions, yet it 
also decreases humidity, thereby mitigating the impacts of vegetation 
loss on HI20. To supplement the analysis relying on HI, we employed 
alterative heat stress metrics, including the Humidex and Wet-Bulb 
Globe Temperature in shade conditions at stable wind (termed indoor 
WBGT), to assess potential discrepancies due to variations in humid-
ity contributions to heat stress metrics26. All these metrics exhibit 
consistent spatial patterns, reinforcing the robustness of our findings 
(Supplementary Note 3).

The daytime and nighttime KHI in Global South cities reveal sub-
stantial variations across continents and countries (Fig. 2i,j). East-
ern and southeastern Asian cities exhibit relatively high daytime KHI 
(0.57 ± 0.01 °C per decade and 0.52 ± 0.02 °C per decade, respec-
tively), whereas northern African cities possess modest daytime 
KHI (0.09 ± 0.03 °C per decade; Fig. 2i). At night, the highest KHI of 
0.85 ± 0.05 °C per decade is observed in western Asian cities, whereas 
southern African cities demonstrate a marginal KHI (0.08 ± 0.02 °C 
per decade; Fig. 2j). These geographical variations in KHI are jointed 
regulated by background climate change, urbanization processes and 
changes in urban greenness (Supplementary Fig. 5). For instance, the 

marked divergence in KHI patterns between daytime and nighttime 
observed in numerous Southern African cities—positive during the 
day but negative at night (Fig. 2a,b)—closely mirrors those of their rural 
backgrounds (Supplementary Fig. 6e,f), probably suggesting a strong 
influence from background climate changes. Among the countries, 
daytime KHI is most prominent in cities of Malaysia (0.70 ± 0.03 °C 
per decade) and Turkmenistan (0.64 ± 0.08 °C per decade; Fig. 2 and 
Supplementary Fig. 7a–d). Nighttime KHI paints a marginally differ-
ent picture, with cities in the Middle East, particularly Saudi Arabia 
(1.10 ± 0.06 °C per decade) and Egypt (0.97 ± 0.02 °C per decade), 
demonstrating the most rapid heat stress trends (Fig. 2 and Supple-
mentary Fig. 7e–h).

Our analysis unveils an uneven distribution of KHI across Global 
South cities concerning population density and economic status  
(Fig. 2k–n). Notably, both daytime and nighttime KHI first increase and 
then decrease with urban population density (Fig. 2k,l). Regarding 
economic status, both daytime and nighttime KHI tend to be higher in 
economically prosperous cities (Fig. 2m,n). For example, the daytime 
KHI steadily increases from 0.23 ± 0.05 °C per decade in low-income 
cities to 0.48 ± 0.01 °C per decade in high-income cities (Fig. 2m). This 
finding resonates with prior research in Latin America, which linked 
LST-based urban heating rates to economic status16. Cities with higher 
economic levels often undergo more pronounced vegetation loss dur-
ing early phases of urbanization driven by economic development, 
probably contributing to their observed faster urban heating rates16.

Urban browning-induced heat stress trends
Between 2003 and 2020, Global South cities witness widespread 
browning in both urban cores (KEVI = −0.007 ± 0.0004 per decade, 
corresponding to a 5% decrease in enhanced vegetation index (EVI)) 
and urban transition zones (KEVI = −0.016 ± 0.0005 per decade, that 
is, a 9% decrease in EVI; Supplementary Figs. 8 and 9), presenting a 
striking divergence from the prevailing urban greening observed in 
Global North cities (0.003 ± 0.0002 per decade for urban cores and 
0.001 ± 0.0002 per decade for urban transition zones). To isolate the 
impacts of urban browning on KHI (denoted as βHI) in Global South cities, 
we employed the widely established least squares statistical attribu-
tion method15,27,28. Our results show that on average, across the urban 
cores of Global South, βHI is about 0.022 ± 0.002 °C per decade during 
both daytime and nighttime (Fig. 3a,b), suggesting the dominance of 
browning-induced warming effect over its drying influence (Supple-
mentary Fig. 10). Whereas the average βHI may appear modest, it masks 
substantial spatial variations. Notably, cities in Nigeria, Botswana and 
Malaysia record the highest daytime mean βHI values, exceeding 0.05 °C 
per decade (Fig. 3a). This could translate to a surge in the frequency 
of extreme heat days experienced by urban residents (Discussion and 
implications). In contrast, the prevailing urban greening phenom-
enon in Global North cities has attenuated urban heat stress trends 
by approximately 0.007 ± 0.001 °C per decade during both daytime 
and nighttime (Supplementary Fig. 11).

