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A. Supplementary Notes 78 

Note S1: Validation of urban HI estimates and associated trends, as well as the 79 

potential impacts of urban HI estimation errors on calculating KHI and βHI 80 

We evaluated the accuracy of the generated urban heat index (HI) dataset by 81 

conducting cross-validations with in-situ observations, concentrating on both absolute 82 

values and temporal trends (KHI; Supplementary Figs. 20 to 23). This validation 83 

process involved calculating four error metrics, i.e., correlation coefficient (R), root 84 

mean square error (RMSE), mean absolute error (MAE), and bias, between the 85 

observed and estimated urban HI values as well as their trends.  86 

 87 

Regarding absolute urban HI, we used 80% of in-situ observation records for training 88 

random forest (RF) models and the remaining 20% for validation. This method 89 

yielded 3273 and 2765 observation records for daytime and nighttime validation, 90 

respectively. Our assessments revealed high accuracy of absolute urban HI estimates 91 

across Global South cities, with an R value of 0.98 for both daytime and nighttime, an 92 

RMSE value of 1.11 °C for daytime and 0.86 °C for nighttime, an MAE value of 93 

0.82 °C for daytime and 0.62 °C for nighttime, and a bias of −0.006 °C for daytime 94 

and 0.007 °C for nighttime (Supplementary Fig. 20a,b). Across various sub-95 

continents, our accuracy assessments revealed the biases of −0.003 °C for daytime 96 

and −0.006 °C for nighttime in Asian cities, −0.04 °C for daytime and 0.04 °C for 97 

nighttime in Latin American cities, and 0.03 °C for daytime and 0.07 °C for nighttime 98 

in African cities (Supplementary Fig. 22). These biases only account for less than 1% 99 

of the observed urban HI values in Asian, Latin American, and African cities, 100 

respectively. 101 

 102 
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Regarding KHI, we employed urban stations with complete records across all years for 103 

validation, totaling 553 and 366 stations for daytime and nighttime validation, 104 

respectively (Supplementary Fig. 20c,d). We compared the observed urban KHI 105 

derived from ground-based measurements with predicted values from model 106 

estimations at corresponding pixel locations of urban stations. Our evaluations 107 

indicated slightly lower accuracy of KHI compared to the absolute urban HI, with an R 108 

value of 0.82 for daytime and 0.74 for nighttime, an RMSE value of 0.58 °C/decade 109 

for daytime and 0.45 °C/decade for nighttime, an MAE value of 0.40 °C/decade for 110 

daytime and 0.32 °C/decade for nighttime, and a bias of −0.12 °C/decade for daytime 111 

and −0.10 °C/decade for nighttime. Concerning sub-continents, our assessments 112 

revealed biases in KHI of −0.16 °C/decade for daytime and −0.15 °C/decade for 113 

nighttime in Asian cities, −0.04 °C/decade for daytime and 0.12 °C/decade for 114 

nighttime in African cities, and −0.02 °C/decade for daytime and −0.01 °C/decade for 115 

nighttime in Latin American cities (Supplementary Fig. 23). These biases represent 116 

approximately 26%, 24%, and 5% of the observed urban KHI in Asian, African, and 117 

Latin American cities, respectively. The relatively larger estimation biases observed in 118 

Asian and African cities are likely attributable to the more rapid urbanization in these 119 

regions over recent decades1, which may result in disturbances to their ground-based 120 

observations in urban areas, such as through the relocation of monitoring stations2. 121 

 122 

We further investigated the impacts of urban HI estimation error by re-examining the 123 

KHI and browning-induced KHI (βHI) using an error injection strategy3. Specifically, we 124 

first generated a random error field with 1-km resolution based on the absolute MAE 125 

of urban HI as mentioned above (i.e., 0.82 °C for daytime and 0.62 °C for nighttime), 126 

with the generated errors normally distributed with a mean of 0.0 °C and with 127 
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standard deviations of 0.82 °C and 0.62 °C for daytime and nighttime, respectively. 128 

Secondly, we re-produced a new urban HI dataset by superimposing this 1-km 129 

resolution random error field on the original 1-km urban HI dataset. Finally, we re-130 

examined the KHI and βHI across Global South cities using this newly generated urban 131 

HI dataset, and compared them with the original results (Supplementary Fig. 28). Our 132 

evaluations show that the KHI quantified based on this error-perturbed HI dataset is 133 

0.43 ± 0.01 °C/decade during the day and 0.39 ± 0.01 °C/decade at night 134 

(Supplementary Fig. 28a,c), deviating from the original results of < 0.01 °C/decade. 135 

Additionally, the βHI estimated based on these error-perturbed HI values is 0.021 ± 136 

0.002 °C/decade for both daytime and nighttime, also on well par with the original 137 

estimates (Supplementary Fig. 28b,d). These assessments strongly support the 138 

reliability of the generated urban HI dataset and the main findings of this study.  139 

