nature cities

Supplementary information

https://doi.org/10.1038/s44284-024-00184-9

Exacerbated heat stress induced by urban browning in the Global South

In the format provided by the authors and unedited

1	Table of contents
2	A. Supplementary Notes
3	Note S1: Validation of urban HI estimates and associated trends, as well as the potential
4	impacts of urban HI estimation errors on calculating $K_{\rm HI}$ and $\beta_{\rm HI}$
5	Note S2: Impacts from the limited number of urban stations on the accuracy of generated
0	I-km resolution urban HI dataset/
1	Note S3: Possible uncertainties related to the choice of urban heat stress indices
8	Note S4: Country-level assessment of the inequality in $\beta_{\rm HI}$ across the Global South 12
9	Note S5: Quantifying the increase in the number of 'Danger' days in Malaysian cities
10	due to vegetation loss
11	Note S6: Insights from China's and India's greening efforts for cooling cities
12	Note S7: Limitations of this study17
13	Note S8: Country typologies identified through four-quadrant plots from physical,
14	physiological, and socioeconomic perspectives18
15	B. Supplementary Figures19
16	Fig. S1 Global distribution of meteorological stations
17	Fig. S2 Overall framework of our proposed method
18	Fig. S3 Spatiotemporal patterns of urban warming rates quantified based on various
19	temperature metrics across Global South cities
20	Fig. S4 Spatiotemporal patterns of $K_{\rm HI}$ for urban transitional zones across the Global
21	South
22	Fig. S5 Contributions of background climate, urbanization, and urban greenness change
23	factors to K _{HI} across Global South cities24
24	Fig. S6 Background climate change across the Global South derived from ERA5-Land
25	reanalysis data
26	Fig. S7 Spatiotemporal patterns of $K_{\rm HI}$ across the four countries characterized by the
27	highest mean K _{HI} values26
28	Fig. S8 Spatiotemporal patterns of the trends in urban greenness across Global South
29	and North cities and their associated mean values
30	Fig. S9 Statistics of K _{EVI} across cities within different geographical regions
31	Fig. S10 Browning-induced $K_{\rm HI}$ attributable to the warming effect of surface air
32	temperature and drying effect of humidity across Global South cities
33	Fig. S11 Spatiotemporal patterns of urban browning-induced K _{HI} in cities of Global
34	South and Global North, and their contrasts in mean $\beta_{\rm HI}$ statistics
35	Fig. S12 Relationships between baseline EVI and urban greenness trend, as well as
36	between EVI _{base} and browning-induced urban HI trends during summer daytime across
37	Global South countries
38	Fig. S13 Country-level statistics of $\beta_{\rm HI}$ in Global South cities and associated national
39	inequalities quantified using the Gini index
40	Fig. S14 Categorization of city sizes based on quartiles of urban population density,
41	termed small cities, medium cities, large cities, and megacities, respectively35
42	Fig. S15 Number of valid observation days of LST, EVI, and WSA, and their associated
43	proportions across Global South cities
44	Fig. S16 Spatiotemporal patterns of annual mean $K_{\rm HI}$ in urban Global South
45	Fig. S17 Distribution of urban stations employed for generating 1-km resolution urban
46	HI for Global South cities
47	Fig. S18 Urban HI maps with 1-km spatial resolution for summer daytime in typical
48	cities of the Global South
49	Fig. S19 Similar to Fig. S18, but for the nighttime case
50	Fig. S20 Accuracy assessments of urban HI and its associated trends across Global
51	South cities
52	Fig. S21 Accuracy assessment of $K_{\rm HI}$ across the Global South cities 42
53	Fig. S22 Accuracy assessments of urban HI across cities in each sub-continent
54	Fig. S23 Accuracy assessments of urban HI trends across cities in each sub-continent.44

55	Fig. S24 Possible uncertainties arising from the relatively limited and sparsely
56	distributed urban stations46
57	Fig. S25 Spatiotemporal patterns of urban browning-induced heat stress trends
58	quantified using various temperature or heat indices across Global South cities
59	Fig. S26 Spatiotemporal patterns of $\beta_{\rm HI}$ for urban transition zones across the Global
60	South
61	Fig. S27 Spatiotemporal patterns of urban HI across Global South cities
62	Fig. S28 Potential impacts from urban HI estimation error on the quantification of $K_{\rm HI}$
63	and $\beta_{\rm HI}$
64	Fig. S29 Statistical characteristics of urban browning-induced heat trends quantified
65	using various temperature indices
66	Fig. S30 Spatiotemporal patterns of the trends in urban surface air temperature, relative
67	humidity, and specific humidity across Global South cities
68	Fig. S31 Statistical relationships between $\beta_{\rm HI}$ and its corresponding inequality at the
69	national scale
70	C. Supplementary Tables55
71	Table S1 Country typologies depicting the relationships between K_{EVI} and β_{HI}
72	Table S2 Country typologies depicting the relationships between urban HI and β_{HI} 56
73	Table S3 Country typologies depicting the relationships between economic growth and
74	β _{HI}
75	D. Supplementary References
76	

78 A. Supplementary Notes

79 Note S1: Validation of urban HI estimates and associated trends, as well as the

80 potential impacts of urban HI estimation errors on calculating K_{HI} and β_{HI}

- 81 We evaluated the accuracy of the generated urban heat index (HI) dataset by
- 82 conducting cross-validations with *in-situ* observations, concentrating on both absolute
- 83 values and temporal trends ($K_{\rm HI}$; Supplementary Figs. 20 to 23). This validation
- 84 process involved calculating four error metrics, i.e., correlation coefficient (R), root

85 mean square error (RMSE), mean absolute error (MAE), and bias, between the

86 observed and estimated urban HI values as well as their trends.

87

88 Regarding absolute urban HI, we used 80% of *in-situ* observation records for training

random forest (RF) models and the remaining 20% for validation. This method

90 yielded 3273 and 2765 observation records for daytime and nighttime validation,

91 respectively. Our assessments revealed high accuracy of absolute urban HI estimates

92 across Global South cities, with an *R* value of 0.98 for both daytime and nighttime, an

93 RMSE value of 1.11 °C for daytime and 0.86 °C for nighttime, an MAE value of

94 0.82 °C for daytime and 0.62 °C for nighttime, and a bias of -0.006 °C for daytime

95 and 0.007 °C for nighttime (Supplementary Fig. 20a,b). Across various sub-

96 continents, our accuracy assessments revealed the biases of -0.003 °C for daytime

97 and -0.006 °C for nighttime in Asian cities, -0.04 °C for daytime and 0.04 °C for

- 98 nighttime in Latin American cities, and 0.03 °C for daytime and 0.07 °C for nighttime
- 99 in African cities (Supplementary Fig. 22). These biases only account for less than 1%
- 100 of the observed urban HI values in Asian, Latin American, and African cities,

101 respectively.