We observe a heterogeneous distribution of βHI across cities in 
different continents and with varying population densities and eco-
nomic status (Fig. 3). Among continents (Fig. 3g,h), daytime βHI peaks 
in western African cities (0.07 ± 0.008 °C/ per decade) while register-
ing the lowest in eastern Asian cities (about 0.01 ± 0.003 °C per dec-
ade; Fig. 3g). At night, southern Asian cities exhibit the highest βHI 
(0.05 ± 0.006 °C per decade), whereas Caribbean and eastern Asian 
cities demonstrate marginal βHI values (0.009 ± 0.015 °C per decade 
and 0.004 ± 0.003 °C per decade, respectively; Fig. 3h). The spatial 
disparities of βHI in the urban Global South are associated with the 
spatial patterns observed in their corresponding KEVI—for example, 
western African cities showcase the most pronounced browning (Sup-
plementary Fig. 9a,b), probably explaining their high βHI. Our results 
show that both daytime and nighttime βHI generally increase with 
urban population density, though with a slight decrease in megacities 
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(Fig. 3i,j). Cities with higher population densities are typically associ-
ated with more extensive urbanization, leading to more pronounced 
browning and, consequently, a larger βHI. Whereas in megacities with 
very high population densities, urbanization may stabilize, prompting 
increased investment in green infrastructure and thus resulting in a 
slightly reduced βHI. Regarding economic status, daytime βHI is greater 
in cities with low and lower–middle income levels (0.026 ± 0.007 °C 
per decade and 0.042 ± 0.005 °C per decade, respectively) than in 
those with upper–middle and high-income levels (0.021 ± 0.003 °C 
per decade and 0.020 ± 0.003 °C per decade, respectively; Fig. 3k). 
Similar patterns are also observed at night (Fig. 3l). Unlike economically 
prosperous cities with relatively stable urbanization, cities striving for 

economic advancement (typically those with low and lower–middle 
income levels) often undergo extensive urbanization. This extensive 
urbanization is often accompanied by converting natural or vegeta-
tion surfaces to impervious surfaces29, significantly amplifying the KHI 
induced by urban browning.

Global South cities requiring urgent interventions
We investigated city- and country-level relationships between βHI and 
critical physical, physiological and socio-economic factors to identify 
specific Global South cities in dire need of interventions against brown-
ing-induced heat stress (Fig. 4). These factors include the urban green-
ness trend (that is, KEVI; physical perspective), the absolute magnitude 
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Fig. 3 | Urban browning-induced KHI in Global South cities. a–f, Spatial 
distribution of daytime (a) and nighttime (b) βHI and detailed enlargements 
in selected typical regions, including Ghana (c) and Vietnam (d) for daytime, 
and Ghana (e) and Vietnam (f) for nighttime. g,h, Boxplots representing 
the variations of daytime (g) and nighttime (h) βHI across cities in different 
subcontinents, with abbreviations representing various regions: SE-AS 
(southeastern Asia; with the city sample size of 118), S-AS (southern Asia; 288 
cities), W-AS (western Asia; 88 cities), E-AS (eastern Asia; 902 cities), C-AS (central 
Asia; 64 cities), W-AF (western Africa; 80 cities), S-AF (southern Africa; 117 cities), 
N-AF (northern Africa; 142 cities), M-AF (middle Africa; 22 cities), E-AF (eastern 
Africa; 34 cities), Caribbean (25 cities), C-AM (Central America; 112 cities) and 

S-AM (South America; 336 cities). i,j, Boxplots illustrating the distribution of 
daytime (i) and nighttime (j) βHI in cities characterized by different population 
densities, including small (585 cities), medium (585 cities), large (585 cities) and 
megacities (586 cities). k,l, Boxplots depicting daytime (k) and nighttime (l) βHI 
across cities with varying economic levels, categorized as low-income (LIC; 19 
cities), low–middle income (LMIC; 184 cities), upper–middle income (UMIC; 
1,078 cities) and high-income cities (HIC; 1,012 cities). In g and h, the gray shading 
highlights the regions with the highest and lowest βHI values. In subplots g–l, the 
center line represents the mean, whereas the lower and upper lines denote 25th 
and 75th quantiles, respectively. The lower and upper bounds of the whiskers 
indicate one SD below and above the mean, respectively.
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of urban heat stress (that is, urban HI, measured by the multi-year aver-
age of HI throughout the study period; physiological perspective) and 
the urban economic growth (measured by the percentage increase in 
Gross Domestic Product (GDP) per capita throughout the study period; 
socio-economic perspective; Methods). To achieve this, we employed 
four-quadrant plots of βHI against each indicator, with quadrant thresh-
olds determined by the mean values across all countries (Supplemen-
tary Tables 1–3). Our assessments demonstrate that the relationship 
between KEVI and βHI is not linear (Fig. 4a), though both metrics are well 
correlated with the baseline EVI (Supplementary Fig. 12). For example, 
higher urban browning (that is, KEVI < −0.012 per decade; Supplemen-
tary Table 1) may be associated with lower βHI values (that is, <0.030 °C 
per decade), as observed in Thailand, Venezuela and Uzbekistan (Fig. 
4a). Conversely, lower urban browning (that is, KEVI > −0.012 per decade) 
may also coincide with higher βHI values (that is, > 0.030 °C per decade), 
as manifested in cities in Malaysia, Argentina, Chile and Brazil (Fig. 4a). 

These observations may underscore a greater increase in HI with each 
unit decrease in EVI (that is, greater vegetation cooling efficiency) in 
these cities, highlighting an increased necessity for urban greening 
intervention strategies (Discussion and implications).

