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A. Supplementary Notes 74 

Note S1: Impacts of cooling strategies on temperature-related mortality in the 75 

future 76 

We analyzed the annual net impacts of several urban cooling strategies on 77 

temperature-related mortality around 2050 under a moderate emission pathway 78 

(SSP2-4.5; Supplementary Fig. S9). The cooling strategies involve increasing urban 79 

vegetation coverage and surface albedo by 4% to 40% from baseline levels, spanning 80 

five regulatory intensities from low to high by considering varying population density 81 

and albedo levels across cities (refer to Methods). Our evaluations reveal that 82 

globally, increasing urban vegetation fraction could reduce future heat-related 83 

mortality by 0.2% to 1.1% across the spectrum of regulatory intensities, but increase 84 

future cold-related mortality by 1.1% to 5.7% (Supplementary Fig. S10). Similarly, 85 

enhancing albedo can reduce heat-related mortality by 1.1% to 5.4% but increase 86 

cold-related mortality by 5.7% to 29.9% under low to high regulation intensity 87 

(Supplementary Fig. S10). We observe that, by implementing these two cooling 88 

strategies, the global mean increase in cold-related mortality consistently surpasses 89 

the decrease in heat-related mortality (Supplementary Fig. S9). The global mean 90 

detrimental annual net impact can sextuple when the cooling intervention intensifies 91 

(Supplementary Fig. S9), even after factoring future global warming.  92 

 93 

Seasonal adjustment of surface albedo (e.g., by repainting roofs and pavements) is 94 

more feasible than adding vegetation over urban areas1. To mitigate the adverse 95 

impacts of increasing surface albedo on cold days while preserving its benefits on 96 

heat days, we modified the original cooling strategy with a constant surface into a 97 
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season-dependent one. This season-dependent albedo strategy involves increasing 98 

surface albedo on heat days, while reducing it by 8%, 6%, and 4% from baseline 99 

levels on cold days for cities with low, medium, and high albedo classes, respectively 100 

(see Methods). This combined ‘black-white’ roof strategy is engineeringly feasible, 101 

for instance, by using specific materials that change with the solar incident angle or 102 

surface temperature2-4 or through repainting roofs and pavements bi-annually5. Our 103 

evaluations indicate that the use of a constant strategy is beneficial in most low-104 

latitude cities while detrimental in middle- and high-latitude cities in the context of 105 

future climate change (Supplementary Fig. S9a & c). Globally, the implementation of 106 

constant albedo/vegetation cooling strategies at low regulatory intensity results in a 107 

net increase of 5.6% in temperature-related mortality, rising to 29.0 % under high 108 

regulatory intensity (Supplementary Fig. S9f). Nevertheless, the season-dependent 109 

strategy reduces the adverse effects of the constant strategy on cold-related mortality, 110 

yielding annual benefits (Supplementary Fig. S9b & d). As albedo regulation 111 

intensifies, this season-dependent approach not only mitigates but reverses the 112 

adverse effect (Supplementary Fig. S9e). Overall, the temperature-related mortality 113 

reduction ranges from 2.2% to 11.1% (Supplementary Fig. S9g). The net mitigation 114 

can increase from 2.2% to 6.5% under high vegetation regulatory intensity, from 5.8% 115 

to 10.2% under low regulation, and from 6.7% to 11.1% with no regulation 116 

(Supplementary Fig. S9g). 117 

 118 

  119 



 5 / 65 

Note S2: Accuracy assessment of the modelled MMT and mortality estimates at 120 

different temperature percentiles for global cities  121 

We established a statistical mortality-temperature (M-T) relationships by training 122 

random forest (RF) models for approximately 700 cities worldwide. We then used 123 

these trained RF models to estimate the minimum mortality temperature (MMT) and 124 

mortality at four temperature percentiles (i.e., >5%, 5%-MMT, MMT-95%, 125 

and >95%) for 3,000-plus cities worldwide (refer to Methods). We used 80% of the 126 

data for training and the rest 20% for validation. The correlation (r) for the MMT is 127 

0.91, and the mean absolute error (MAE) is 0.97 °C; the mean r for the mortality is 128 

0.81, and the associated MAE is around 0.12 (Supplementary Fig. S17). To ensure the 129 

generalizability and accuracy of the RF model, the random training and validation 130 

splits were repeated 100 times6. The r and MAE of each split are shown in 131 

Supplementary Fig. S18. Our assessments show that the trained RF model possesses 132 

acceptable accuracies, indicating good model generalizability and applicability. For 133 

all splits, the mean r of the MMT is 0.90, and the mean MAE is 1.0 °C. The mean r of 134 

the mortality at different temperature percentiles is 0.79, and the mean MAE is 0.33 135 

(Supplementary Fig. S18).  136 

 137 

  138 
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Note S3: Sensitivity analysis of modeling scheme on mortality assessments across 139 

global cities 140 

Our study extrapolated findings from approximately 700 cities, unevenly distributed 141 

worldwide, to over 3,000 cities globally by dividing the M-T curve into four 142 

subdivisions. Concerns may arise that such extrapolation and division scheme of 143 

temperature percentiles could introduce uncertainties, potentially skewing the 144 

assessment of the dual impacts of the UHI effect on temperature-related mortality. To 145 

address these concerns, we conducted a sensitivity analysis to evaluate the robustness 146 

of our results concerning (1) the distribution of the city sample and (2) the division 147 

scheme of the temperature percentile.  148 

 149 

Firstly, we adjusted the training sample dataset to further assess model sensitivity to 150 

uneven sample distribution and its impact on our primary findings. Our original 151 

model mainly incorporated city samples from two studies – those by Gasparrini et al.7 152 

and Kephart et al.8, totaling approximately 700 cities (labeled Dataset 1). To test 153 

model sensitivity to sample distribution, we deliberately designed a comparison 154 

modeling experiment, which involves only city samples from Gasparrini et al.7, 155 

totaling approximately 380 cities (labeled Dataset 2). When compared with Dataset 2, 156 

with cities sampled mostly in the Global North, Dataset 1 encompasses a more 157 

extensive geographical coverage, incorporating a large number of cities in Latin 158 