103	Regarding $K_{\rm HI}$, we employed urban stations with complete records across all years for
104	validation, totaling 553 and 366 stations for daytime and nighttime validation,
105	respectively (Supplementary Fig. 20c,d). We compared the observed urban $K_{\rm HI}$
106	derived from ground-based measurements with predicted values from model
107	estimations at corresponding pixel locations of urban stations. Our evaluations
108	indicated slightly lower accuracy of $K_{\rm HI}$ compared to the absolute urban HI, with an R
109	value of 0.82 for daytime and 0.74 for nighttime, an RMSE value of 0.58 $^{\circ}$ C/decade
110	for daytime and 0.45 °C/decade for nighttime, an MAE value of 0.40 °C/decade for
111	daytime and 0.32 °C/decade for nighttime, and a bias of -0.12 °C/decade for daytime
112	and -0.10 °C/decade for nighttime. Concerning sub-continents, our assessments
113	revealed biases in $K_{\rm HI}$ of -0.16 °C/decade for daytime and -0.15 °C/decade for
114	nighttime in Asian cities, -0.04 °C/decade for daytime and 0.12 °C/decade for
115	nighttime in African cities, and -0.02 °C/decade for daytime and -0.01 °C/decade for
116	nighttime in Latin American cities (Supplementary Fig. 23). These biases represent
117	approximately 26%, 24%, and 5% of the observed urban $K_{\rm HI}$ in Asian, African, and
118	Latin American cities, respectively. The relatively larger estimation biases observed in
119	Asian and African cities are likely attributable to the more rapid urbanization in these
120	regions over recent decades ¹ , which may result in disturbances to their ground-based
121	observations in urban areas, such as through the relocation of monitoring stations ² .
122	
123	We further investigated the impacts of urban HI estimation error by re-examining the
124	$K_{\rm HI}$ and browning-induced $K_{\rm HI}$ ($\beta_{\rm HI}$) using an error injection strategy ³ . Specifically, we
125	first generated a random error field with 1-km resolution based on the absolute MAE
126	of urban HI as mentioned above (i.e., 0.82 °C for daytime and 0.62 °C for nighttime),

127 with the generated errors normally distributed with a mean of $0.0 \,^{\circ}$ C and with

128	standard deviations of 0.82 °C and 0.62 °C for daytime and nighttime, respectively.
129	Secondly, we re-produced a new urban HI dataset by superimposing this 1-km
130	resolution random error field on the original 1-km urban HI dataset. Finally, we re-
131	examined the $K_{\rm HI}$ and $\beta_{\rm HI}$ across Global South cities using this newly generated urban
132	HI dataset, and compared them with the original results (Supplementary Fig. 28). Our
133	evaluations show that the $K_{\rm HI}$ quantified based on this error-perturbed HI dataset is
134	0.43 ± 0.01 °C/decade during the day and 0.39 ± 0.01 °C/decade at night
135	(Supplementary Fig. 28a,c), deviating from the original results of < 0.01 °C/decade.
136	Additionally, the $\beta_{\rm HI}$ estimated based on these error-perturbed HI values is 0.021 ±
137	0.002 °C/decade for both daytime and nighttime, also on well par with the original
138	estimates (Supplementary Fig. 28b,d). These assessments strongly support the
139	reliability of the generated urban HI dataset and the main findings of this study.
140	

141 In practice, these significantly reduced estimation errors at the global scale compared 142 to those encountered at the per-pixel scale can be elucidated through the Bessel formula^{4,5} $\left(\frac{\delta}{\sqrt{n-1}}\right)$, with *n* denoting the sample number and δ representing the error for 143 144 an individual pixel). This formula suggests that the impact of individual sample errors 145 could be mitigated through extensive averaging processes. For our current study, we 146 first averaged the HI of all available urban pixels for a city to quantify the city-scale 147 HI trend. Then, we aggregated these city-scale trends into global or regional 148 composites to reveal large-scale spatial patterns. These multi-averaging processes 149 could help dampen the impact of estimation error on HI trends at larger scales. Studies 150 that quantify global warming rates also evidence the significantly reduced estimation 151 error by multi-averaging processes. For instance, the global surface air temperature 152 has shown an average increase of around 0.11 °C/decade since 1850 (ref. 6). While

153	the error associated with ground-based surface air temperatures from weather stations	
154	is also of a comparable magnitude (i.e., around 0.1 $^{\circ}$ C), this does not imply that the	
155	influence of site observation error would exert a similar impact on the quantification	
156	of global warming rates.	
157		
158		
159		

160 <u>Note S2</u>: Impacts from the limited number of urban stations on the accuracy of

161 generated 1-km resolution urban HI dataset

162 This study integrated *in-situ* measurements from > 9600 weather stations sourced 163 from the HadISD dataset to generate urban HI datasets at 1-km resolution for Global 164 South cities. One might raise concerns about the relatively sparse distribution of our 165 incorporated weather stations within these cities (Supplementary Fig. 1b), which may 166 introduce potential uncertainties into the estimation of urban HI due to high urban 167 heterogeneity. To address this, we performed an additional sensitivity analysis by 168 incorporating data from the Berkeley Earth dataset. Unlike HadISD, Berkeley Earth 169 offers a more extensive collection of ground-based observations globally (>47,000 170 stations), with 3304 stations located on urban surfaces in the Global South -2.5 times the number in HadISD⁷ (Supplementary Fig. 1b). However, the Berkeley Earth dataset 171 172 solely provides *in-situ* surface air temperature (SAT) measurements and lacks 173 humidity data, precluding a direct assessment of the impact of urban station density 174 on the calculation of $K_{\rm HI}$. Consequently, we first generated 1-km resolution urban SAT 175 datasets across Global South cities using both the Berkeley Earth and HadISD 176 datasets, and then compared the urban warming rates (K_{SAT}) derived from these two 177 sources.

178

179 Our evaluations demonstrate that the K_{SAT} derived from both the Berkeley Earth and

180 HadISD datasets exhibits remarkably similar spatial patterns and values across Global

181 South cities (Supplementary Fig. 24). The numerical differences between them are

182 only 0.01 °C/decade during the day (0.31 °C/decade for Berkeley Earth and

183 0.32 °C/decade for HadISD) and 0.03 °C/decade at night (0.31 °C/decade for

184 Berkeley Earth and 0.28 °C/decade for HadISD). This close alignment could be

- 185 attributed to the relatively uniform distribution of weather stations provided by the
- 186 HadISD dataset across all geographic regions in the Global South, thereby ensuring
- 187 the accuracy of the generated 1-km resolution urban HI time-series data.