We reveal a stark reality wherein numerous Global South cities 
already grappling with high baseline heat stress are experiencing accel-
erated browning-induced increases in HI (Fig. 4b and Supplementary 
Table 2). This concerning synergy is common in cities across South-
eastern Asia, such as Malaysia, Vietnam and Indonesia, where people 
experience not only high summer daytime HI values surpassing 33.6 °C 
but also pronounced βHI exceeding 0.030 °C per decade (Fig. 4b). In 
these cities, the high βHI can translate into a more substantial uptick in 
extreme heat days when compared to their counterparts with lower 
baseline HI (Discussion and implications). Although the baseline urban 
HI values in countries such as Ghana and Cote d’lvoire remain moderate 
(<33.6 °C; Fig. 4b), these seemingly lower levels of heat stress should not 
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Fig. 4 | Interplay of browning-induced urban heat stress trends with urban 
greenness trend, HI and economic growth during summer daytime across 
Global South cities, through a three-part typology of countries. a–c, Four-
quadrant plots showing βHI versus KEVI (a; physical perspective), βHI versus urban 
HI (b; physiological perspective) and βHI versus urban economic growth (c; 
socio-economic perspective) across Global South countries, with the quadrant 
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across all countries (Supplementary Tables 1–3). Each perspective specifically 
delineates two distinct subcategories of countries. a, Physical perspective, 

contrasting countries with lower KEVI yet relatively higher βHI (pink rectangle) and 
those with higher KEVI but relatively lower βHI (blue rectangle). b, Physiological 
perspective, distinguishing countries with both higher βHI and urban HI values 
(pink rectangle) versus those with higher βHI yet lower urban HI values (blue 
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in a and c are used to avoid large blank spaces, making the presented data more 
compact.
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cultivate a false sense of security. On the contrary, given the higher βHI 
in these cities (>0.030 °C per decade; Fig. 4b), along with the relative 
lack of preparedness and potentially inadequate adaptive capacity30,31, 
exercising caution in dealing with escalating heat stress is imperative 
for policymakers in these cities.

Our analysis unravels a discernible correlation between browning-
induced heat stress amplification (that is, βHI) and economic develop-
ment across Global South cities (Fig. 4c and Supplementary Table 3). 
Rapid urbanization associated with economic growth often involves 
transforming natural vegetation to impervious surfaces32, resulting 
in high βHI. Nevertheless, this correlation is not universal. Some cit-
ies experiencing modest economic growth (<59%) over the last two 
decades, such as those in Côte d’Ivoire and Colombia, manifest nota-
ble browning effects (βHI > 0.030 °C per decade; Fig. 4c). In contrast, 
Chinese and Indian cities showcase how strategic urban planning can 
align economic growth with environmental preservation, maintain-
ing relatively lower βHI values amidst modernization (Fig. 4c). This is 
likely attributed to the proactive urban greening programs amid rapid 
urbanization29,33 (Discussion and implications).

Discussion and implications
This study recalibrates urban warming rates across over 2,300 Global 
South cities using a newly generated fine-resolution (1-km) HI dataset, 
departing from previous methods mostly relying on either satellite-
based LST observations or in situ SAT measurements. Our findings 
highlight substantial discrepancies between the trends in HI and LST/
SAT (Fig. 2g,h), underscoring the inclusion of humidity when gauging 
changes in urban heat stress. The generated urban HI datasets, along 
with the devised spatio-temporal estimation model, hold promise for 
future studies on Global South cities, often understudied due to data 
scarcity34. Our assessments reveal an average summer HI increase of 
0.66 °C across Global South cities over the past two decades, with certain 
major urban centers (for example, those in Saudi Arabia) experienc-
ing even greater increases exceeding 1.70 °C (Supplementary Fig. 7). 
Whereas these increments may appear modest, sustained HI elevation 
could substantially increase the number of cities categorized as ‘Danger’ 
based on the risk categorization used by the US National Oceanic and 
Atmospheric Administration from human perception perspective35. For 
example, if the current HI-based warming trend persists, the proportion 
of ‘Danger’ cities across the Global South could rise from 7% to 20% by 
2050. These escalating trends indicate a notable rise in urban population 
exposure to extreme heat waves, carrying important implications for 
public health and well being throughout the Global South.

Whereas prior studies have quantified the impact of vegetation 
loss on LST-based warming15,16, our investigation delves further into 
exploring its impact on moist heat-based urban warming. In terms of 
moist heat-based urban warming, our analysis demonstrates that veg-
etation loss exerts a more pronounced warming impact through reduced 
evaporative cooling compared to its drying effect via a weakened water 
vapor source across the Global South (Fig. 3). This contrasts starkly 
with the prevalent greening trends observed in many Global North cit-
ies and the cooling effects they generate (Supplementary Figs. 8 and 
11), underscoring another under-recognized disparity between these 
two regions. Beyond general recommendations for urban greening, 
we identify specific cities and countries requiring urgent measures to 
combat heat stress induced by urban browning, considering their unique 
biophysical and socio-economic conditions. We reveal a negative cor-
relation between socio-economic status and HI increases resulting from 
vegetation loss (that is, βHI; Fig. 3k,l). This indicates the shared responsi-
bility of national and local governments to support disadvantaged cities 
with limited resources for urban greening programs16. Our study dem-
onstrates that countries such as Nigeria, Colombia, Turkmenistan and 
Chile exhibit higher inequality in both daytime and nighttime βHI than 
other countries with similar economic status (Supplementary Fig. 13 and 
Supplementary Note 4), underlining the urgent need for these countries 

to narrow inter-city disparities of βHI through urban renewal or green-
ing programs. Furthermore, our results suggest that countries such as 
Malaysia, Argentina, Chile and Brazil experience modest vegetation loss 
alongside notable heating rates (that is, higher βHI; Fig. 4a), implying an 
elevated heat stress sensitivity to vegetation loss in these regions (that is, 
vegetation cooling efficiency; ref. 36). For countries with high baseline 
heat stress such as Malaysia (Fig. 4b), vegetation loss-induced heating 
(0.057 °C per decade) can lead to a considerable increase in extreme 
heat events (Supplementary Note 5), signifying critical significance of 
contextualizing these trends within specific climatic background. Eco-
nomically constrained cities may benefit from cost-effective measures 
such as public awareness campaigns, educational resources for urban 
gardening and distribution of affordable seedlings to encourage local 
vegetation planting37. In contrast, wealthier cities could explore options 
such as green infrastructure subsidies for urban development projects 
and stricter land-use regulations to protect green areas38.