America. This comparison experiment enabled us to evaluate model sensitivity to 159 

uneven sample distribution (e.g., in regions with substantial data gaps such as Global 160 

South cities) and their impact on the major findings. 161 

 162 

Our sensitivity analysis demonstrates a high degree of consistency between the 163 
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evaluations based on Datasets 1 & 2, both in terms of spatial distribution and specific 164 

values. To be specific, estimates derived from Dataset 2 exhibit good alignment with 165 

those derived from Dataset 1, indicating UHI predominantly increases heat-related 166 

mortality and reduces cold-related mortality and that UHI has a beneficial net impact 167 

on the majority of global cities (Fig. S19a). Numerically, results from Dataset 2 168 

shows that UHI contributes an additional 10.4% increase to heat-related mortality and 169 

mitigates 47.0% of cold-related mortality on average (Fig. S19c-f). These values are 170 

comparable to the 11.7% increase and 51.5% mitigation estimated using Dataset 1 171 

(Fig. 1). The average beneficial impact of UHI is approximately 4.5 and 4.4 times 172 

higher than the detrimental impact based on Datasets 1 and 2, respectively, again 173 

suggesting a high consistency. These assessments suggest that our model exhibits low 174 

sensitivity to the less sampling in some continents (or uneven distribution of city 175 

samples), and consequently, our major findings remain generalizable.  176 

 177 

Secondly, we conducted an additional analysis to explore the sensitivity of our results 178 

to the temperature percentile division scheme. Beyond the four-division scheme used 179 

in the primary analysis, we extended our tests to include an eight-division scheme, 180 

utilizing mortality data from over 380 cities7 with the same modeling methodology. 181 

The results show strong spatial concordance between the UHI-induced impact derived 182 

from the eight-division and four-division scenarios. Notably, the majority of cities 183 

worldwide exhibited a net decrease in temperature-related mortality due to the UHI 184 

effect under both schemes (Fig. S19a, g). While minor variations in the intensity of 185 

the UHI-induced impact exist between the two division schemes, the spatial patterns 186 

observed using the eight-division scheme align closely with those derived from the 187 

four-division scheme. Importantly, these minor variations do not alter our primary 188 
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findings (Fig. S19b, h). This additional analysis thus supports the robustness of our 189 

initial division scheme, indicating that it does not compromise our conclusions 190 

regarding the dual impacts of UHI effect on temperature-related mortality at both 191 

global and regional scales. These findings further bolster the validity of our study, 192 

suggesting that our conclusions remain reliable even when different division schemes 193 

are applied. 194 

 195 

  196 
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Note S4: Potential impacts of model bias on mortality assessment for global cities 197 

We undertook a more detailed examination of the specific influence of model bias on 198 

our results. Specifically, we introduced the bias into the calculations of the impacts of 199 

the UHI effect and cooling strategies on temperature-related mortality. The potential 200 

impact of model bias on results was assessed by comparing these estimates with the 201 

original results. 202 

 203 

Our examination demonstrates that the model bias has a slight impact on the impacts 204 

of the UHI effect and cooling strategies on temperature-related mortality. 205 

Nevertheless, the primary conclusions regarding the net effects of these strategies 206 

remain mostly consistent (Fig. S20). When modeling bias is added, the UHI effect has 207 

a negative impact of 14.8% on heat-related mortality and a mitigating effect of 65.5% 208 

on cold-related mortality for global cities (Fig. S20a). These values are slightly higher 209 

than the original results, which indicate a negative effect of 11.7% and a favorable 210 

effect of 51.5%. Overall, the mitigating effect of the UHI on cold-related mortality in 211 

global cities is 4.4 times greater than its negative impact on heat-related mortality, 212 

consistent with the original ratio (Fig. S20). With regard to cooling strategies, when 213 

bias is considered, the albedo and vegetation strategies can mitigate heat-related 214 

mortality by 7.2% and 1.6%, respectively, while simultaneously exacerbating cold-215 

related mortality by 41.3% and 8.4%, respectively (Fig. S20b, c). In addition, the 216 

detrimental impact of albedo and vegetation strategies on cold-related mortality in 217 

global cities is 5.7 and 5.2 times their beneficial impact on heat-related mortality, 218 

respectively. These values are in close alignment with the original results, i.e., 5.6 and 219 

5.1 times (Fig. S20). We acknowledge that model bias does affect the results, yet it 220 

does not substantially affect the major findings.  221 
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Note S5: Cross-validation for the cities in Africa and South Asia 224 

We recognize the challenges posed by the scarcity of city samples in certain regions, 225 

which raises concerns about model accuracy. To assess model performance in regions 226 

with sample deficiencies, we resorted to additional data on temperature-mortality risk 227 

for selected cities in Africa and Asia. Through an extensive literature search, we 228 

additionally gathered data from 49 city samples, including 43 cities in South Africa9, 229 

four in the Philippines10, one in India11, and one in Vietnam10. These samples provide 230 

temperature-mortality risk curves, which were used to validate our model. It is 231 

important to note that these 49 cities were excluded from the training process and 232 

served solely as validation samples.  233 

 234 

Our validation indicates that the model achieves acceptable accuracy for cold-related 235 

mortality risk in these African and Asian cities (Fig. S21). Specifically, the 236 

discrepancies between the modeled and reference risk curves for cold-related 237 

mortality are primarily between –0.002 and 0.001 (Fig. S21a), with a mean 238 

discrepancy of only 0.0003, indicating a relatively robust modeling capacity. In terms 239 

of heat-related mortality risk, our evaluation shows that the model exhibits a slightly 240 

higher bias (Fig. S21d), with the difference falling between –0.04 and 0.04 (Fig. 241 