 140 

In practice, these significantly reduced estimation errors at the global scale compared 141 

to those encountered at the per-pixel scale can be elucidated through the Bessel 142 

formula4,5 ( 𝛿𝛿
√𝑛𝑛−1

, with n denoting the sample number and δ representing the error for 143 

an individual pixel). This formula suggests that the impact of individual sample errors 144 

could be mitigated through extensive averaging processes. For our current study, we 145 

first averaged the HI of all available urban pixels for a city to quantify the city-scale 146 

HI trend. Then, we aggregated these city-scale trends into global or regional 147 

composites to reveal large-scale spatial patterns. These multi-averaging processes 148 

could help dampen the impact of estimation error on HI trends at larger scales. Studies 149 

that quantify global warming rates also evidence the significantly reduced estimation 150 

error by multi-averaging processes. For instance, the global surface air temperature 151 

has shown an average increase of around 0.11 °C/decade since 1850 (ref. 6). While 152 
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the error associated with ground-based surface air temperatures from weather stations 153 

is also of a comparable magnitude (i.e., around 0.1 °C), this does not imply that the 154 

influence of site observation error would exert a similar impact on the quantification 155 

of global warming rates. 156 

 157 

 158 

  159 
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Note S2: Impacts from the limited number of urban stations on the accuracy of 160 

generated 1-km resolution urban HI dataset 161 

This study integrated in-situ measurements from > 9600 weather stations sourced 162 

from the HadISD dataset to generate urban HI datasets at 1-km resolution for Global 163 

South cities. One might raise concerns about the relatively sparse distribution of our 164 

incorporated weather stations within these cities (Supplementary Fig. 1b), which may 165 

introduce potential uncertainties into the estimation of urban HI due to high urban 166 

heterogeneity. To address this, we performed an additional sensitivity analysis by 167 

incorporating data from the Berkeley Earth dataset. Unlike HadISD, Berkeley Earth 168 

offers a more extensive collection of ground-based observations globally (> 47,000 169 

stations), with 3304 stations located on urban surfaces in the Global South – 2.5 times 170 

the number in HadISD7 (Supplementary Fig. 1b). However, the Berkeley Earth dataset 171 

solely provides in-situ surface air temperature (SAT) measurements and lacks 172 

humidity data, precluding a direct assessment of the impact of urban station density 173 

on the calculation of KHI. Consequently, we first generated 1-km resolution urban SAT 174 

datasets across Global South cities using both the Berkeley Earth and HadISD 175 

datasets, and then compared the urban warming rates (KSAT) derived from these two 176 

sources.  177 

 178 

Our evaluations demonstrate that the KSAT derived from both the Berkeley Earth and 179 

HadISD datasets exhibits remarkably similar spatial patterns and values across Global 180 

South cities (Supplementary Fig. 24). The numerical differences between them are 181 

only 0.01 °C/decade during the day (0.31 °C/decade for Berkeley Earth and 182 

0.32 °C/decade for HadISD) and 0.03 °C/decade at night (0.31 °C/decade for 183 

Berkeley Earth and 0.28 °C/decade for HadISD). This close alignment could be 184 
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attributed to the relatively uniform distribution of weather stations provided by the 185 

HadISD dataset across all geographic regions in the Global South, thereby ensuring 186 

the accuracy of the generated 1-km resolution urban HI time-series data.  187 

 188 

  189 
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Note S3: Possible uncertainties related to the choice of urban heat stress indices 190 

In this study, we utilized the widely recognized Heat Index (HI; equations 1 and 2) as 191 

a metric to characterize the trends in heat stress across cities in the Global South. One 192 

may argue that the choice of heat stress metric could impact the main findings. To 193 

address this concern, we conducted a sensitivity analysis by introducing the Wet-Bulb 194 

Globe Temperature in shade conditions at stable wind (i.e., indoor WBGT; equation 3; 195 

ref. 8), and the Humidex recognized by the Meteorological Service of Canada9−12 196 

(equation 4). Following a similar approach as with HI, we initially generated 1-km 197 

urban datasets for indoor WBGT and Humidex across Global South cities. 198 

Subsequently, we quantified their long-term trends (KWBGT and KHumidex) and the 199 

impacts of vegetation loss on these trends (βWBGT and βHumidex), and compared them 200 

with those obtained from our primary metric (i.e., HI).  201 

 202 

Our sensitivity analysis reveals that alternative indices (i.e., HI, indoor WBGT, and 203 

Humidex) yield consistent overall spatial patterns for both urban heat stress trends and 204 

browning-induced impacts (Supplementary Figs. 3 and 25). Regarding magnitudes, 205 

daytime and nighttime KWBGT are 0.18 °C/decade and 0.25 °C/decade, respectively 206 