Our findings highlight opportunities for knowledge exchange 
among Global South cities. Many African countries, such as Côte 
d’Ivoire and Botswana, have undergone extensive vegetation loss 
and escalating heat stress despite limited economic growth (Fig. 4c). 
These countries are still in the early stages of urbanization, charac-
terized by ongoing urban expansion and a decline in green and blue 
spaces within cities driven by economic development39,40. Within this 
context, an essential need arises to balance urbanization and vegeta-
tion preservation in these countries. Learning from more urbanized 
peers in the Global South can aid these countries to better navigate 
their urbanization trajectories to avoid negative consequences. One 
such valuable source of learning is China. Over recent decades, China’s 
economic growth has outpaced the average for other Global South 
countries by a factor of four (Fig. 4c). Nonetheless, most urban cores 
in China display either greening-induced cooling or marginal warming 
(Fig. 3a,b). Notably, almost 60% of the Global South cities that expe-
rience greening originate from China (Supplementary Fig. 8). This 
success may be attributed to China’s nationwide policy emphasis on 
safeguarding green infrastructure during urbanization19,33. Examples 
include the National Garden City program initiated in 1992 and its 
upgrade iterations, the 2004 National Forest City program alongside 
relevant regulations, the 2014 Sponge City urban planning program and 
the 2016 National Ecological Garden City program, which incentivize 
local authorities to protect and cultivate urban green spaces41,42. India 
provides another illustrative example (Fig. 4c). To promote urban green 
infrastructure development, India has adopted national policies such 
as the 2014 Urban Greening Guidelines, along with localized urban 
greening policies within specific cities43. China’s and India’s experience 
provides a blueprint for sustainable urbanization, demonstrating the 
feasibility of achieving economic prosperity alongside environmental 
stewardship29,32. Their lessons highlight the value of proactive planning 
and policymaking in preserving vegetation-induced cooling during 
rapid urbanization. Whereas these successful national policies may 
not be directly transferable to other Global South countries due to 
differing socio-political and economic conditions, the context-spe-
cific, nature-inspired insights from greening efforts in many Chinese 
and Indian cities demonstrate a valuable model of harmonious urban 
expansion that is both economically and environmentally sustainable. 
These insights can provide valuable examples for cities from other 
Global South countries with similar economic statuses or constrained 
resources (Supplementary Note 6).

Our study combined temperature and humidity to enhance 
the quantification of urban heat stress, following established 
approaches5,13,20. Nevertheless, a more comprehensive evaluation of 
heat stress necessitates the inclusion of additional environmental 
parameters such as radiation and wind speed44,45. Future studies on 
urban heat stress trends could leverage in situ observations and fine-
resolution urban climate models to integrate these environmental 
variables. Furthermore, whereas the statistical isolation method for 
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assessing heating rates induced by vegetation loss has been widely 
utilized27,28, it does not account for variations in vegetation type and 
structure. This limitation is particularly pertinent in the Global South, 
where many cities have witnessed recent expansion of rice plantations 
and oil palm in their urban-rural transitional zones (ref. 46; Supplemen-
tary Note 7). Future refinements may consider integrating this crucial 
information to provide a more comprehensive assessment of heat 
stress trends induced by urban browning. Additionally, the current 
study prioritizes interventions at national and municipal levels due to 
the focus on the entirety of the Global South in our analysis. Nonethe-
less, even within the same city, different neighborhoods may exhibit 
sharp thermal, socio-economic and demographic disparities47–50. Poli-
cymakers must acknowledge these disparities and ensure that neigh-
borhoods with the highest vulnerability receive adequate support.

In short, our study highlights three messages. First, limitations 
inherent in satellite- and ground-based measurements and reanalysis 
data impede their capacity to accurately capture the trends in moist 
heat stress across heterogeneous urban landscapes. However, integrat-
ing these data sources with additional remotely sensed urban surface 
parameters alongside advanced machine learning techniques pro-
vides a promising solution for high-resolution mapping of such urban 
environmental changes, particularly for the Global South cities with 
limited monitoring infrastructure. Second, unlike their Global North 
counterparts, Global South cities encounter unique challenges in 
addressing urban heat stress linked to urban browning and intertwined 
with socio-economic realities. Given resource limitations prevalent 
in these countries, prioritizing cities in dire need of intervention is 
crucial. Third, despite diverse technological capabilities and resource 
availability across Global South countries, their shared historical nar-
ratives and socio-economic challenges offer opportunities for mutual 
learning. Inspiration and lessons from more developed peers, such as 
China and India, can provide precious insights into advancing urban 
sustainability. Such knowledge exchange is particularly valuable for 
the Global South as they navigate the complex challenges of extensive 
urbanization and rapid climate change in coming decades6.