S21b), and a mean difference of around 0.02. The slightly lower accuracy in terms of 242 

heat-related mortality may be attributed to (1) the relatively higher intensity of heat-243 

related risk and (2) the inherent modeling bias. To be specific, the model exhibits a 244 

slight underestimation of heat-related mortality risk for cities in the Philippines, 245 

Vietnam, and India, while a slight overestimation for South African cities. 246 

 247 

In the majority of cities located in South Africa, the UHI effect was observed to 248 
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typically exert a net beneficial influence. Therefore, the overestimation of heat-related 249 

mortality risk in these South African cities indicates a slight underestimation of the 250 

overall net benefits. Conversely, for the cities in the Philippines, Vietnam, and India 251 

where the UHI effect has a net detrimental impact, the underestimation of heat-related 252 

mortality risk implies a slight underestimation of the overall net detriments. These 253 

evaluations suggest that although biases exist, the major conclusions regarding the net 254 

impact of the UHI on temperature-related mortality across global cities remains valid. 255 

 256 

  257 
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Note S6: Robustness and validity of UHI-induced net mortality reduction in global 258 

cities 259 

Our investigation presents a comprehensive analysis of the dual impacts of the UHI 260 

effect and commonly employed cooling strategies on temperature-related mortality, 261 

spanning current and future scenarios across over 3,000 cities worldwide (Figs. 2 to 3 262 

& Fig. S9). Our findings underscore the conventionally-acknowledged harmful 263 

impact of the UHI effect on temperature-related mortality in most low-latitude cities 264 

(such as Jakarta) and a few mid-latitude cities (Fig. 2). However, a markedly larger 265 

proportion of global cities (77.0%) experience a reduction in temperature-related 266 

mortality due to the UHI effect (Fig. 2). Globally, UHI-induced decrease in cold-267 

related mortality outweighs the increase in heat-related mortality by approximately 268 

4.4 times. Furthermore, the common vegetation and albedo cooling strategies could 269 

exhibit a net detrimental annual effect on global temperature-related mortality. While 270 

this finding may appear surprising, it is scientifically plausible given that these 271 

cooling strategies disproportionately exacerbate cold-related mortality compared to 272 

heat-related mortality in most cities. This can be attributable to the extended duration 273 

of cold-related risks within an annual cycle, where the global mean MMP is 77.9% 274 

(Supplementary Fig. S2). Traditional views often highlight the negative impacts of the 275 

UHI effect and the positive effects of cooling strategies; however, our research 276 

emphasizes the dual nature of the UHI effect and the associated cooling strategies on 277 

global temperature-related mortality.  278 

 279 

Our assessments demonstrate the feasibility of the data-driven approach employed to 280 

establish mortality-temperature (M-T) relationships tailored to individual cities, 281 

achieving an acceptable level of accuracy (Supplementary Note S2). Moreover, our 282 



 14 / 65 

sensitivity analysis indicates that biases in the model exert only a minor influence on 283 

the assessment of UHI-induced annual net mortality (Supplementary Fig. S20), 284 

affirming the robustness of our core conclusions (Supplementary Note S4). Concerns 285 

may arise among practitioners regarding the validity of extrapolating global city-286 

specific mortality-temperature (M-T) associations from a dataset with limited and 287 

unevenly distributed city samples (i.e., ~700 cities; see Methods). We acknowledge 288 

the inherent uncertainties associated with this approach. Nonetheless, our evaluations 289 

confirm that employing the random forest model alongside temperature-related data 290 

from around 700 cities produces reliable outcomes (Supplementary Note S3), despite 291 

the dataset's limited geographic representation, particularly in regions of the Global 292 

South (Supplementary Note S5). Another potential concern may be whether dividing 293 

the M-T association curve into four distinct ranges introduces uncertainties that could 294 

potentially skew the findings. Our further analysis shows that although some 295 

variability in the M-T association might arise from this division, the four-range 296 

partitioning strategy does not compromise the assessment of the dual impacts of the 297 

UHI effect on global mortality (Supplementary Note S3 & Fig. S9).  298 

 299 

Numerous investigations on M-T associations have consistently highlighted a marked 300 

distinction, showing that mortality during cold seasons exceeds that during hot 301 

seasons by a factor of five to twenty in most urban settings7,8,12. Consequently, it is 302 

anticipated that the heightened warmth attributed to the UHI effect in most cities 303 

(with a relative warmth of approximately 1.0 K) would lead to a notably greater 304 

reduction in cold- than in heat-related mortality. Recent observational data, 305 

encompassing the past two decades and reflecting substantial warming akin to the 306 

relative warmth attributed to the UHI effect, indicate a substantial prevalence of cold-307 
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related over heat-related mortality12. Projections concerning temperature-related 308 

mortality also affirm that, even under high-emission scenarios with temperature 309 

increases during both hot and cold periods, heat-related mortality is projected to 310 

remain considerably lower than cold-related in most cities worldwide until 205013,14. 311 

This phenomenon can be attributed to two key aspects: (1) the M-T curve displays an 312 

extended tail (i.e., the MMP often considerably exceeds 50%) at lower temperature 313 

percentiles, as opposed to higher percentiles, in most cities (Supplementary Fig. S2); 314 

and (2) there is a notable asymmetry between the occurrence of cold and hot days, 315 

particularly in mid- and high-latitude cities, with substantially more cold days 316 

prevailing. Our findings underscore the imperative for clarifying the dual impact of 317 

the UHI effect on annual net mortality across global cities, which holds particular 318 

importance for the broader scientific community and requires further clarification.  319 