190 <u>Note S3</u>: Possible uncertainties related to the choice of urban heat stress indices

- 191 In this study, we utilized the widely recognized Heat Index (HI; equations 1 and 2) as
- a metric to characterize the trends in heat stress across cities in the Global South. One
- 193 may argue that the choice of heat stress metric could impact the main findings. To
- address this concern, we conducted a sensitivity analysis by introducing the Wet-Bulb
- 195 Globe Temperature in shade conditions at stable wind (i.e., indoor WBGT; equation 3;
- 196 ref. 8), and the Humidex recognized by the Meteorological Service of Canada $^{9-12}$
- 197 (equation 4). Following a similar approach as with HI, we initially generated 1-km

198 urban datasets for indoor WBGT and Humidex across Global South cities.

- 199 Subsequently, we quantified their long-term trends (*K*_{WBGT} and *K*_{Humidex}) and the
- 200 impacts of vegetation loss on these trends (β_{WBGT} and $\beta_{Humidex}$), and compared them
- 201 with those obtained from our primary metric (i.e., HI).
- 202
- 203 Our sensitivity analysis reveals that alternative indices (i.e., HI, indoor WBGT, and
- Humidex) yield consistent overall spatial patterns for both urban heat stress trends and
- browning-induced impacts (Supplementary Figs. 3 and 25). Regarding magnitudes,
- 206 daytime and nighttime K_{WBGT} are 0.18 °C/decade and 0.25 °C/decade, respectively
- 207 (Supplementary Fig. 3e,f), while for K_{Humidex} , these values translate to 0.36 °C/decade
- 208 during the day and 0.46 °C/decade at night (Supplementary Fig. 3g,h). Moreover, the
- 209 daytime and nighttime β_{WBGT} are 0.009 °C/decade and 0.011 °C/decade, respectively,
- 210 and those of β_{Humidex} are 0.017 °C/decade and 0.019 °C/decade, respectively
- 211 (Supplementary Fig. 29). The observed disparities across these three indices may stem
- 212 from their varying sensitivities to air temperature (SAT) and humidity (RH). HI and
- 213 Humidex, which place greater emphasis on air temperature and relatively less on
- 214 humidity^{13,14}, exhibit more pronounced trends than WBGT (Supplementary Fig. 30).

- 215 Our current study did not utilize Humidex due to its dimensionless nature¹⁵, limiting
- 216 its comparability with other temperature and heat stress indices. Furthermore, the
- standard WBGT, rather than indoor WBGT, was not selected because its computation
- 218 incorporates additional intricate meteorological parameters such as wind speed and
- 219 radiation¹⁶, which are challenging to obtain over urban landscapes from observations.
- 220 We recommend practitioners carefully consider their research objectives and data
- accessibility when selecting heat stress metrics to ensure optimal decision-making and
- application.
- 223

Equation for calculating HI:

225

$$\begin{aligned}
HI &= A + B + C - D - E - F + G + H - I \\
A &= -42.379 \\
B &= 2.04901523 \times SAT \\
C &= 10.14333127 \times RH \\
D &= 0.22475541 \times SAT \times RH \\
E &= 6.83783 \times 10^{-3} \times SAT^2 \\
F &= 5.481717 \times 10^{-2} \times RH^2 \\
G &= 1.22874 \times 10^{-3} \times SAT^2 \times RH \\
H &= 8.5282 \times 10^{-4} \times SAT \times RH^2 \\
I &= 1.99 \times 10^{-6} \times SAT^2 \times RH^2
\end{aligned}$$
(1)

where SAT and RH denote surface air temperature (°F) and relative humidity (%),

- respectively. Adjustments were made according to various SAT and RH ranges¹⁷.
- 228 When the average of HI and SAT values is less than 80 °F, we quantified HI using the
- following equation:

230
$$HI = 0.5 \times [SAT + 61 + [(SAT - 68) \times 1.2] + (0.094 \times RH)]$$
(2)

- 231
- **232** Equation for calculating indoor WBGT:

233

$$\begin{cases}
WBGT = 0.7 \times T_w + 0.3 \times SAT \\
T_w = A + B - C + D - E \\
A = SAT \times tan^{-1}[0.151977(RH + 8.313659)^{1/2}] \\
B = tan^{-1}(SAT + RH) \\
C = tan^{-1}(RH - 1.676331) \\
D = 0.00391838(RH)^{3/2} tan^{-1}(0.023101RH) \\
E = 4.686035
\end{cases}$$
(3)

- 234 where T_w , SAT, and RH denote wet bulb temperature (°C), surface air temperature
- 235 (°C), and relative humidity (%), respectively.

237 Equation for calculating Humidex:

238	Humidex = SAT + 0.5555 × (6.11 × $e^{5417.753 \times (\frac{1}{273.16} - \frac{1}{273.15 + T_d})} - 10$) (4)

- 239 where T_d denotes dewpoint temperature (°C) and was quantified using SAT (°C), and
- 240 RH (%).
- 241
- 242
- 243

244 <u>Note S4</u>: *Country-level assessment of the inequality in* β_{HI} *across the Global South* 245 To reveal the inequality of urban heat stress trends induced by urban browning (β_{HI}), 246 we conducted a country-level assessment of the Gini coefficient^{10,18,19} of β_{HI} (termed 247 Gini_{β}), as per equation (5):

248 $\operatorname{Gini}_{\beta} = 1 - 2 \int_{0}^{1} L(\beta) d\beta$ (5)

249 where $L(\beta)$ represents the Lorenz curve of β_{HI} . For each country, we normalized the 250 β_{HI} for all cities into the (0, 1) range and arranged them in the ascending order. The 251 cumulative value of $\beta_{\text{HI}}(0, 1)$ was then calculated, based on which the Lorenz curve of 252 β_{HI} was represented as the graphical relationship between cumulative $\beta_{\text{HI}}(0, 1)$ and the 253 cumulative number of cities. Among different countries, larger Gini_{β} values suggest 254 greater inequality in β_{HI} . Our analysis was limited to countries with at least ten cities 255 to ensure statistical validity.

256

257 Our analysis reveals a positive correlation between country-level Gini_{β} and $\beta_{\rm HI}$

258 (Supplementary Fig. 31). Notably, cities in Ghana and Vietnam stand out with both

259 larger β_{HI} (> 0.050 °C/decade; Fig. 13a,d) and higher Gini_{β} (> 0.40; Fig. 13b,e).