(Supplementary Fig. 3e,f), while for KHumidex, these values translate to 0.36 °C/decade 207 

during the day and 0.46 °C/decade at night (Supplementary Fig. 3g,h). Moreover, the 208 

daytime and nighttime βWBGT are 0.009 °C/decade and 0.011 °C/decade, respectively, 209 

and those of βHumidex are 0.017 °C/decade and 0.019 °C/decade, respectively 210 

(Supplementary Fig. 29). The observed disparities across these three indices may stem 211 

from their varying sensitivities to air temperature (SAT) and humidity (RH). HI and 212 

Humidex, which place greater emphasis on air temperature and relatively less on 213 

humidity13,14, exhibit more pronounced trends than WBGT (Supplementary Fig. 30). 214 
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Our current study did not utilize Humidex due to its dimensionless nature15, limiting 215 

its comparability with other temperature and heat stress indices. Furthermore, the 216 

standard WBGT, rather than indoor WBGT, was not selected because its computation 217 

incorporates additional intricate meteorological parameters such as wind speed and 218 

radiation16, which are challenging to obtain over urban landscapes from observations. 219 

We recommend practitioners carefully consider their research objectives and data 220 

accessibility when selecting heat stress metrics to ensure optimal decision-making and 221 

application.  222 

 223 

Equation for calculating HI:  224 

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

HI = A + B + C − D − E − F + G + H − I
A =  −42.379
B = 2.04901523 × SAT
C = 10.14333127 × RH
D =  0.22475541 × SAT × RH
E = 6.83783 × 10−3 × SAT2

F = 5.481717 × 10−2 × RH2

G = 1.22874 × 10−3 × SAT2 × RH
H = 8.5282 × 10−4 × SAT × RH2

I = 1.99 × 10−6 × SAT2 × RH2

 (1) 225 

where SAT and RH denote surface air temperature (°F) and relative humidity (%), 226 

respectively. Adjustments were made according to various SAT and RH ranges17. 227 

When the average of HI and SAT values is less than 80 °F, we quantified HI using the 228 

following equation:  229 

 HI =  0.5 × [SAT + 61 + [(SAT− 68) × 1.2] + (0.094 × RH)] (2) 230 

 231 

Equation for calculating indoor WBGT: 232 
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⎩
⎪
⎪
⎨

⎪
⎪
⎧

WBGT =  0.7 × 𝑇𝑇w + 0.3 × SAT
𝑇𝑇w = A + B − C + D − E
A =  SAT × tan−1[0.151977(RH + 8.313659)1/2]
B = tan−1(SAT + RH)
C = tan−1(RH − 1.676331)
D = 0.00391838(RH)3/2 tan−1(0.023101RH)
E =  4.686035

  (3) 233 

where Tw, SAT, and RH denote wet bulb temperature (°C), surface air temperature 234 

(°C), and relative humidity (%), respectively.  235 

 236 

Equation for calculating Humidex:  237 

 Humidex =  SAT + 0.5555 × (6.11 × 𝑒𝑒
5417.753×( 1

273.16−
1

273.15+𝑇𝑇d
)
− 10) (4) 238 

where Td denotes dewpoint temperature (°C) and was quantified using SAT (°C), and 239 

RH (%). 240 

 241 

 242 

  243 
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Note S4: Country-level assessment of the inequality in βHI across the Global South 244 

To reveal the inequality of urban heat stress trends induced by urban browning (βHI), 245 

we conducted a country-level assessment of the Gini coefficient10,18,19 of βHI (termed 246 

Giniβ), as per equation (5):  247 

 Giniβ = 1− 2∫ 𝐿𝐿(𝛽𝛽)d𝛽𝛽1
0  (5) 248 

where L(β) represents the Lorenz curve of βHI. For each country, we normalized the 249 

βHI for all cities into the (0, 1) range and arranged them in the ascending order. The 250 

cumulative value of βHI (0, 1) was then calculated, based on which the Lorenz curve of 251 

βHI was represented as the graphical relationship between cumulative βHI (0, 1) and the 252 

cumulative number of cities. Among different countries, larger Giniβ values suggest 253 

greater inequality in βHI. Our analysis was limited to countries with at least ten cities 254 

to ensure statistical validity. 255 

 256 

Our analysis reveals a positive correlation between country-level Giniβ and βHI 257 

(Supplementary Fig. 31). Notably, cities in Ghana and Vietnam stand out with both 258 

larger βHI (> 0.050 °C/decade; Fig. 13a,d) and higher Giniβ (> 0.40; Fig. 13b,e). 259 

Interestingly, we reveal a declining triangular relationship between Giniβ and GDP per 260 

capita across Global South countries (Fig. 13c,f). Specifically, Giniβ exhibits a wide 261 

range of values in economically disadvantaged countries (e.g., > 0.40 in Nigeria and 262 