Methods
Study area and data
We selected 2,341 cities in the Global South, each with an urban area 
exceeding 10 km2 in 2000, for our primary analysis (Fig. 2). These cities 
were categorized into four groups based on quartiles of urban popula-
tion density (Supplementary Fig. 14): small cities (<630 persons km−2), 
medium cities (630–1,977 persons km−2), large cities (1,977–4,430 
persons km−2) and megacities (>4,430 persons km−2). Additionally, 
these cities were classified into four income brackets based on GDP 
per capita51, including low-income (LIC; GDP per capita < US$1,045; 19 
cities), low–middle income (LMIC; US$1,045–4,125; 184 cities), upper–
middle income (UMIC; US$4,126–12,735; 1,078 cities) and high-income 
cities (HIC; >US$12,735; 1,012 cities). We also selected 3,302 cities in the 
Global North for comparison, applying the same criterion of an urban 
area exceeding 10 km2 in 2000.

In situ data for 2003–2020. In situ hourly surface air temperature 
(SAT) and relative humidity (RH) measurements were obtained from 
the HadISD dataset52 and were utilized to generate 1-km urban Heat 
Index (HI) data. The HadISD dataset encompasses over 9,600 monitor-
ing stations worldwide, with 2,083 in the Global South. These SAT and 
RH measurements are of high quality and have been widely used4,53,54. 
We first converted the universal time coordinated time to local solar 
time and then created composites of hourly averages for daytime 
(14:00–16:00) and nighttime (04:00–06:00), corresponding to the 
typical observation times of daily maximum and minimum SATs55.

MODIS data for 2003–2020. We utilized MODIS data including 
land surface temperature (LST) from the MYD11A2 (with a temporal 

resolution of 8-day and spatial resolution of 1-km; ref. 56), enhanced 
vegetation index (EVI) from the MOD13A2 (16-day; 1-km; ref. 57), white 
sky albedo (WSA) from the MCD43A3 (daily; 500-m; ref. 58) and land-
cover type from the MCD12Q1 (yearly; 500 m; ref. 59). The LST, EVI and 
WSA data were used as predictors to generate 1-km urban HI datasets. 
The International Geosphere Biosphere Programme classification 
scheme in land-cover-type data was employed to delineate urban 
surfaces by excluding water, permanent wetlands and snow and ice 
pixels60. To mitigate the impacts of cloud contamination, we consid-
ered only LST observations with the retrieval error of 3.0 K or less60,61 
and further applied these filtered LST pixels to mask the EVI and WSA 
data. The number of valid observation days for LST, EVI and WSA is 
presented in Supplementary Fig. 15. All datasets were resampled to 
1-km resolution using the nearest neighbor method.

ERA5-Land reanalysis data for 2003–2020. We used the monthly-
mean SAT, dew point temperature, precipitation and net shortwave 
radiation provided by the ERA5-Land Monthly Aggregated climate 
reanalysis dataset62. These data possess a spatial resolution of around 9 
km, and we also resampled them to 1 km to generate urban HI datasets.

Socio-economic data for 2003–2020. We employed gridded popula-
tion count (POP), GDP per capita and nighttime light (NTL) data for our 
analysis. The POP data at 1-km resolution are from the LandScan dataset63. 
This dataset was used to categorize city sizes based on the average urban 
population density from 2003 to 2020 and to generate the 1-km urban 
HI dataset. The 1-km GDP per capita data were sourced from the Gridded 
Global GDP and HDI datasets64. This dataset integrates both subnational 
and national data, thereby ensuring official statistical consistency. We 
employed this dataset to categorize cities into LIC, LMIC, UMIC and HIC 
groups according to their economic status in 2015. The 1-km NTL data 
obtained from the Suomi National Polar-orbiting Partnership Visible 
Infrared Imaging Radiometer Suite (NPP-VIIRS)-like NTL dataset65 were 
also leveraged to generate urban HI datasets. This dataset was chosen due 
to its superior quality and enhanced detection capabilities65, which ena-
bles more accurate monitoring of long-term socio-economic dynamics.

Urban boundary data for 2000 and 2018. We obtained the urban 
boundaries from the Global Urban Boundary (GUB) dataset, which 
maps more than 65,000 urban clusters with an area larger than 1 km2 
worldwide66. We utilized this dataset for consistent demarcation of 
urban areas. Specifically, urban surfaces are highly heterogeneous67, 
with urban fringes typically demonstrating more pronounced veg-
etation loss than urban cores15. To capture this variability in urban 
browning and its effects on urban heat stress trends, we divided the 
urban surfaces into ‘urban cores’ (that is, urban surfaces within the 
GUB boundaries of 2000) and ‘urban transitional zones’ (that is, urban 
surfaces in GUB boundaries added between 2000 and 2018).

Estimation of urban heat stress trends in the Global South
We developed a multi-source data-driven model to produce high-reso-
lution (1-km) time series data of urban heat stress for cities in the Global 
South, by integrating ground-based observations, satellite-derived 
temperatures and reanalysis data (Step 1). Subsequently, we analyzed 
the trends in urban heat stress and associated spatio-temporal patterns 
using this model-generated dataset (Step 2). Lastly, we examined the 
robustness of our results through comprehensive validations of both 
the generated urban heat stress datasets and their derived trends 
against the ground-based observations (Step 3).