260 Interestingly, we reveal a declining triangular relationship between $Gini_{\beta}$ and GDP per

261 capita across Global South countries (Fig. 13c,f). Specifically, $Gini_{\beta}$ exhibits a wide

range of values in economically disadvantaged countries (e.g., > 0.40 in Nigeria and

263 Vietnam, < 0.25 in Pakistan and India). In contrast, its values remain in a lower range

as economic status improves. Notably, countries like Nigeria, Colombia,

265 Turkmenistan, and Chile exhibit higher $Gini_{\beta}$ when compared with their peers of

similar economic status (Fig. 13c,f). This result may indicate disproportional green

space loss and a lack of planning and management, underscoring the urgency of

268 drawing attention to these specific cases.

270 *cities due to vegetation loss*

271 Our analysis shows that cities of Malaysia exhibit a daytime β_{HI} of 0.057 °C/decade.

272 Situated in tropical climates, these cities face high risks associated with urban

273 overheating. In this context, β_{HI} has the potential to increase the number of 'Danger'

274 days (HI > 41 °C; ref. 20), owing to the high sensitivity of the frequency of high

275 temperatures to changes in the mean value 21,22 .

276

277 We further examined the $\beta_{\rm HI}$ -induced increase in 'Danger' days in Malaysian cities 278 over the past two decades. Specifically, we first screened in-situ SAT and RH 279 observations obtained from the HadISD dataset through rigorous quality control 280 procedures (see Materials and methods), and quantified daily HI during summer 281 daytime for all urban stations. We labeled those days with HI above 41 °C as 'Danger'²⁰. To examine the $\beta_{\rm HI}$ -induced increase in 'Danger' days, we first conducted 282 283 an overlay analysis by combining the $\beta_{\rm HI}$ -induced HI amplification and the original 284 yearly HI, and then re-identified the number of 'Danger' days with HI exceeding 285 41 °C. Subsequently, we quantified the difference between these two identified heat 286 day numbers and examined the urban browning-induced increase in 'Danger' days in 287 Malaysian cities. Our analysis shows that the days labeled as 'Danger' have increased 288 from 1908 to 1964 (i.e., 56 days) in all Malaysian cities from 2003 to 2020. 289 290

292 <u>Note S6</u>: Insights from China's and India's greening efforts for cooling cities

293 Our assessments reveal that over the past two decades, China's and India's cities have 294 undergone significant economic growth (Fig. 4c), yet accompanied by either 295 greening-induced cooling or marginal warming (Fig. 3a,b; Fig. 4c). In China, this is 296 likely driven by a nationwide policy framework that prioritizes the protection of green 297 infrastructure during urbanization, often referred to as 'ecological civilization 298 construction'. Examples include the National Garden City program initiated in 1992 299 and its upgrade iterations²³, the 2004 National Forest City program alongside relevant regulations²⁴, the 2014 Sponge City urban planning program²⁵, and the 2016 National 300 301 Ecological Garden City program²⁶, which incentivize local authorities to protect and 302 cultivate urban green spaces, and has effectively mitigated excessive heat within 303 urban surfaces. Likewise, India has implemented national policies like the 2014 Urban 304 Greening Guidelines²⁷, accompanied by localized initiatives including city-specific 305 greening programs and ecological restoration projects²⁸. While these successful 306 national policies may not be directly translatable to other Global South countries due 307 to differing socio-political and economic contexts, the context-specific, nature-308 inspired insights and solutions from greening efforts in many Chinese and Indian 309 cities can offer valuable examples for cities with similar economic statuses or 310 constrained resources.

311

Specifically, urban vegetation typically provides more significant cooling benefits in
densely populated areas²⁹. However, these areas often face limitations in space for
vegetation expansion. To address this, cities with greater economic resources can
draw valuable lessons from successful implementations in Beijing and Guangzhou,
China, and New Delhi, India. Effective strategies include repurposing abandoned or

317	degraded lands into forest parks or national parks and implementing green roofs to
318	achieve urban cooling. Additionally, bolstering government investment, providing
319	green subsidies, and adopting a balanced approach to integrating native and non-
320	native species also represent effective strategies for urban greening efforts (e.g.,
321	Bangalore, India; ref. 30).
322	
323	Conversely, in cities with more constrained resources, large-scale projects such as
324	converting abandoned mines and degraded sites may be less feasible due to socio-
325	political constraints (e.g., land use rights). In these contexts, focusing on small-scale
326	and dispersed greening strategies may be more practical ³¹ . Cities like Luoyang and
327	Nanchong in China, and Varanasi in India offer actionable pathways, including
328	planting cost-effective vegetation along roadsides, community borders, and vacant
329	plots, as well as developing micro-greenspaces and pocket parks ^{32,33,34} . In arid cities
330	with limited water resources, cultivating drought-resilient plants (e.g., Shihezi in
331	China) can be effective, while coastal cities might prioritize wind-resistant and salt-
332	tolerant species to establish protective forest belts (e.g., Fuzhou in China).
333	Economically constrained cities can also benefit from cost-effective initiatives such as
334	public awareness campaigns, urban gardening education, and affordable seedling
335	distribution ³⁵ .
336	
337	Moreover, cities with lower economic resources can adapt successful strategies from

wealthier cities to their own socio-political and economic contexts³⁶. For instance, the
C40 Cities Climate Action Planning Group, which facilitates knowledge exchange
among diverse global cities (https://www.c40.org/cities/), demonstrates how resourceconstrained cities like Rio de Janeiro and Johannesburg have successfully

342	implemented greening strategies by drawing insights from wealthier cities such as	
343	repurposing abandoned sites and fostering community engagement ^{37,38} . These	
344	examples underscore the potential for cross-city knowledge transfer to address	
345	varying economic challenges.	
346		
347	However, it is essential to note that here we only qualitatively discussed the potentials	
348	for knowledge exchange of urban greening concepts among cities to effectively	
349	mitigating urban heat. Policymakers should adapt these nature-inspired concepts and	
350	experiences to their specific local contexts to inform sustainable urban cooling	
351	solutions.	
352		
353		

.00

354 <u>Note S7</u>: *Limitations of this study*

355 We acknowledge several limitations in this study. First, our analysis of urban heat 356 stress trends is confined to the past two decades, which may be insufficient to fully 357 capture the long-terms dynamics of urban thermal environments and their interactions 358 with urban greening. This is particularly pertinent for Global South cities due to their ongoing urbanization that began several decades ago^{39,40}. Second, while the inclusion 359 360 of a scaling factor (ε_{UGC}) helps mitigate potential uncertainties arising from adapting a 361 rural-based HI-greenness relationship to urban contexts, this approach may be unable 362 to fully account for urban-rural differences owing to the more complex factors 363 influencing urban greenness (e.g., landscape patterns and phenological changes) relative to their rural counterparts^{41,42}. Additionally, urban browning results from a 364 365 multifaced interplay of various factors. However, the present study has merely 366 quantified the heat stress trends induced by overall observed urban browning, without 367 distinguishing the contributions of each specific factor. Third, substantial agricultural 368 expansion (e.g., oil palm cultivation and coffee farming) in transitional zones of many 369 Global South cities over recent decades have significantly altered regional greenness and impacted local thermal environments^{43–46}. While such agricultural activities 370 371 should have a relatively minimal impact on our primary findings that focus on urban 372 cores, they may introduce uncertainties into our analysis of urban transitional zones 373 due to the lack of differentiation between the impacts from various types of 374 cultivation expansion.