  320 
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Note S7: Elucidation of assumptions in temperature-related mortality modeling 321 

Our present modelling strategies are based on static modelling assumptions, and do 322 

not distinguish between mortality due to indoor and outdoor temperature exposures. 323 

This approach is due to several factors and inherent limitations. First, regarding data 324 

and methodology, existing medical data provided by official agencies record daily 325 

total population deaths, which integrate both indoor and outdoor exposures7,8, and do 326 

not differentiate between deaths resulting from indoor and outdoor exposures. This 327 

aggregation makes it challenging for previous attribution studies to separately 328 

evaluate temperature-related mortality due to indoor and outdoor temperatures. Thus, 329 

the methodological constraints of existing prediction models limit our ability to 330 

separately analyze mortality associated with indoor versus outdoor temperatures. 331 

Second, distinguishing deaths attributable to indoor versus outdoor exposures requires 332 

a detailed quantification of urban population dynamics. However, such quantification 333 

on a global scale is extremely challenging primarily because the dynamic attributes of 334 

urban population exposure are intricately influenced by factors such as urban 335 

population types, their mobility habits, and specific urban layouts15. Therefore, our 336 

approach, which employs a static assumption of continuous exposure for urban 337 

populations, aligns closely with prior large-scale exposure risk assessment studies16-18. 338 

Third, our primary aim is not to develop novel methods for more finely attributing 339 

temperature-related mortality, such as distinguishing between indoor and outdoor 340 

impacts. Instead, our main focus is on exploring the dual effects of UHI and urban 341 

cooling strategies on global temperature-related mortality, using established 342 

benchmarks. Therefore, employing a combined mortality-based assessment enhances 343 

comparability with existing research. 344 

  345 
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Note S8: Integration of the sWBGT index for assessing the impact of UHI on 346 

temperature-related mortality 347 

In this study, we consistently employed the air temperature index for assessing 348 

temperature-related mortality in global cities. This choice was made to maintain 349 

consistency with raw data from epidemiological studies and their accessibility. 350 

However, it is reasonable to consider that the wet bulb temperature index, which 351 

combines temperature and humidity, might provide a more accurate reflection of the 352 

risk of temperature-related mortality19, 20. To address this, we incorporated the 353 

simplified Wet Bulb Globe Temperature (sWBGT) index21 into our assessment for 354 

comparative validation of our core findings. 355 

 356 

We initially calculated the daily sWBGT index for global cities, utilizing both air 357 

temperature and humidity data22. We then established the sWBGT intensity at 358 

corresponding percentiles of the index for these cities. Applying a similar 359 

methodology, we estimated the dual impact of UHI effects on temperature-related 360 

mortality within an sWBGT index-based assessment framework. By juxtaposing these 361 

results with those from the air temperature index-based assessment, we assessed the 362 

sensitivity of our conclusions to the choice of assessment index. 363 

 364 

Our results indicate a high correlation between the two assessments, with correlation 365 

coefficients of 0.88, 0.86, and 0.76 for heat-related mortality, cold-related mortality, 366 

and annual net mortality, respectively (Fig. S22a-c). Generally, UHI intensifies heat-367 

related mortality while reducing cold-related mortality (Fig. S22a, b). Overall, the 368 

mitigating effect of UHI on cold-related mortality outweighs its intensifying effect on 369 

heat-related mortality, resulting in a net reduction in temperature-related mortality 370 
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(Fig. S22c). 371 

 372 

We noted some variation in the impacts of sWBGT index-based and air temperature 373 

index-based UHIs on temperature-related mortality. For example, in the context of 374 

heat-related mortality, the sWBGT index-based UHI has a slightly more pronounced 375 

intensifying effect than its air temperature index-based counterpart (Fig. S22a). This 376 

suggests that incorporating humidity into the index amplifies the heat-related risk, 377 

leading to a more significant negative impact on heat-related mortality. This is further 378 

substantiated by regional results, where the sWBGT index-based UHI demonstrates a 379 

stronger intensifying effect on heat-related mortality in certain tropical cities (Fig. 380 

S22e). 381 

 382 

Despite these variations, the sWBGT index-based and air temperature index-based 383 

assessments essentially reach the same conclusion on a global and multiple regional 384 

scales: the mitigating effects of UHI on cold-related mortality generally outweigh its 385 

intensifying effects on heat-related mortality, resulting in a net beneficial effect 386 

globally (Fig. S22 d-e; Fig. 2h, i). Notably, UHI significantly reduces cold-related 387 

mortality in cold and warm zones, as well as in cities across Europe and Oceania (Fig. 388 

S22d-e; Fig. 2h, i), indicating a clear net benefit. These results suggest that while 389 

there are minor variations in values from different indices, the key conclusions remain 390 

consistent and do not significantly alter the primary findings of our study. 391 

 392 

The consistency across different indices largely stems from the fact that assessments 393 

using various moist heat indices consistently show that the adverse effects of 394 

temperature persist longer during cold periods23. This aligns with widespread findings 395 
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based on air temperature, which often report a higher incidence of cold-related 396 

mortality. Such consistency reinforces our main findings regarding the dual impact of 397 