Step 1 Generating 1-km urban HI dataset for 2003–2020 for Global 
South cities. We utilized the HI, as recognized by the U.S. National 
Oceanic and Atmospheric Administration5,35, as our primary metric 
for assessing urban heat stress. Our primary analysis focused on sum-
mertime trends ( June to August for Northern Hemisphere cities and 
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December to February for Southern Hemisphere cities) because urban 
residents typically encounter elevated heat stress during this period68, 
but annual mean results were also provided for reference (Supplemen-
tary Fig. 16). The summertime analysis exclusively utilized data from 
corresponding months, whereas the annual analysis encompassed data 
from the entire year. Details for generating the summertime urban HI 
dataset are provided as the following:

	 (1)	 Quality control of in situ observations. Accurate estimation of 
urban heat stress hinges on high-quality in situ observations 
within cities. To ensure reliability, we implemented a rigorous 
quality control process. First, we identified 1,361 stations within 
2018 urban boundaries and their 15-km buffer zones of Global 
South cities, labeling them, respectively, as urban and quasi-
urban stations69. Second, for each station, we removed outliers 
in both SAT and RH time series using the ‘three times standard 
deviation’ rule70. Third, to address missing data issues, sta-
tions were evaluated based on the availability of summertime 
observations. Only stations with at least 45 summertime days 
of both SAT and RH each year were selected for synthesizing 
summertime average HI according to ref. 5. After this criterion, 
stations lacking more than 10 years of summertime HI data were 
excluded. This whole process led to the retention of 887 and 781 
stations for estimating daytime and nighttime HI, respectively 
(Supplementary Fig. 17).

	 (2)	Development of a data-driven model for urban HI mapping. We 
employed the Random Forest (RF) approach to develop spatio-
temporal estimation models for generating 1-km resolution 
urban HI time series data. This approach is renowned for cap-
turing complex nonlinear relationships and producing spatially 
continuous data69. Considering the multifaceted influences of 
background climate and urban-related characteristics on urban 
heat stress55,69,71, we selected 13 variables for constructing the RF 
model. These variables included spatio-temporal geolocation 
(year, latitude, longitude and elevation), temperature (LST), 
urban surface characteristics (EVI, WSA, POP and NTL) and 
background climate factors (reanalysis SAT, dew point tempera-
ture, precipitation and net shortwave radiation). To capture the 
interannual variabilities in urban HI and ensure the fidelity of its 
derived long-term trends, we trained a single RF model for the 
entire study period (2003–2020) instead of creating separate 
models for each year. This strategy incorporated the ‘year’ 
variable as a predictor within the model, thereby encapsulating 
temporal evolution information throughout the investigation 
period72,73. Separate RF models for daytime and nighttime con-
ditions were constructed at the site scale, with 80% of the data 
for training and the remaining 20% for validation. On the basis 
of the trained RF models and 1-km resolution predictors, we 
generated 1-km resolution urban HI time series data for Global 
South cities (Supplementary Figs. 18 and 19).

Step 2 Quantifying urban HI trends across the Global South. 
Utilizing the generated urban HI time series data, we quantified the 
urban heat stress trends (termed KHI) for Global South cities, by lin-
early regressing the urban HI against the year. To uncover intra-city 
variations, we assessed the KHI patterns in urban cores and transitional 
zones. Furthermore, we explored the KHI patterns across different 
geographical contexts within the Global South. This includes cities 
spanning various subcontinents, with diverse population densities 
and economic statuses (indicated by GDP per capita). Comparative 
analyses were also conducted among urban warming rates quantified 
using different temperature metrics: SAT, LST and HI.

Step 3 Validating urban HI and its trends. We conducted a compre-
hensive validation of our urban HI dataset across Global South cities 
and various subcontinents (Supplementary Figs. 20–23), focusing on 

two key aspects: absolute HI values and their temporal trends (KHI). 
This validation process involved calculating four error metrics—cor-
relation coefficient (R), root mean square error, mean absolute error 
and bias—by comparing observed and estimated values. For absolute 
urban HI, we used the remaining 20% in situ observation records for 
validation (that is, 3,273 and 2,765 for daytime and nighttime). For KHI, 
we utilized urban stations with complete records across all years for 
validation (that is, 553 and 366 stations for daytime and nighttime). 
As detailed in Supplementary Note 1, the R values for absolute HI are 
0.98 (daytime) and 0.99 (nighttime), whereas they are 0.83 (daytime) 
and 0.73 (nighttime) for KHI. These high correlations, together with the 
results of root mean square errors and mean absolute errors, affirm the 
robustness of our generated urban HI dataset in characterizing both 
absolute urban HI and its derived trends.

Clarifications and uncertainty analysis. Our urban HI dataset pre-
sents distinct advantages over existing temperature datasets24,71,74: 
prioritizing heat stress, achieving high resolution (1 km) based on the 
selection of pertinent urban stations and emphasizing trend accu-
racy. First, unlike previous studies that targeted LST or SAT71,74, our 
present study focuses explicitly on urban HI for the assessment of 
urban thermal heat stress. This distinction is particularly critical for 
tropical and subtropical cities in the Global South, given their inher-
ent high humidity levels2. Second, earlier temperature or heat stress 
datasets often struggle to capture the nuanced heterogeneity of urban 
landscapes, either due to relatively coarse spatial resolutions24 or sub-
stantial reliance on rural ground-based observations for calibration72. 
In contrast, our approach achieves relatively finer spatial resolution 
(that is, 1 km) and accurately portrays urban thermal environments 
by carefully selecting urban stations based on their locations and data 
quality. Third, existing temperature products have prioritized absolute 
accuracy and spatial coverage71 while neglecting temporal consistency, 
which hinders accurate analysis of urban warming trends. In contrast, 
our urban HI dataset places equal emphasis on both absolute and trend 
accuracy, enabling accurate monitoring of long-term dynamics in 
urban thermal environments.