376 <u>Note S8</u>: Country typologies identified through four-quadrant plots from physical,

377 physiological, and socioeconomic perspectives

From a physical perspective, our analysis highlighted two distinct clusters of countries(Fig. 4a; Supplementary Table 1). The first cluster comprises countries indicated by

- 380 higher browning (K_{EVI}) but relatively lower browning-induced HI amplification (β_{HI}),
- 381 including Venezuela, Thailand, and Uzbekistan. Conversely, the second category
- 382 involves countries with lower K_{EVI} yet relatively higher β_{HI} , including Malaysia,
- 383 Brazil, Argentina, and Chile. From a physiological viewpoint, we pinpointed two
- 384 distinct categories of countries (Fig. 4b; Supplementary Table 2). The first category
- 385 encompasses countries with both higher $\beta_{\rm HI}$ and baseline urban HI values, including
- 386 Malaysia, Vietnam, and Indonesia. Comparatively, the second category includes
- 387 countries characterized by higher $\beta_{\rm HI}$ yet lower baseline urban HI values, including
- 388 Botswana, Ghana, Côte d'Ivoire, Colombia, Argentina, Brazil, and Mexico. From a
- 389 socioeconomic standpoint, our analysis also yielded two pivotal categories of
- 390 countries (Fig. 4c; Supplementary Table 3). The first category includes countries with
- 391 relatively slower economic growth but larger $\beta_{\rm HI}$, including Botswana, Malaysia, Côte
- d'Ivoire, Colombia, Brazil, and Mexico. In contrast, the second category consists of
- 393 countries experiencing more rapid economic growth but modest β_{HI} , including China,
- 394 India, Peru, Turkmenistan, and Uzbekistan.
- 395
- 396

399

400 Fig. S1 | Global distribution of meteorological stations. Distributions of urban and

401 rural stations provided by Berkeley Earth dataset (a) and HadISD dataset (c);

402 proportions of urban and rural stations accounting for all meteorological stations (b

- 403 and d); proportions of urban stations within the Global South and Global North (b and
- 404 d).
- 405
- 406

408 Fig. S2 | Overall framework of our proposed method. This involves three main parts, i.e., mapping urban 409 heat stress trends ($K_{\rm HI}$) in the Global South (*Part 1*), quantification and analysis of vegetation loss-induced

410	impacts on K_{HI} (<i>Part 2</i>), and identification of Global South cities or countries in dire need of intervention to
411	mitigate heat stress induced by urban browning (Part 3). Part 1 further includes the generation of 1-km
412	resolution urban HI dataset from 2003 to 2020, validation of the accuracy of urban HI and its long-term
413	trend, as well as the examination of spatiotemporal patterns of $K_{\rm HI}$ across Global South cities.
414	

416

417 Fig. S3 | Spatiotemporal patterns of urban warming rates quantified based on 418 various temperature metrics across Global South cities. Urban warming trends 419 derived from satellite urban land surface temperature observations (termed K_{LST} ; a 420 and b), urban surface air temperature data (termed K_{SAT} ; c and d), wet-bulb globe 421 temperature in shade conditions at stable wind (termed K_{WBGT} ; e and f), Humidex 422 (termed $K_{Humidex}$; g and h), and HI (termed K_{HI} ; i and j).

424 Fig. S4 | Spatiotemporal patterns of *K*_{HI} for urban transitional zones across the

423

429 Fig. S5 | Contributions of background climate (BCC), urbanization (URB), and

430 urban greenness change (UGC) factors to *K*_{HI} across Global South cities. (a to c)

- 431 display the daytime case, while (**d** to **f**) display the nighttime case.
- 432
- 433

435 Fig. S6 | Background climate change across the Global South derived from

436 ERA5-Land reanalysis data. Trends in SAT (K_{SAT}; a and b), RH (K_{RH}; c and d), and

- 437 HI (K_{HI} ; e and f) of rural background.
- 438
- 439

441 Fig. S7 | Spatiotemporal patterns of *K*_{HI} across the four countries characterized

- 443 denote the nighttime case.
- 444

447 Fig. S8 | Spatiotemporal patterns of the trends in urban greenness (*K*_{EVI}) across

448 Global South and North cities and their associated mean values. (a and c) are for

449 urban cores, while (**b** and **d**) are for urban transitional zones. In subplots (**c**) and (**d**),

450 the sample sizes of cities in the Global North and Global South are 3302 and 2341,

451 respectively. The circle denotes the mean value, while the upper and lower bounds of

452 whiskers represent the 95% confidence interval.

453

446

456 Fig. S9 | Statistics of K_{EVI} across cities within different geographical regions. K_{EVI} 457 in cities within various sub-continents in Global South (a for urban core and b for 458 urban transition zone). K_{EVI} across cities with different population sizes (termed 459 small, medium, large, and megacities, respectively; c for urban core and d for urban 460 transition zone); K_{EVI} across cities with diverse economic status, including low 461 income (LIC), low-middle income (LMIC), upper middle income (UMIC), and high 462 income (HIC) cities (e for urban core and f for urban transition zone). The center line 463 of the box represents the mean, while the lower and upper lines denote 0.5 standard 464 deviations (SD) below and above the mean, respectively. The lower and upper bounds

- 465 of the whiskers indicate one SD below and above the mean, respectively. In subplots
- (a) and (b), the sample sizes of cities in the Central AS, West AS, East AS, South AS,
- 467 Southeast AS, Middle AF, North AF, South AF, West AF, East AF, Caribbean, Central
- 468 AM, and South AM are 64, 88, 902, 288, 118, 22, 142, 117, 80, 34, 25, 112, and 336,
- 469 respectively. In subplots (c) and (d), the sample sizes of small, medium, large, and
- 470 mega cities are 1596, 397, 229, and 119, respectively. In subplots (e) and (f), the
- 471 sample sizes of LIC, LMIC, UMIC, and HIC cities are 20, 189, 1125, and 1007,
- 472 respectively.
- 473
- 474

476 Fig. S10 | Browning-induced *K*_{HI} attributable to the warming effect of surface air

477 temperature (SAT) and drying effect of humidity (RH) across Global South

- 478 cities. (a) and (b) are for daytime, and (c) and (d) are for nighttime.
- 479

481 Fig. S11 | Spatiotemporal patterns of urban browning-induced $K_{\rm HI}$ (termed $\beta_{\rm HI}$)

482 in cities of Global South and Global North, and their contrasts in mean $\beta_{\rm HI}$

483 statistics. (a and c) are for daytime, and (b and d) are for nighttime. In subplots (c)

484 and (d), the circle denotes the mean value, while the upper and lower bounds of

485 whiskers represent the 95% confidence interval. In subplot (c), the sample sizes for

486 cities in the Global North and Global South are 3246 and 2321, respectively; while in

487 subplot (d), the sample sizes for cities in the Global North and Global South are 3194

488 and 2261, respectively.