Vietnam, < 0.25 in Pakistan and India). In contrast, its values remain in a lower range 263 

as economic status improves. Notably, countries like Nigeria, Colombia, 264 

Turkmenistan, and Chile exhibit higher Giniβ when compared with their peers of 265 

similar economic status (Fig. 13c,f). This result may indicate disproportional green 266 

space loss and a lack of planning and management, underscoring the urgency of 267 

drawing attention to these specific cases. 268 
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Note S5: Quantifying the increase in the number of ‘Danger’ days in Malaysian 269 

cities due to vegetation loss 270 

Our analysis shows that cities of Malaysia exhibit a daytime βHI of 0.057 °C/decade. 271 

Situated in tropical climates, these cities face high risks associated with urban 272 

overheating. In this context, βHI has the potential to increase the number of ‘Danger’ 273 

days (HI > 41 °C; ref. 20), owing to the high sensitivity of the frequency of high 274 

temperatures to changes in the mean value21,22.  275 

 276 

We further examined the βHI-induced increase in ‘Danger’ days in Malaysian cities 277 

over the past two decades. Specifically, we first screened in-situ SAT and RH 278 

observations obtained from the HadISD dataset through rigorous quality control 279 

procedures (see Materials and methods), and quantified daily HI during summer 280 

daytime for all urban stations. We labeled those days with HI above 41 °C as 281 

‘Danger’20. To examine the βHI-induced increase in ‘Danger’ days, we first conducted 282 

an overlay analysis by combining the βHI-induced HI amplification and the original 283 

yearly HI, and then re-identified the number of ‘Danger’ days with HI exceeding 284 

41 °C. Subsequently, we quantified the difference between these two identified heat 285 

day numbers and examined the urban browning-induced increase in ‘Danger’ days in 286 

Malaysian cities. Our analysis shows that the days labeled as ‘Danger’ have increased 287 

from 1908 to 1964 (i.e., 56 days) in all Malaysian cities from 2003 to 2020.  288 

 289 

 290 

  291 
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Note S6: Insights from China's and India's greening efforts for cooling cities  292 

Our assessments reveal that over the past two decades, China's and India's cities have 293 

undergone significant economic growth (Fig. 4c), yet accompanied by either 294 

greening-induced cooling or marginal warming (Fig. 3a,b; Fig. 4c). In China, this is 295 

likely driven by a nationwide policy framework that prioritizes the protection of green 296 

infrastructure during urbanization, often referred to as ‘ecological civilization 297 

construction’. Examples include the National Garden City program initiated in 1992 298 

and its upgrade iterations23, the 2004 National Forest City program alongside relevant 299 

regulations24, the 2014 Sponge City urban planning program25, and the 2016 National 300 

Ecological Garden City program26, which incentivize local authorities to protect and 301 

cultivate urban green spaces, and has effectively mitigated excessive heat within 302 

urban surfaces. Likewise, India has implemented national policies like the 2014 Urban 303 

Greening Guidelines27, accompanied by localized initiatives including city-specific 304 

greening programs and ecological restoration projects28. While these successful 305 

national policies may not be directly translatable to other Global South countries due 306 

to differing socio-political and economic contexts, the context-specific, nature-307 

inspired insights and solutions from greening efforts in many Chinese and Indian 308 

cities can offer valuable examples for cities with similar economic statuses or 309 

constrained resources.  310 

 311 

Specifically, urban vegetation typically provides more significant cooling benefits in 312 

densely populated areas29. However, these areas often face limitations in space for 313 

vegetation expansion. To address this, cities with greater economic resources can 314 

draw valuable lessons from successful implementations in Beijing and Guangzhou, 315 

China, and New Delhi, India. Effective strategies include repurposing abandoned or 316 
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degraded lands into forest parks or national parks and implementing green roofs to 317 

achieve urban cooling. Additionally, bolstering government investment, providing 318 

green subsidies, and adopting a balanced approach to integrating native and non-319 

native species also represent effective strategies for urban greening efforts (e.g., 320 

Bangalore, India; ref. 30).  321 

 322 

Conversely, in cities with more constrained resources, large-scale projects such as 323 

converting abandoned mines and degraded sites may be less feasible due to socio-324 

political constraints (e.g., land use rights). In these contexts, focusing on small-scale 325 

and dispersed greening strategies may be more practical31. Cities like Luoyang and 326 

Nanchong in China, and Varanasi in India offer actionable pathways, including 327 

planting cost-effective vegetation along roadsides, community borders, and vacant 328 

plots, as well as developing micro-greenspaces and pocket parks32,33,34. In arid cities 329 

with limited water resources, cultivating drought-resilient plants (e.g., Shihezi in 330 

China) can be effective, while coastal cities might prioritize wind-resistant and salt-331 

tolerant species to establish protective forest belts (e.g., Fuzhou in China). 332 