UHI on temperature-related mortality, emphasizing its protective role during cold 398 

periods over its adverse effects during heat. 399 

 400 

Our choice to use air temperature for our assessments primarily derives from the fact 401 

that most available epidemiological studies use air temperature metrics to estimate 402 

temperature-related mortality. The aim of this study is to address the knowledge gap 403 

concerning the dual impacts of UHI on temperature-related mortality in cities 404 

worldwide. The use of air temperature, a standard metric in epidemiological 405 

research7,8,24-26, allows for a direct comparison of our findings with most existing 406 

studies. 407 

 408 

  409 
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Note S9: Integration of meteorological station observations for assessing the impact 410 

of UHI on temperature-related mortality 411 

Given its broad coverage, we integrated the global air temperature estimate27 into our 412 

calculation of UHI intensity for global cities. This data was subsequently used to 413 

comprehensively assess the dual impacts of UHI on temperature-related mortality on 414 

a global scale. However, considering the complexities of urban microclimates, one 415 

might question whether this air temperature estimate accurately captures the 416 

microclimate effects in urban areas, which could influence the assessment of UHI 417 

effects on temperature-related mortality. To address this, we supplemented our 418 

analysis with air temperature data from meteorological observation stations for 419 

comparative assessment, thereby testing the robustness of our findings. 420 

 421 

Specifically, we obtained air temperature data from the global meteorological 422 

observing stations included in the Berkeley Earth dataset28. This dataset offers long 423 

time-series monthly near-surface air temperature data from over 40,000 424 

meteorological stations worldwide and is widely used in urban climate research29,30. 425 

Initially, we filtered the air temperature data from urban and suburban stations 426 

provided by this dataset31, 32, retaining those stations with data for all 12 months and 427 

eliminating outliers using a triple standard deviation method33. This process resulted 428 

in a selection of 2,076 urban stations and 5,512 suburban stations. Subsequently, we 429 

performed urban-suburban station matching33-35, retaining only those cities with both 430 

types of stations. This matching process led to the inclusion of more than three 431 

hundred cities worldwide. We then quantified the monthly UHI intensity of these 432 

cities by calculating the mean air temperature difference between urban and suburban 433 

stations. Similar to our original approach, we used the UHI intensity—based on 434 
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meteorological station data—to assess the additional impact of UHI on temperature-435 

related mortality. Finally, we compared the UHI impact results derived from station 436 

data with those obtained from remotely sensed air temperatures to validate the 437 

robustness of our findings. 438 

 439 

The results from over 300 cities consistently indicate that UHI's mitigating effect on 440 

cold-related mortality generally outweighs its exacerbating effect on heat-related 441 

mortality (Fig. S23a, b), suggesting an overall net beneficial impact of UHI on 442 

temperature-related mortality. Notably, in cities within cold, warm, and arid zones, 443 

UHI's mitigating effect on cold-related mortality significantly outweighs its 444 

exacerbating effect on heat-related mortality, leading to a clear net beneficial impact 445 

(Fig. S23c, d). Conversely, in some tropical cities, UHI's exacerbating effect on heat-446 

related mortality is more pronounced, resulting in a net negative impact in parts of 447 

these cities (Fig. S23c, d). We also noted slight discrepancies in the UHI impact 448 

assessment in some Asian cities when comparing results based on station-based air 449 

temperatures and remotely sensed air temperatures. These discrepancies could be 450 

attributed to the small sample size of cities included, potentially introducing minor 451 

variations in assessments across different datasets. However, the conclusions derived 452 

from assessments in this region remain consistent across both datasets: UHI's 453 

mitigating effect on cold-related mortality in Asian cities generally outweighs its 454 

exacerbating effect on heat-related mortality (Fig. S23a, b). 455 

 456 

In conclusion, despite minor numerical differences between the assessments based on 457 

the two datasets, the key conclusions are consistent: the average mitigating effect of 458 

UHI on cold-related mortality outweighs the average exacerbating effect on heat-459 
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related mortality across all assessed cities, indicating an average net positive impact. 460 

This finding aligns with the original overall conclusion of the study, further 461 

reinforcing the reliability of our results. 462 

 463 

  464 
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Note S10: Indicator considerations for the estimation models employed in this study 465 

This study involves three distinct random forest (RF) models: the temperature-466 

mortality (M-T) association prediction model, the slope correction model for the 467 

effectiveness of cooling strategies, and the future UHI intensity prediction model. 468 

Each model utilizes different variables tailored to its specific objectives. 469 

 470 

Prior studies indicate that the M-T relationship is influenced by a combination of 471 

climate (e.g., air temperature)36, geographic factors (e.g., elevation, latitude)37-39, 472 

economic conditions40-42, and demographic profiles43-45. Based on these insights, we 473 

included ten categories of indicators – surface air temperature (SAT), dew point 474 

temperature, precipitation, wind speed, elevation, latitude/longitude, GDP, 475 

demographic structure (proportion of population over 65 years old), critical 476 

infrastructure spatial index (CISI), and human development index (HDI) as proxies 477 

for climatic and socio-economic factors in modeling M-T relationships. 478 

 479 

The effectiveness of urban cooling strategies is linked to both the climatic conditions 480 

and urban development levels of a city. Previous analysis reveals that cooling strategy 481 

efficacy varies significantly across different climatic zones, with key climatic 482 

variables such as temperature and wind speed showing a notable inverse correlation 483 

with cooling effectiveness46-48. Additionally, urban development degree has been 484 

identified as a critical determinant influencing cooling strategy outcome46. To 485 

accurately model these dynamics, we selected a comprehensive set of indicators. 486 