489

492 Fig. S12 | Relationships between baseline EVI (EVI_{base}) and urban greenness

494 trends ($\beta_{\rm HI}$; b) during summer daytime across Global South countries. The *r* and

495 *p* values are obtained from a two-sided *t*-test with no adjustments.

Fig. S13 | Country-level statistics of β_{HI} in Global South cities and associated national inequalities quantified using the Gini index (Gini_{β}). β_{HI} and corresponding Gini_{β} for each country during daytime (a and b) and nighttime (d and e); Scatterplots illustrating the relationship between Gini_{β} and GDP per capita

- 501 for all countries during daytime (c) and nighttime (f). Only the countries with ten or more selected cities
- 502 were included in this analysis to ensure statistical significance of the estimated β_{HI} values.

504 Fig. S14 | Categorization of city sizes based on quartiles of urban population

505 density, termed small cities (< 630 persons/km²), medium cities (630–1,977

506 persons/km²), large cities (1,977–4,430 persons/km²), and megacities (> 4,430

507 persons/km²), respectively.

Fig. S15 | Number of valid observation days of LST, EVI, and WSA, and their associated proportions
(i.e., the ratio of actual observation days to the maximum possible observation days assuming no
missing data) across Global South cities. To eliminate possible impacts arising from cloud contamination
or other factors, we only extracted LST observations with a retrieval error of 3.0 K or less based on quality-

514 control bitmask layer, and further utilized these LST observations to mask WSA and EVI observations.

516 Fig. S16 | Spatiotemporal patterns of annual mean *K*_{HI} in urban Global South.

- 517 (a) is for daytime and (b) is for nighttime.
- 518

520 Fig. S17 | Distribution of urban stations employed for generating 1-km resolution

521 urban HI for Global South cities. (a) is for daytime and (b) is for nighttime.

- 522
- 523

525 Fig. S18 | Urban HI maps with 1-km spatial resolution for summer daytime in

526 typical cities of the Global South. The three columns showcase Shanghai in China,

- 527 Riyadh in Saudi Arabia, and Buenos Aires in Argentina, respectively.
- 528

530 Fig. S19 | Similar to Fig. S18, but for the nighttime case.

531

Fig. S20 | Accuracy assessments of urban HI and its associated trends (*K*_{HI})
across Global South cities. Scatterplots of the observed and predicted urban HI for
summer daytime (a) and nighttime (b); scatterplots of *K*_{HI} calculated based on the
observed and predicted urban HI values for summer daytime (c) and nighttime (d). N
denotes the number of samples used for cross-validation. *R*, RMSE, and MAE signify
the correlation coefficient, root mean square error, and mean absolute error between
the observed and predicted values, respectively.

533

544 Fig. S21 | Accuracy assessment of *K*_{HI} across the Global South cities.

545 Spatiotemporal patterns of $K_{\rm HI}$ estimated from observed (**a** and **d**) and predicted urban

546 HI values (**b** and **e**), as well as their in-between differences (**c** and **f**).

549 Fig. S22 | Accuracy assessments of urban HI across cities in each sub-continent.

550 Scatterplots of the observed and predicted urban HI for summer daytime and

nighttime across Asian cities (a and d), Latin American cities (b and e), and African

552 cities (c and f). N denotes the number of samples used for cross-validation. R, RMSE,

and MAE represent the correlation coefficient, root mean square error, and mean

absolute error between observed and predicted values, respectively.

Fig. S23 | Accuracy assessments of urban HI trends (K_{HI}) across cities in each

sub-continent. Scatterplots of the observed and predicted *K*_{HI} for summer daytime

and nighttime across Asian cities (a and d), African cities (b and e), and Latin

559 American cities (c and f). N denotes the number of samples used for cross-validation.

- 560 *R*, RMSE, and MAE represent the correlation coefficient, root mean square error, and
- 561 mean absolute error between observed and predicted values, respectively.

564 Fig. S24 | Possible uncertainties arising from the relatively limited and sparsely distributed urban stations. Spatiotemporal patterns of K_{SAT} quantified based on *in*-565 566 situ observations sourced from Berkeley Earth dataset (a and e) and HadISD dataset 567 (c and d), as well as their in-between differences (b and f); Statistical mean values of 568 K_{SAT} quantified based on these two data sources (c and g). In subplots (d) and (h), the 569 center line represents the mean, while the lower and upper lines denote 25th and 75th 570 quantiles, respectively. The lower and upper bounds of the whiskers indicate one 571 standard deviation (SD) below and above the mean, respectively. The city sample size 572 for all boxes in subplot (d) is 2322, whereas the sample size for subplot (h) is 2,266.

573

574 Fig. S25 | Spatiotemporal patterns of urban browning-induced heat stress trends

- 576 Urban browning-induced heat trends derived from satellite urban land surface
- 577 temperature observations (termed β_{LST} ; **a** and **b**), derived from urban surface air
- 578 temperature data (termed β_{SAT} ; c and d), derived from wet-bulb globe temperature in

- 579 shade conditions at stable wind (termed β_{WBGT} ; **e** and **f**), derived from Humidex
- 580 (termed β_{Humidex} ; **g** and **h**), derived from HI (termed β_{HI} ; **i** and **j**).

585 Global South. (a) is for summer daytime and (b) is for summer nighttime.

588 Fig. S27 | Spatiotemporal patterns of urban HI (averaged from 2003 to 2020)

589 across Global South cities. (a) is for summer daytime and (b) is for summer

590 nighttime.