We acknowledge that our generated urban HI dataset may be 
influenced by the relatively limited number of urban stations employed 
for constructing RF estimation models. We thus further incorporated 
the Berkeley Earth dataset that provides a notably denser collection of 
ground-based observations for sensitivity analysis (Supplementary 
Note 2). The substantial agreement between the results derived from 
these two datasets (that is, HadISD and Berkeley) emphasizes the strong 
representativeness of our used urban stations and the high accuracy 
of the generated urban HI dataset (Supplementary Fig. 24). Moreover, 
recognizing that different indices have varying sensitivities to humid-
ity and air temperature75, we examined the potential influence of index 
choice on assessing urban heat stress trends. This examination involved 
selecting two additional heat indexes for comparative analyses: the 
Wet-Bulb Globe Temperature in shade conditions at stable wind (that 
is, indoor WBGT) and the Humidex as recommended by the Meteoro-
logical Service of Canada (Supplementary Note 3). We first generated 
1-km urban time series datasets for both indoor WBGT and Humidex 
to parallel our HI dataset and then quantified urban heat stress trends 
using these alternative indices. The results indicated that although 
there were numerical differences in trends across these indices (that 
is, HI, indoor WBGT and Humidex), their spatial patterns largely align, 
strongly reinforcing the reliability of our primary conclusions (Sup-
plementary Figs. 3 and 25 and Supplementary Note 3).

Evaluation of browning effects on urban heat stress trends
Urban heat stress trends result from a multifaceted interplay of 
background climate change (BCC), urban greenness change (UGC) 
and urbanization processes (URB)15,55,76. Disentangling these inter-
twined factors presents considerable challenges. Previous studies 
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have introduced two effective methodologies to isolate the individual 
contributions of these factors, that is, the spatial reference method and 
the space-for-time substitution strategy15,18,77,78. The spatial reference 
method heavily relies on stable vegetation cover in available reference 
pixels79, a resource that may be scarce in rapidly urbanizing areas. Given 
this limitation, we adopted the space-for-time method to isolate the 
individual contributions of BCC, UGC and URB77,80. This strategy utilizes 
the least square-based statistical method27,28 to decompose the yearly 
changes in urban HI into contributions from BCC, UGC and URB. Each 
city’s HI change was modeled as a linear combination of these factors, 
as given by equation (1):

ΔHI = εBCC × ΔHIBCC + εURB × ΔHIURB + εUGC × ΔHIUGC + ε4 (1)

where ΔHI denotes the yearly changes in urban HI (that is, the difference 
in urban HI between a certain year and its previous year) for a given 
city; ΔHIBCC, ΔHIURB and ΔHIUGC denote the ΔHI attributed to BCC, URB 
and UGC factors, respectively; εBCC, εURB and εUGC are the corresponding 
scale factors; and ε4 is the residual error term.

For each city, the ΔHIBCC was directly estimated using the yearly 
changes in rural HI derived from ERA5-Land reanalysis data. We defined 
the rural surroundings as the region between the 10-km and 100-km 
buffers outside the urban boundary in 2018 (ref. 81). The ΔHIURB was 
characterized using the change in urban population density (POP) 
and was quantified with the space-for-time strategy69,80. We first estab-
lished a linear relationship between the yearly urban HI changes and 
POP changes (denoted by the logarithm of POP) throughout the study 
period, using all pixels within the urban boundary. The ΔHIURB was then 
determined based on this linear relationship and city-level urban POP 
changes each year. The ΔHIUGC was also quantified using the space-for-
time method. For each city, we first established a linear relationship 
between the yearly HI and EVI changes throughout the study period 
using all pixels in the rural surroundings. Subsequently, the ΔHIUGC was 
calculated based on this relationship and city-level EVI changes each 
year. The HI-EVI relationship was derived from rural surfaces, primarily 
because urban HI is influenced by both URB and UGC factors, compli-
cating the accurate differentiation of their individual contributions19. 
In contrast, rural surroundings, being farther from urban surfaces, 
may be less affected by urbanization18. Thus, the HI-EVI relationship 
derived from rural surfaces can effectively alleviate the confounding 
effects of urbanization, enabling a more accurate estimation of ΔHIUGC. 
We recognize that applying the rural-based relationship to urban sur-
faces may introduce potential uncertainties due to the distinct factors 
influencing urban and rural greenness. Further discussion on this issue 
is provided in Supplementary Note 7.

Subsequently, we used the least square regression method to 
determine the scale factors (εBCC, εURB and εUGC) and the residual term 
(ε4) for each city. The urban HI trends attributable to BCC, URB and 
UGC were then estimated. We primarily focused on the UGC-induced 
variations in urban HI trends (termed βHI; Fig. 3 and Supplementary  
Fig. 26), calculated using equation (2):

βHI = KHI ×
|εUGC × ΔHIUGC|

|εBCC × ΔHIBCC| + |εURB × ΔHIURB| + |εUGC × ΔHIUGC| + |ε4|
(2)

where KHI denotes urban HI trends.

Identifying cities deserving the most urgent intervention
Variations in urban HI (βHI) induced by vegetation loss across Global 
South cities are associated with intricate physical and socio-economic 
interactions82. Considering the resource and technology constraints in 
these regions6,7, it is imperative to prioritize cities that require urgent 
intervention. Accordingly, our study examined the correlations 
between βHI and various physical, physiological and socio-economic 

indicators to identify cities in dire need of action. This was achieved 
using four-quadrant plots of βHI against each indicator, with quadrant 
thresholds determined by their mean values across all countries (Sup-
plementary Tables 1–3). It is crucial to emphasize that whereas our 
focus mainly rests on high-risk case cities, this does not diminish the 
importance of addressing vulnerabilities in other cities.