From a climatic perspective, our model includes air temperature, dew point 487 

temperature, precipitation, and wind speed. To address the urban-specific factors, we 488 

considered urban population size, vegetation cover, albedo, and radiation levels. 489 
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Moreover, we incorporated geographical variables such as elevation and 490 

latitude/longitude to enhance the model's comprehensiveness and its ability to 491 

generalize across different urban settings. 492 

 493 

In urban climate studies, UHI intensity is widely acknowledged to be closely 494 

associated with both the prevailing climatic conditions such as air temperature and 495 

precipitation and the extent of urbanization such as urban population size within a 496 

city49,50. These elements define the climatic and environmental disparities between 497 

urban and suburban areas, thereby influencing UHI intensity. Therefore, accurate 498 

prediction of UHI intensity across global cities necessitates the inclusion of these 499 

critical indicators. Given our focus on future predictions of UHI intensity, it is crucial 500 

to select indicators that will remain relevant and for which future data projections are 501 

available. In this regard, we have chosen indicators that best represent the climatic 502 

and urbanization factors likely to influence future UHI trends. These include air 503 

temperature, humidity, precipitation, urban population size, and geographic 504 

coordinates (latitude and longitude). This selection ensures that our model can 505 

effectively predict UHI intensity while accommodating variations in data availability 506 

and urban development scenarios globally.  507 

 508 

  509 
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Note S11: Analyses of vegetation and albedo in relation to temperature change in 510 

global cities 511 

The analysis of vegetation and albedo adjustment strategies in relation to temperature 512 

changes across global cities includes two stages: initial slope fitting and slope 513 

adjustment. In accordance with previous studies51-53, we utilized the slopes of the 514 

linear regression relationship between temperature and vegetation/albedo to assess the 515 

impact of increasing vegetation and albedo strategies on temperatures across global 516 

cities. The absolute correlation coefficients (r) for the monthly relationship between 517 

vegetation changes and temperature are mainly in the range of 0.4 to 0.6 (Fig. S24a). 518 

The r values remain relatively consistent across months. For most cities, the 519 

significance levels (p) is less than 0.01 (Fig. S24b), suggesting a significance level 520 

exceeding 99%. The mean r values for the linear relationship between temperature 521 

and albedo remain stable around 0.42 (Fig. S24c), with a similarly high proportion of 522 

cities having p-values less than 0.01 (Fig. S24d). These results indicate that the linear 523 

relationships between cooling strategies (increasing vegetation and albedo) and 524 

temperature provides a stable and significant fitting performance for most cities 525 

worldwide. 526 

 527 

The pixel-scale linear fittings could be affected by the limited samples and data 528 

quality issues, leading to anomalous (e.g., positive correlations due to outliers) values 529 

or insignificant fittings in a few cities. To ensure robust analysis, we first eliminated 530 

such outliers54. Based on the remaining results with outliers discarded, we then 531 

constructed correction models of the slopes by integrating various climate and urban 532 

characteristic variables (including air temperature, dew point temperature, 533 

precipitation, wind speed, urban population, vegetation cover, albedo intensity, 534 
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radiation, elevation, and latitude/longitude information). By this approach, cities with 535 

missing fitting results can be well simulated using information from neighboring 536 

cities or cities with similar climatic conditions. Furthermore, the fitted slopes for cities 537 

can also be optimized and smoothed simultaneously after incorporating more 538 

information from adjacent cities. Note that the effectiveness of cooling strategies was 539 

evaluated separately during warm and cold months (identified using MMT estimates). 540 

 541 

To validate the prediction model regarding the fitted slopes between vegetation/albedo 542 

and temperature, we conducted two categories of validation. First, we randomly 543 

divided the monthly fitted slope values of vegetation/albedo and temperature into two 544 

sets: 80% of the data for model training and the remaining 20% for model validation. 545 

Validation exhibits a correlation (r) of 0.77 and an R² of 0.57 for vegetation-546 

temperature slopes, and a correlation (r) of 0.75 with an R² of 0.56 for albedo-547 

temperature slopes (Fig. S25a, b). Despite a slight bias in a small part of the fitted 548 

slopes with high values, validation shows generally acceptable overall accuracies, 549 

with the vegetation-temperature slopes demonstrating a mean absolute error (MAE) of 550 

0.60 °C. Second, the model generalizability was further corroborated through a 551 

tenfold randomization of the training and validation samples, yielding a consistent 552 

mean r and R² of 0.76 and 0.58 for vegetation, and 0.71 and 0.51 for albedo, 553 

respectively. The MAE values are 0.59 °C and 0.94 °C for vegetation and for albedo, 554 

respectively (Fig. S25c-f). These validations demonstrate acceptable generalization 555 

capabilities of the developed models.  556 

 557 

  558 
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Note S12: Possible uncertainties and limitations of this study 559 

There are several limitations in our study that point to promising directions for future 560 

research. For example, our representation of urban vegetation across global cities 561 

relied on the MODIS EVI products, which offers a broad global perspective but lacks 562 

the ability to accurately differentiate the vegetation types within cities. The current 563 

shortage of high-resolution data on vegetation type across global cities precludes our 564 

ability to delve into detailed vegetation analysis. We have proposed vegetation 565 

regulation strategies that entail minimal EVI growth intensities, thus reducing 566 

maintenance demands and preventing undue strain on urban systems. However, we 567 

acknowledge that the consideration of maintenance needs remains not fully addressed. 568 

As data availability expands, future studies should consider incorporating more 569 

meticulous vegetation data to improve accuracies by accounting for the unique 570 

cooling effects and maintenance needs of various vegetation types. 571 

 572 

In addition, our model assumes static conditions and it does not account for the 573 

dynamic nature of urban populations, such as indoor-outdoor movements and 574 

location-specific exposure (Supplementary Note S7). Our proposed vegetation and 575 

albedo regulation scenarios (increases ranging from 4% to 40%) were designed under 576 

relatively ideal conditions, without considering practical constraints like city-specific 577 

building layouts, implementation feasibility, and potential interactions between urban 578 

vegetation and albedo changes. Furthermore, certain weather conditions such as 579 

snowfall can alter surface albedo and induce uncertainties in evaluating the impacts of 580 

albedo modifications on urban temperatures in some cities. 581 

 582 

We have demonstrated that delicate machine learning extrapolation of the M-T 583 
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association would not invalidate our core findings (Supplementary Note S3 to S6). 584 