593 Fig. S28 | Potential impacts from urban HI estimation error on the quantification

594 of $K_{\rm HI}$ and $\beta_{\rm HI}$. Spatiotemporal patterns of $K_{\rm HI}$ and $\beta_{\rm HI}$ quantified based on the bias-

perturbed 1-km resolution urban HI data, with (**a** and **b**) denoting the daytime case

- 596 and (c and d) denoting the nighttime case.
- 597

Fig. S29 | Statistical characteristics of urban browning-induced heat trends

601 β_{LST} . (a) is for daytime and (b) is for nighttime. The city sample sizes for β_{WBGT} ,

602 β_{Humidex} , β_{HI} , β_{SAT} , and β_{LST} during daytime are 2321, 2321, 2321, 2321, and 2326,

respectively, whereas the nighttime sample sizes are 2261, 2261, 2261, 2261, and

604 2267, respectively. The center line represents the mean, while the lower and upper

bounds of the whiskers indicate the 95% confidence interval.

606

607

610 Fig. S30 | Spatiotemporal patterns of the trends in urban surface air temperature

- 611 (K_{SAT} ; a and b), relative humidity (K_{RH} ; c and d), and specific humidity (K_{SH} ; e
- 612 and f) across Global South cities.

615 Fig. S31 | Statistical relationships between $\beta_{\rm HI}$ and its corresponding inequality

616 (Gini_{β}) at the national scale. (a) is for daytime and (b) is for nighttime. The *r* and *p*

617 values are obtained from a two-sided *t*-test with no adjustments.

618 C. Supplementary Tables

- 619
- 620 Table S1 | Country typologies depicting the relationships between *K*_{EVI} (decade⁻¹)
- 621 and $\beta_{\rm HI}$ (°C/decade; physical perspective), with the thresholds defined using the
- 622 mean values of K_{EVI} and β_{HI} across all Global South countries.

Thresholds	Country typologies
$K_{\rm EVI} < -0.012$ and	higher urban browning together with higher browning-
$\beta_{\rm HI}$ > 0.030	induced heat stress amplification
$K_{\rm EVI} < -0.012$ and	higher urban browning yet with lower browning-induced heat
$\beta_{\rm HI}$ < 0.030	stress amplification
$K_{\rm EVI} > -0.012$ and	lower urban browning together with lower browning-induced
$\beta_{\rm HI}$ < 0.030	heat stress amplification
$K_{\rm EVI} > -0.012$ and	lower urban browning yet with higher browning-induced heat
$\beta_{\rm HI}$ < 0.030	stress amplification

623

- 625 Table S2 | Country typologies depicting the relationships between urban HI (°C)
- 626 and $\beta_{\rm HI}$ (°C/decade; physiological perspective), with the thresholds defined using
- 627 the mean values of urban HI and $\beta_{\rm HI}$ across all Global South countries.

Thresholds	Country typologies
urban HI > 33.6 and	higher heat risk together with higher browning-induced
$\beta_{\rm HI}$ > 0.030	heat stress amplification
urban HI $>$ 33.6 and	higher heat risk together with lower browning-induced
$\beta_{\rm HI}$ < 0.030	heat stress amplification
urban HI < 33.6 and	lower heat risk together with lower browning-induced
$\beta_{\rm HI}$ < 0.030	heat stress amplification
urban $HI < 33.6$ and	lower heat risk together with higher browning-induced
$\beta_{\rm HI}$ > 0.030	heat stress amplification

- 630 Table S3 | Country typologies depicting the relationships between economic
- 631 growth (%) and $\beta_{\rm HI}$ (°C/decade; physiological perspective), with the thresholds
- 632 defined using the mean values of economic growth and $\beta_{\rm HI}$ across all Global
- 633 South countries.

Thresholds	Country typologies
economic growth > 59%	higher economic growth together with higher
and $\beta_{\rm HI}$ > 0.030	browning-induced heat stress amplification
economic growth > 59%	higher economic growth yet with lower
and $\beta_{ m HI}$ < 0.030	browning-induced heat stress amplification
economic growth < 59%	lower economic growth together with lower
and $\beta_{\rm HI}$ $<$ 0.030	browning-induced heat stress amplification
economic growth < 59%	lower economic growth yet with higher
and $\beta_{ m HI}$ $>$ 0.030	browning-induced heat stress amplification

636 D. Supplementary References

- 637 1. Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between
 638 1985 and 2018. *Remote Sens. Environ.* 236, 111510 (2020).
- 639 2. Ren, G. Y. et al. Urbanization effects on observed surface air temperature trends
 640 in North China. J. Clim. 21, 1333-1348 (2008).
- 641 3. Buizza, R., Milleer, M. & Palmer, T. N. Stochastic representation of model
- 642 uncertainties in the ECMWF ensemble prediction system. Q. J. R. Meteorol. Soc.
 643 125, 2887-2908 (1999).
- 644 4. Pugachev, V. S. Probability theory and mathematical statistics for engineers.
- 645 Elsevier (2014).
- 5. Ye, X. M., Xiao, X. B., Shi, J. B. & Ling, M. The new concepts of measurement
 error theory. *Measurement* 83, 96-105 (2016).
- 648 6. IPCC *Climate Change 2022: Impacts, Adaptation, and Vulnerability* (eds Pörtner,
- 649 H.-O. et al.) (Cambridge Univ. Press, 2022).
- 650 7. Rohde, R. et al. Berkeley earth temperature averaging process. *Geoinformatics*
- 651 *Geostatistics An Overview* **1**, 1-13 (2013).
- 8. He, C. et al. The inequality labor loss risk from future urban warming and
 adaptation strategies. *Nat. Commun.* 13, 3847 (2022).
- 654 9. Chakraborty, T. C., Venter, Z. S., Qian, Y. & Lee, X. H. Lower urban humidity
 655 moderates outdoor heat stress. *AGU Advances* 3, e2022AV000729 (2022).
- 10. Chakraborty, T. C., Newman, A. J., Qian, Y., Hsu, A. & Sheriff, G. Residential
- 657 segregation and outdoor urban moist heat stress disparities in the United States.
- **658** *One Earth* **6**, 738-750 (2023).
- 659 11. Luo, M. & Lau, N. C. Increasing human-perceived heat stress risks exacerbated
- by urbanization in China: A comparative study based on multiple metrics. *Earth's*

- 661 *Future* **9**, e2020EF001848 (2021).
- 12. Masterton, J. M. & Richardson, F. Humidex: a method of quantifying human

discomfort due to excessive heat and humidity. Environment Canada,

- 664 Atmospheric Environment (1979).
- 13. Sherwood, S. C. How important is humidity in heat stress? J. Geophys. Res.-
- 666 *Atmos.* **123**, 11808-11810 (2018).
- 667 14. Simpson, C. H., Brousse, O., Ebi, K. L. & Heaviside, C. Commonly used indices
 668 disagree about the effect of moisture on heat stress. *npj Clim. Atmos. Sci.* 6, 78
- 669(2023).
- 670 15. Zamanian, Z., Sedaghat, Z., Hemehrezaee, M. & Khajehnasiri, F. Evaluation of
- 671 environmental heat stress on physiological parameters. *J. Environ. Health Sci.*672 *Eng* 15, 1-8 (2017).
- 673 16. Chakraborty, T. C. et al. Urban versus lake impacts on heat stress and its

disparities in a shoreline city. *GeoHealth* 7, e2023GH000869 (2023).