Economically constrained cities can also benefit from cost-effective initiatives such as 333 

public awareness campaigns, urban gardening education, and affordable seedling 334 

distribution35. 335 

 336 

Moreover, cities with lower economic resources can adapt successful strategies from 337 

wealthier cities to their own socio-political and economic contexts36. For instance, the 338 

C40 Cities Climate Action Planning Group, which facilitates knowledge exchange 339 

among diverse global cities (https://www.c40.org/cities/), demonstrates how resource-340 

constrained cities like Rio de Janeiro and Johannesburg have successfully 341 

https://www.c40.org/cities/),e
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implemented greening strategies by drawing insights from wealthier cities such as 342 

repurposing abandoned sites and fostering community engagement37,38. These 343 

examples underscore the potential for cross-city knowledge transfer to address 344 

varying economic challenges. 345 

 346 

However, it is essential to note that here we only qualitatively discussed the potentials 347 

for knowledge exchange of urban greening concepts among cities to effectively 348 

mitigating urban heat. Policymakers should adapt these nature-inspired concepts and 349 

experiences to their specific local contexts to inform sustainable urban cooling 350 

solutions. 351 

 352 

  353 
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Note S7: Limitations of this study 354 

We acknowledge several limitations in this study. First, our analysis of urban heat 355 

stress trends is confined to the past two decades, which may be insufficient to fully 356 

capture the long-terms dynamics of urban thermal environments and their interactions 357 

with urban greening. This is particularly pertinent for Global South cities due to their 358 

ongoing urbanization that began several decades ago39,40. Second, while the inclusion 359 

of a scaling factor (εUGC) helps mitigate potential uncertainties arising from adapting a 360 

rural-based HI-greenness relationship to urban contexts, this approach may be unable 361 

to fully account for urban-rural differences owing to the more complex factors 362 

influencing urban greenness (e.g., landscape patterns and phenological changes) 363 

relative to their rural counterparts41,42. Additionally, urban browning results from a 364 

multifaced interplay of various factors. However, the present study has merely 365 

quantified the heat stress trends induced by overall observed urban browning, without 366 

distinguishing the contributions of each specific factor. Third, substantial agricultural 367 

expansion (e.g., oil palm cultivation and coffee farming) in transitional zones of many 368 

Global South cities over recent decades have significantly altered regional greenness 369 

and impacted local thermal environments43−46. While such agricultural activities 370 

should have a relatively minimal impact on our primary findings that focus on urban 371 

cores, they may introduce uncertainties into our analysis of urban transitional zones 372 

due to the lack of differentiation between the impacts from various types of 373 

cultivation expansion. 374 

  375 
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Note S8: Country typologies identified through four-quadrant plots from physical, 376 

physiological, and socioeconomic perspectives  377 

From a physical perspective, our analysis highlighted two distinct clusters of countries 378 

(Fig. 4a; Supplementary Table 1). The first cluster comprises countries indicated by 379 

higher browning (KEVI) but relatively lower browning-induced HI amplification (βHI), 380 

including Venezuela, Thailand, and Uzbekistan. Conversely, the second category 381 

involves countries with lower KEVI yet relatively higher βHI, including Malaysia, 382 

Brazil, Argentina, and Chile. From a physiological viewpoint, we pinpointed two 383 

distinct categories of countries (Fig. 4b; Supplementary Table 2). The first category 384 

encompasses countries with both higher βHI and baseline urban HI values, including 385 

Malaysia, Vietnam, and Indonesia. Comparatively, the second category includes 386 

countries characterized by higher βHI yet lower baseline urban HI values, including 387 

Botswana, Ghana, Côte d'Ivoire, Colombia, Argentina, Brazil, and Mexico. From a 388 

socioeconomic standpoint, our analysis also yielded two pivotal categories of 389 

countries (Fig. 4c; Supplementary Table 3). The first category includes countries with 390 

relatively slower economic growth but larger βHI, including Botswana, Malaysia, Côte 391 

d'Ivoire, Colombia, Brazil, and Mexico. In contrast, the second category consists of 392 

countries experiencing more rapid economic growth but modest βHI, including China, 393 

India, Peru, Turkmenistan, and Uzbekistan.  394 

 395 

  396 
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B. Supplementary Figures 397 

 398 

 399 

Fig. S1 | Global distribution of meteorological stations. Distributions of urban and 400 

rural stations provided by Berkeley Earth dataset (a) and HadISD dataset (c); 401 

proportions of urban and rural stations accounting for all meteorological stations (b 402 

and d); proportions of urban stations within the Global South and Global North (b and 403 

d). 404 

 405 

  406 
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 407 

Fig. S2 | Overall framework of our proposed method. This involves three main parts, i.e., mapping urban 408 

heat stress trends (KHI) in the Global South (Part 1), quantification and analysis of vegetation loss-induced 409 
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impacts on KHI (Part 2), and identification of Global South cities or countries in dire need of intervention to 410 

mitigate heat stress induced by urban browning (Part 3). Part 1 further includes the generation of 1-km 411 

resolution urban HI dataset from 2003 to 2020, validation of the accuracy of urban HI and its long-term 412 

trend, as well as the examination of spatiotemporal patterns of KHI across Global South cities. 413 