However, practitioners should be cautious when employing machine learning-derived 585 

M-T associations in mortality studies that demand precise M-T curve data. It is also 586 

important to note that machine learning approaches cannot replace the traditional 587 

collection of M-T data from hospitals, especially in Global South cities where reliable 588 

data remains limited. Our M-T projection model, drawing from globally available 589 

data, integrates ten major categories of predictors. Nevertheless, we recognize that our 590 

estimation may not incorporate all relevant factors − for instance, urban migration 591 

characteristics are not adequately addressed. When assessing future temperature-592 

related mortality, we, like previous studies55, have applied relationships derived from 593 

historical data to future projections. This approach does not consider important factors 594 

such as human adaptation and urban development over time56. Our analysis implies 595 

that, within a moderate emission trajectory, the common cooling strategy is poised to 596 

yield more detriments than benefits regarding temperature-related mortality around 597 

2050 for most mid-latitude cities (Supplementary Fig. S9). However, projections 598 

suggest that the increase in heat-related mortality instigated by the UHI effect should 599 

outweigh the decrease in cold-related mortality across cities in Central and Southern 600 

Europe and South America during the latter half this century56. It is important to note 601 

that our current estimates are grounded in temperature-mortality curves derived 602 

primarily from mortality data collected in the early years, around 20007. This raises 603 

the concern that the mortality data from this period may no longer reflect current 604 

climatic conditions, particularly for cities that have witnessed an increase in extreme 605 

heat events, such as Phoenix and Los Angeles in the United States57. Furthermore, our 606 

estimates do not consider the substantial and abrupt surge in heat-related mortality 607 

arising from extreme heat events58, which are expected to gain prominence under 608 
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global warming scenarios59. In this changing climate landscape, the UHI effect in 609 

many mid-latitude cities might yield an annual net adverse impact even significantly 610 

before 2050 under low or moderate emission pathways. Furthermore, the data we 611 

used, from existing studies, are mostly based on daily-scale mortality assessments. As 612 

more detailed disease data become available in the future, investigating the hourly 613 

temperature-mortality relationship would be pivotal for improving our understanding 614 

of temperature impacts on urban mortality. Finally, we used city-wide spatial averages 615 

and monthly temporal averages to quantify the urban heat (or cool) island effect. Note 616 

that this effect is characterized by intra-city and intra-day variations. Future research 617 

should consider the more detailed spatiotemporal heterogeneity in this effect to 618 

enhance accuracy.  619 

 620 

Despite these limitations, we consider the core finding remains robust – the mortality 621 

reduction induced by the UHI effect during cold spells can offset and even surpass the 622 

mortality increases during hotter periods. This finding holds because (1) cities 623 

worldwide are more frequently exposed to cold- than heat-related risks, and (2) the 624 

global mean MMP significantly exceeds 50% (Supplementary Fig. S2). We 625 

acknowledge that for a small subset of cities, primarily in tropical zones, the number 626 

of 'heat days' can outnumber 'cold days', leading to higher increases in heat-related 627 

mortality. However, the broader global urban population can obtain more benefits 628 

from the UHI effect and endure fewer detriments annually, resulting in a net global 629 

benefit (Supplementary Fig. S2a). This is also evidenced by the M-T relationships in 630 

individual cities such as Madrid and Tokyo, which demonstrate net positive health 631 

impacts induced by the UHI effect (Supplementary Fig. S2). 632 

 633 
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B. Supplementary Figures 635 

 636 

 637 

Fig. S1. Impact of the urban heat island (UHI) effect on heat-related mortality 638 

and cold-related mortality across global cities.  639 

 640 

 641 

  642 
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 643 

 644 

Fig. S2. The minimum mortality temperature (MMT, oC), minimum mortality 645 

percentile (MMP, %) and mortality changes (%) depending on temperature 646 

percentile | The results are for the global average (a) and several typical cities, 647 

including Madrid (b), Jakarta (c), London (d), and Tokyo (e); f-i show the UHI-648 

induced mortality for heat-related (red boxplots), cold-related (blue), annual net 649 
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conditions (grey) for Madrid (f), Jakarta (g), London (h), and Tokyo (i). The curves in 650 

Panel a-e indicate the variations in mortality related to temperature depending on 651 

temperature percentile. These have been fitted with a B-spline function for illustrative 652 

purposes, and the blue, grey, and red dashed lines indicate the 5% temperature 653 

percentiles, MMP, and 95% temperature percentiles, respectively. The shadow area in 654 

a to e denote one standard deviation of the variations in mortality related to 655 

temperature across all heat days and cold days. At the global scale, cold-related 656 

mortality (CM) is significantly greater than heat-related mortality (HM; CM > HM). 657 

This is true for Madrid, London, and Tokyo, while the CM is only marginally greater 658 

than the HM for Jakarta. The error bars in f-i denote one standard deviation of the 659 

impacts of UHI effects across all heat days, cold day, and full year (i.e., 365 days). 660 

 661 

  662 
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  663 

Fig. S3. The MMT and MMP estimates across global cities.  664 

 665 

  666 
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 667 

 668 

Fig. S4. The MMT (oC), MMP (%), and cumulative mortality changes (%) 669 

depending on the temperature percentile (%) for cities in various climate zones | 670 