- 675 17. Tuholske, C. et al. Global urban population exposure to extreme heat. *Proc. Natl.*
- 676 *Acad. Sci. U. S. A.* **118**, e2024792118 (2021).
- 677 18. Chen, B. et al. Contrasting inequality in human exposure to greenspace between678 cities of Global North and Global South. *Nat. Commun.* 13, 4636 (2022).
- Wu, S. B., Chen, B., Webster, C., Xu, B. & Gong, P. Improved human greenspace
 exposure equality during 21st century urbanization. *Nat. Commun.* 14, 6460
- **681** (2023).
- 682 20. National Oceanic and Atmospheric Administration. What is the heat index?
- 683 (2012). https://www.weather.gov/ama/heatindex (accessed on 11 April 2024).
- 684 21. Houghton, J. Global Warming: The Complete Briefing. Cambridge University685 Press: the fifth Edition (2015).

- 686 22. Zhang, K. E. et al. Increased heat risk in wet climate induced by urban humid
 687 heat. *Nature* 617, 738-742 (2023).
- 688 23. Ministry of Housing and Urban-Rural Development of the People's Republic of689 China (2004).
- 690 https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/200412/20041210_1
- 691 57113.html (accessed on 11 April 2024).
- 692 24. Zhang, Y. J., Zhang, T. Z., Zeng, Y. X., Cheng, B. D. & Li, H. X. Designating
- 693 National Forest Cities in China: Does the policy improve the urban living
- 694 environment? *Forest Policy Econ.* **125**, 102400 (2021).
- 695 25. Nguyen, T. T. et al. Implementation of a specific urban water management-
- 696 Sponge City. *Sci. Total Environ.* **652**, 147-162 (2019).
- 697 26. Ministry of Housing and Urban-Rural Development of the People's Republic of698 China (2016).
- 699 https://www.mohurd.gov.cn/gongkai/zhengce/zhengcefilelib/201601/20160129_2
- 700 26498.html (accessed on 11 April 2024).
- 701 27. Town and Country Planning Organisation. Urban greening guideline.
- **702** Government of India Ministry of Urban Development (2014).
- 703 http://tcpo.gov.in/urban-greening-guidelines-2014 (accessed on 11 April 2024).
- 704 28. Imam, A. U. & Banerjee, U. K. Urbanisation and greening of Indian cities:
- Problems, practices, and policies. *Ambio* **45**, 442-457 (2016).
- 706 29. Massaro, E. et al. Spatially-optimized urban greening for reduction of population
- exposure to land surface temperature extremes. *Nat. Commun.* 14, 2903 (2023).
- 30. Jha, R. K., Nölke, N., Diwakara, B., Tewari, V. & Kleinn, C. Differences in tree
- species diversity along the rural-urban gradient in Bengaluru, India. *Urban For.*
- 710 Urban Green. 46, 126464 (2019).

- 711 31. Wolch, J. R., Byrne, J. & Newell, J. P. Urban green space, public health, and
- environmental justice: The challenge of making cities 'just green enough'.
- 713 *Landsc. Urban Plan.* **125**, 234-244 (2014).
- 714 32. Dong, J., Guo, R. N., Guo, F., Guo, X. M. & Zhang, Z. Pocket parks-A systematic
 715 literature review. *Environ. Res. Lett.* 18, 083003 (2023).
- 716 33. Lin, P. Y., Lau, S. S. Y., Qin, H. & Gou, Z. H. Effects of urban planning indicators
- 717 on urban heat island: a case study of pocket parks in high-rise high-density
 718 environment. *Landsc. Urban Plan.* 168, 48-60 (2017).
- 719 34. Wong, N. H., Tan, C. L., Kolokotsa, D. D. & Takebayashi, H. Greenery as a
- mitigation and adaptation strategy to urban heat. *Nat. Rev. Earth Environ.* 2, 166181 (2021).
- 35. Haaland, C. & van Den Bosch, C. K. Challenges and strategies for urban greenspace planning in cities undergoing densification: A review. *Urban For. Urban*
- 724 *Green.* 14, 760-771 (2015).
- 725 36. Rosenzweig, C., Solecki, W. D., Hammer, S. A. & Mehrotra, S. Climate change
- and cities: First assessment report of the urban climate change research network.
- 727 Cambridge University Press (2011).
- 728 37. C40 Cities. Rio de Janeiro Green Infrastructure Strategy. C40 Cities Climate
- 729 Leadership Group (2017a). Retrieved from https://www.c40.org/cities/rio-de-730 janeiro
- 73138. C40 Cities. Johannesburg's Green Strategy Implementation. C40 Cities Climate
- 732Leadership Group (2017b). Retrieved from
- 733 https://www.c40.org/cities/johannesburg
- 734 39. Li, L. et al. Divergent urbanization-induced impacts on global surface urban heat
 735 island trends since 1980s. *Remote Sens. Environ.* 295, 113650 (2023).

- 40. Wu, S. B. et al. Satellite observations reveal a decreasing albedo trend of global
 cities over the past 35 years. *Remote Sens. Environ.* 303, 114003 (2024).
- 41. Li, L. et al. Competition between biogeochemical drivers and land-cover changes
 determines urban greening or browning. *Remote Sens. Environ.* 287, 113481
- 740 (2023).
- 42. Meng, L. et al. Urban warming advances spring phenology but reduces the
- response of phenology to temperature in the conterminous United States. *Proc.*Nuclear to the first the first the first table (2020).
- 743 Natl. Acad. Sci. U. S. A. 117, 4228-4233 (2020).
- 43. Hardwick, S. R. et al. The relationship between leaf area index and microclimate
- in tropical forest and oil palm plantation: Forest disturbance drives changes in
 microclimate. *Agric. For. Meteorol.* 201, 187-195 (2015).
- 44. He, J. Y. et al. Recent advances and challenges in monitoring and modeling of
 disturbances in tropical moist forests. *Front. Remote Sens.* 5, 1332728 (2024).
- 749 45. Koh, L. P. & Wilcove, D. S. Is oil palm agriculture really destroying tropical
 750 biodiversity? *Conserv. Lett.* 1, 60-64 (2008).
- **751**46. Xu, Y. D. et al. Recent expansion of oil palm plantations into carbon-rich forests.
- 752 *Nat. Sustain.* 5, 574-577 (2022).
- 753
- 754