 414 

 415 
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 416 

Fig. S3 | Spatiotemporal patterns of urban warming rates quantified based on 417 

various temperature metrics across Global South cities. Urban warming trends 418 

derived from satellite urban land surface temperature observations (termed KLST; a 419 

and b), urban surface air temperature data (termed KSAT; c and d), wet-bulb globe 420 

temperature in shade conditions at stable wind (termed KWBGT; e and f), Humidex 421 

(termed KHumidex; g and h), and HI (termed KHI; i and j).   422 
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 423 

Fig. S4 | Spatiotemporal patterns of KHI for urban transitional zones across the 424 

Global South. (a) represents the daytime case, and (b) represents the nighttime case. 425 

 426 

  427 
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 428 

Fig. S5 | Contributions of background climate (BCC), urbanization (URB), and 429 

urban greenness change (UGC) factors to KHI across Global South cities. (a to c) 430 

display the daytime case, while (d to f) display the nighttime case. 431 

 432 

  433 
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 434 

Fig. S6 | Background climate change across the Global South derived from 435 

ERA5-Land reanalysis data. Trends in SAT (KSAT; a and b), RH (KRH; c and d), and 436 

HI (KHI; e and f) of rural background.  437 

 438 

  439 
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 440 

Fig. S7 | Spatiotemporal patterns of KHI across the four countries characterized 441 

by the highest mean KHI values. (a to d) denote the daytime case, while (e to h) 442 

denote the nighttime case.  443 

 444 

  445 



 27 / 62 

 446 

Fig. S8 | Spatiotemporal patterns of the trends in urban greenness (KEVI) across 447 

Global South and North cities and their associated mean values. (a and c) are for 448 

urban cores, while (b and d) are for urban transitional zones. In subplots (c) and (d), 449 

the sample sizes of cities in the Global North and Global South are 3302 and 2341, 450 

respectively. The circle denotes the mean value, while the upper and lower bounds of 451 

whiskers represent the 95% confidence interval.  452 

 453 

  454 
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 455 

Fig. S9 | Statistics of KEVI across cities within different geographical regions. KEVI 456 

in cities within various sub-continents in Global South (a for urban core and b for 457 

urban transition zone). KEVI across cities with different population sizes (termed 458 

small, medium, large, and megacities, respectively; c for urban core and d for urban 459 

transition zone); KEVI across cities with diverse economic status, including low 460 

income (LIC), low-middle income (LMIC), upper middle income (UMIC), and high 461 

income (HIC) cities (e for urban core and f for urban transition zone). The center line 462 

of the box represents the mean, while the lower and upper lines denote 0.5 standard 463 

deviations (SD) below and above the mean, respectively. The lower and upper bounds 464 
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of the whiskers indicate one SD below and above the mean, respectively. In subplots 465 

(a) and (b), the sample sizes of cities in the Central AS, West AS, East AS, South AS, 466 

Southeast AS, Middle AF, North AF, South AF, West AF, East AF, Caribbean, Central 467 

AM, and South AM are 64, 88, 902, 288, 118, 22, 142, 117, 80, 34, 25, 112, and 336, 468 

respectively. In subplots (c) and (d), the sample sizes of small, medium, large, and 469 

mega cities are 1596, 397, 229, and 119, respectively. In subplots (e) and (f), the 470 

sample sizes of LIC, LMIC, UMIC, and HIC cities are 20, 189, 1125, and 1007, 471 

respectively. 472 

 473 

  474 
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 475 

Fig. S10 | Browning-induced KHI attributable to the warming effect of surface air 476 

temperature (SAT) and drying effect of humidity (RH) across Global South 477 

cities. (a) and (b) are for daytime, and (c) and (d) are for nighttime.  478 

  479 
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 480 

Fig. S11 | Spatiotemporal patterns of urban browning-induced KHI (termed βHI) 481 

in cities of Global South and Global North, and their contrasts in mean βHI 482 

statistics. (a and c) are for daytime, and (b and d) are for nighttime. In subplots (c) 483 

and (d), the circle denotes the mean value, while the upper and lower bounds of 484 

whiskers represent the 95% confidence interval. In subplot (c), the sample sizes for 485 

cities in the Global North and Global South are 3246 and 2321, respectively; while in 486 

subplot (d), the sample sizes for cities in the Global North and Global South are 3194 487 

and 2261, respectively. 488 

 489 

  490 
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 491 

Fig. S12 | Relationships between baseline EVI (EVIbase) and urban greenness 492 

trend (KEVI; a), as well as between EVIbase and browning-induced urban HI 493 

trends (βHI; b) during summer daytime across Global South countries. The r and 494 

p values are obtained from a two-sided t-test with no adjustments. 495 

  496 
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 497 

Fig. S13 | Country-level statistics of βHI in Global South cities and associated national inequalities 498 

quantified using the Gini index (Giniβ). βHI and corresponding Giniβ for each country during daytime (a 499 

and b) and nighttime (d and e); Scatterplots illustrating the relationship between Giniβ and GDP per capita 500 
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for all countries during daytime (c) and nighttime (f). Only the countries with ten or more selected cities 501 

were included in this analysis to ensure statistical significance of the estimated βHI values.  502 