From a physical perspective, βHI is closely linked to the magni-
tude of urban browning (KEVI). However, a simplistic linear correlation 
between βHI and KEVI does not suffice due to the complex sensitivity 
of heat stress to vegetation loss. To decipher this intricacy across 
Global South cities, we analyzed country-level relationships between 
βHI and KEVI (Supplementary Table 1), identifying two distinct clusters  
(Supplementary Note 8). (1) Countries with low sensitivity of heat 
stress trends to browning, indicated by higher KEVI but relatively lower 
βHI. (2) Countries with high sensitivity of heat stress trends to brown-
ing, evidenced by lower KEVI yet relatively higher βHI. Cities in the latter 
cluster of countries necessitate imperative interventions to manage 
vegetation loss for mitigating heat stress.

From a physiological viewpoint, many cities in the Global South 
are nearing human tolerance limits with their baseline HI values3  
(Supplementary Fig. 27). In these contexts, a minor increase in βHI can 
dramatically exacerbate extreme weather events and heat-related 
health impacts83. To contextualize the βHI values within specific climatic 
background of each city, we assessed the relationship between βHI and 
the absolute baseline urban HI at the country level (Supplementary 
Table 2). This analysis yielded a distinct category of countries with both 
higher βHI and baseline urban HI values (Supplementary Note 8). For cit-
ies within this category of countries, even a minor rise in βHI can result 
in a substantial surge in heat stress, highlighting the need for urgent 
interventions to prevent reaching a thermal tipping point.

From a socio-economic standpoint, browning-induced variations 
in urban HI (βHI) are probably linked to economic development associ-
ated with urbanization. We examined the country-level relationship 
between βHI and urban economic growth (measured by the percent-
age increase in per capita GDP throughout the study period) to guide 
targeted interventions (Supplementary Table 3). This analysis yielded 
two pivotal categories of countries (Supplementary Note 8): those with 
slower economic growth but larger βHI and those experiencing rapid 
economic growth but modest βHI. The former requires immediate 
action to reduce βHI through improved urban planning, whereas the 
latter provides valuable insights into balancing economic development 
and thermal environmental degradation.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
In situ hourly surface air temperature and relative humidity measure-
ments provided by the HadISD dataset are available at https://www.
metoffice.gov.uk/hadobs/hadisd/v341_202403p/download.html. In 
situ monthly surface air temperatures obtained from the Berkeley 
Earth dataset are available at https://berkeleyearth.org/data/. The 
land surface temperature data from the MYD11A2 product are avail-
able at https://developers.google.cn/earth-engine/datasets/catalog/
MODIS_061_MYD11A2. The enhanced vegetation index data from the 
MOD13A2 product are available at https://developers.google.cn/earth-
engine/datasets/catalog/MODIS_061_MOD13A2. The white sky albedo 
data from the MCD43A3 product are available at https://developers.
google.cn/earth-engine/datasets/catalog/MODIS_061_MCD43A3. 
The land-cover-type data from the MCD12Q1 product are available 
at https://developers.google.cn/earth-engine/datasets/catalog/
MODIS_061_MCD12Q1. The ERA5-Land Monthly Aggregated climate 
reanalysis dataset is available at https://developers.google.cn/earth-
engine/datasets/catalog/ECMWF_ERA5_LAND_MONTHLY_AGGR.  
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The gridded population count data from the LandScan dataset are 
available at https://developers.google.com/earth-engine/datasets/
catalog/projects_sat-io_open-datasets_ORNL_LANDSCAN_GLOBAL. 
The GDP per capita data from the Gridded Global GDP and HDI datasets 
are available at https://gee-community-catalog.org/projects/grid-
ded_gdp_hdi/. The global urban boundary dataset is available at https://
data-starcloud.pcl.ac.cn/zh/resource/14. The global administrative 
boundary data are available at https://gadm.org/download_world.html.

Code availability
The analysis was primarily conducted using the Google Earth Engine 
platform (https://code.earthengine.google.com/), Python (Version 
3.8) and MATLAB (Version R2019a). The random forest algorithm was 
performed on the Google Earth Engine platform. All the necessary 
codes can be accessed through GitHub (https://github.com/HuilinDu/
GS_UrbanHeating). For assistance with executing the codes, please 
contact the corresponding authors.
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Study description Our current study, employing a novel methodological approach and a comparative spatial perspective, offers critical insights into the 
spatiotemporal patterns of urban heat stress trends, the influence of urban browning, and their broader implications for urban 
governance and sustainability within the Global South.

Research sample This study selected 2,341 cities in the Global South for analysis.

Sampling strategy Across the Global South, all cities with an urban area exceeding 10 km2 in 2000 were selected by us according to the Global 
Boundary Dataset. These selected cities span various sub-continents, diverse population sizes, as well as different economic statuses.

Data collection All the MODIS products, reanalysis materials, and socioeconomic data are publicly available on the Google Earth Engine (GEE) 
platform (https://developers.google.cn/earth-engine/datasets/catalog/). The global urban boundary dataset is available at https://
data-starcloud.pcl.ac.cn/zh/resource/14. The in-situ hourly surface air temperature and relative humidity measurements are 
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Spatial scale: 2,341 cities in the Global South.

Data exclusions No data were excluded from the analysis

Reproducibility All attempts to repeat the experiment were successful.
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and well accepted in urban studies across the globe.
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