 35 / 62 

 503 

Fig. S14 | Categorization of city sizes based on quartiles of urban population 504 

density, termed small cities (< 630 persons/km²), medium cities (630–1,977 505 

persons/km²), large cities (1,977–4,430 persons/km²), and megacities (> 4,430 506 

persons/km²), respectively. 507 

  508 
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 509 

Fig. S15 | Number of valid observation days of LST, EVI, and WSA, and their associated proportions 510 

(i.e., the ratio of actual observation days to the maximum possible observation days assuming no 511 

missing data) across Global South cities. To eliminate possible impacts arising from cloud contamination 512 

or other factors, we only extracted LST observations with a retrieval error of 3.0 K or less based on quality-513 

control bitmask layer, and further utilized these LST observations to mask WSA and EVI observations.  514 
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 515 

Fig. S16 | Spatiotemporal patterns of annual mean KHI in urban Global South. 516 

(a) is for daytime and (b) is for nighttime. 517 

  518 
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 519 

Fig. S17 | Distribution of urban stations employed for generating 1-km resolution 520 

urban HI for Global South cities. (a) is for daytime and (b) is for nighttime. 521 

 522 

  523 
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 524 

Fig. S18 | Urban HI maps with 1-km spatial resolution for summer daytime in 525 

typical cities of the Global South. The three columns showcase Shanghai in China, 526 

Riyadh in Saudi Arabia, and Buenos Aires in Argentina, respectively.  527 

  528 
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 529 

Fig. S19 | Similar to Fig. S18, but for the nighttime case. 530 

 531 

  532 
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 533 

Fig. S20 | Accuracy assessments of urban HI and its associated trends (KHI) 534 

across Global South cities. Scatterplots of the observed and predicted urban HI for 535 

summer daytime (a) and nighttime (b); scatterplots of KHI calculated based on the 536 

observed and predicted urban HI values for summer daytime (c) and nighttime (d). N 537 

denotes the number of samples used for cross-validation. R, RMSE, and MAE signify 538 

the correlation coefficient, root mean square error, and mean absolute error between 539 

the observed and predicted values, respectively.  540 

 541 

  542 
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 543 

Fig. S21 | Accuracy assessment of KHI across the Global South cities. 544 

Spatiotemporal patterns of KHI estimated from observed (a and d) and predicted urban 545 

HI values (b and e), as well as their in-between differences (c and f). 546 

  547 
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 548 

Fig. S22 | Accuracy assessments of urban HI across cities in each sub-continent. 549 

Scatterplots of the observed and predicted urban HI for summer daytime and 550 

nighttime across Asian cities (a and d), Latin American cities (b and e), and African 551 

cities (c and f). N denotes the number of samples used for cross-validation. R, RMSE, 552 

and MAE represent the correlation coefficient, root mean square error, and mean 553 

absolute error between observed and predicted values, respectively.  554 
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 555 

Fig. S23 | Accuracy assessments of urban HI trends (KHI) across cities in each 556 

sub-continent. Scatterplots of the observed and predicted KHI for summer daytime 557 

and nighttime across Asian cities (a and d), African cities (b and e), and Latin 558 

American cities (c and f). N denotes the number of samples used for cross-validation. 559 
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R, RMSE, and MAE represent the correlation coefficient, root mean square error, and 560 

mean absolute error between observed and predicted values, respectively.  561 

  562 
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 563 

Fig. S24 | Possible uncertainties arising from the relatively limited and sparsely 564 

distributed urban stations. Spatiotemporal patterns of KSAT quantified based on in-565 

situ observations sourced from Berkeley Earth dataset (a and e) and HadISD dataset 566 

(c and d), as well as their in-between differences (b and f); Statistical mean values of 567 

KSAT quantified based on these two data sources (c and g). In subplots (d) and (h), the 568 

center line represents the mean, while the lower and upper lines denote 25th and 75th 569 

quantiles, respectively. The lower and upper bounds of the whiskers indicate one 570 

standard deviation (SD) below and above the mean, respectively. The city sample size 571 

for all boxes in subplot (d) is 2322, whereas the sample size for subplot (h) is 2,266. 572 
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 573 

Fig. S25 | Spatiotemporal patterns of urban browning-induced heat stress trends 574 

quantified using various temperature or heat indices across Global South cities. 575 

Urban browning-induced heat trends derived from satellite urban land surface 576 

temperature observations (termed βLST; a and b), derived from urban surface air 577 

temperature data (termed βSAT; c and d), derived from wet-bulb globe temperature in 578 
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shade conditions at stable wind (termed βWBGT; e and f), derived from Humidex 579 

(termed βHumidex; g and h), derived from HI (termed βHI; i and j). 580 

 581 

  582 
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 583 

Fig. S26 | Spatiotemporal patterns of βHI for urban transition zones across the 584 

Global South. (a) is for summer daytime and (b) is for summer nighttime. 585 

  586 
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 587 

Fig. S27 | Spatiotemporal patterns of urban HI (averaged from 2003 to 2020) 588 

across Global South cities. (a) is for summer daytime and (b) is for summer 589 

nighttime. 590 

  591 
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 592 

Fig. S28 | Potential impacts from urban HI estimation error on the quantification 593 

of KHI and βHI. Spatiotemporal patterns of KHI and βHI quantified based on the bias-594 

perturbed 1-km resolution urban HI data, with (a and b) denoting the daytime case 595 

and (c and d) denoting the nighttime case. 596 

  597 
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 598 

Fig. S29 | Statistical characteristics of urban browning-induced heat trends 599 

quantified using various temperature indices (i.e., βWBGT, βHumidex, βHI, βSAT, and 600 

βLST). (a) is for daytime and (b) is for nighttime. The city sample sizes for βWBGT, 601 

βHumidex, βHI, βSAT, and βLST during daytime are 2321, 2321, 2321, 2321, and 2326, 602 

respectively, whereas the nighttime sample sizes are 2261, 2261, 2261, 2261, and 603 

2267, respectively. The center line represents the mean, while the lower and upper 604 

bounds of the whiskers indicate the 95% confidence interval.  605 

 606 

 607 

  608 
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 609 

Fig. S30 | Spatiotemporal patterns of the trends in urban surface air temperature 610 

(KSAT; a and b), relative humidity (KRH; c and d), and specific humidity (KSH; e 611 

and f) across Global South cities. 612 

  613 
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 614 

Fig. S31 | Statistical relationships between βHI and its corresponding inequality 615 

(Giniβ) at the national scale. (a) is for daytime and (b) is for nighttime. The r and p 616 

values are obtained from a two-sided t-test with no adjustments. 617 
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C. Supplementary Tables 618 

 619 

Table S1 | Country typologies depicting the relationships between KEVI (decade−1) 620 

and βHI (°C/decade; physical perspective), with the thresholds defined using the 621 

mean values of KEVI and βHI across all Global South countries. 622 

Thresholds  Country typologies 

KEVI < −0.012 and 

βHI > 0.030 

higher urban browning together with higher browning-

induced heat stress amplification 

KEVI < −0.012 and 

βHI < 0.030 

higher urban browning yet with lower browning-induced heat 

stress amplification 

KEVI > −0.012 and 

βHI < 0.030 

lower urban browning together with lower browning-induced 

heat stress amplification 

KEVI > −0.012 and 

βHI < 0.030 

lower urban browning yet with higher browning-induced heat 

stress amplification 

 623 

  624 
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Table S2 | Country typologies depicting the relationships between urban HI (°C) 625 

and βHI (°C/decade; physiological perspective), with the thresholds defined using 626 

the mean values of urban HI and βHI across all Global South countries. 627 

Thresholds  Country typologies 

urban HI > 33.6 and 

βHI > 0.030 

higher heat risk together with higher browning-induced 

heat stress amplification 

urban HI > 33.6 and 

βHI < 0.030 

higher heat risk together with lower browning-induced 

heat stress amplification 

urban HI < 33.6 and 

βHI < 0.030 

lower heat risk together with lower browning-induced 

heat stress amplification 

urban HI < 33.6 and 

βHI > 0.030 

lower heat risk together with higher browning-induced 

heat stress amplification 

 628 

  629 
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Table S3 | Country typologies depicting the relationships between economic 630 

growth (%) and βHI (°C/decade; physiological perspective), with the thresholds 631 

defined using the mean values of economic growth and βHI across all Global 632 

South countries. 633 

Thresholds  Country typologies 

economic growth > 59% 

and βHI > 0.030 

higher economic growth together with higher 

browning-induced heat stress amplification 

economic growth > 59% 

and βHI < 0.030 

higher economic growth yet with lower 

browning-induced heat stress amplification 

economic growth < 59% 

and βHI < 0.030 

lower economic growth together with lower 

browning-induced heat stress amplification 

economic growth < 59% 

and βHI > 0.030 

lower economic growth yet with higher 

browning-induced heat stress amplification 

 634 

  635 
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