The curves in Panel a-d indicate the variations in mortality related to temperature 671 

depending on temperature percentile. These have been fitted with a B-spline function 672 

for illustrative purposes. The shadow area denotes one standard deviation of the 673 

variations in mortality related to temperature across all heat days and cold days in 674 

regions. The blue, grey, and red dashed lines indicate the 5% temperature percentiles, 675 

MMP, and 95% temperature percentiles, respectively. 676 

 677 

  678 
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 679 

Fig. S5. Urban heat island intensity (UHII) across global cities in 2018 | a shows 680 

the annual mean UHII. b and c show the mean UHII in July and January, respectively. 681 

 682 

 683 



 37 / 65 

 684 

Fig. S6. Cooling effects of vegetation and albedo strategies across global cities | a 685 

and b denote the cooling effects of increasing vegetation by 40%, 30%, and 20% for 686 

cities with low, medium, and high population density, respectively, in heat days and 687 

cold days; c and d denote the cooling effects of increasing albedo by 40%, 30%, and 688 

20% for cities with low, medium, and high albedo intensity, respectively, in heat days 689 

and cold days. The cooling effects were quantified by the reduction in urban surface 690 

air temperature. 691 

 692 

  693 
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 694 

 695 

Fig. S7. Impacts of vegetation increase strategy on heat-related mortality and 696 

cold-related mortality across global cities | The specific strategy entails increasing 697 

vegetation by 40%, 30%, and 20% of the original cover for low, medium, and high 698 

population density cities, respectively. 699 

 700 

  701 
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 702 

 703 

Fig. S8. Impacts of albedo increase strategy on heat-related mortality and cold-704 

related mortality across global cities | The specific strategy entails increasing albedo 705 

by 40%, 30%, and 20% for low, medium, and high albedo intensity cities, 706 

respectively. 707 

 708 

  709 
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 710 

Fig. S9. Impacts of urban cooling strategies on cold- and heat-related mortality 711 

in 2050 under SSP2-4.5 | Impacts of two urban cooling strategies (by changing 712 

surface albedo) on the annual net mortality in global cities, i.e., the constant albedo 713 

strategy (i.e., increasing surface albedo in all year round; a) and the season-dependent 714 

albedo strategy (i.e., increasing surface albedo in warm season, while decreasing it in 715 

cold season; b); variations in future annual net mortality depending on latitude by 716 

implementing the constant (c) and season-dependent (d) albedo strategies; 717 

comparison of changes in annual net mortality using the constant and season-718 

dependent albedo strategies with different regulation intensities (e); changes in annual 719 
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net mortality by combining the implementation of increasing vegetation fraction and 720 

surface albedo (constant albedo strategy) with different regulation intensities (f); and 721 

g mirrors f, but for the season-dependent albedo strategy. The shadow area in c and d 722 

denote one standard deviation of the impacts of urban cooling strategies on each 723 

latitude range. ‘Iv1’ to ‘Iv5’ represent the vegetation regulatory intensity, with levels 724 

ranging from low (e.g., increases of 4%, 6%, and 8%) to high (e.g., increases of 20%, 725 

30%, and 40%). ‘Ic-a1’ to ‘Ic-a5’ indicate the regulatory intensity of the constant surface 726 

albedo strategy, ranging from low (e.g., increases of 4%, 6%, and 8%) to high (e.g., 727 

increases of 20%, 30%, and 40%) levels. ‘Is-a1’ to ‘Is-a5’ denote the regulatory intensity 728 

of the season-dependent albedo strategy from low to high levels, i.e., surface albedo 729 

was increased at varying intensities during warm seasons, whereas it was decreased 730 

by 4%, 6%, and 8% of the initial condition for cities with high, medium, and low 731 

albedo intensity classes during cold seasons (see Methods). Positive values indicate a 732 

net increase in mortality due to a cooling strategy, and negative values indicate a 733 

decrease.  734 

 735 

  736 
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 737 

 738 

Fig. S10. Impacts of urban vegetation and albedo strategies on heat-related 739 

mortality and cold-related mortality in 2050 | The x-axis denotes the regulation 740 

intensity of albedo strategy, and the y-axis denotes the regulation intensity of 741 

vegetation strategy. ‘Iv1’ to ‘Iv5’ represent the regulatory intensity of the vegetation 742 

strategy, with levels ranging from low (e.g., increases of 4%, 6%, and 8%) to high 743 

(e.g., increases of 20%, 30%, and 40%). ‘Ic-a1’ to ‘Ic-a5’ indicate the regulatory 744 

intensity of the constant surface albedo strategy, ranging from low (e.g., increases of 745 

4%, 6%, and 8%) to high levels (e.g., increases of 20%, 30%, and 40%; refer to 746 

Methods). 747 

 748 

  749 



 43 / 65 

 750 

Fig. S11. Global distribution of sample cities with detailed mortality-temperature 751 

(M-T) associations across Koppen-Geiger climate zones | MMT (oC) denotes the 752 

minimum mortality temperature. 753 

 754 

 755 

  756 
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 757 

Fig. S12. A complete flowchart used for assessing the impacts of the UHI effect 758 

and cooling strategies on temperature-related mortality | UHI and SAT refer to 759 

urban heat island and surface air temperature, respectively.  760 

  761 
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 762 

Fig. S13. Flowchart for quantifying the impact of the UHI effect and the 763 

associated cooling strategies on temperature-related mortality. 764 

 765 

  766 
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 767 

Fig. S14. Comparison between the original UHI intensity calculated by urban air 768 

temperature data and the UHI intensity estimated by a random forest model 769 

across global cities (with an urban area > 30 km2 in 2010) for the four seasons 770 

from 2010-2014.  771 

 772 

  773 
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 774 

Fig. S15. Estimated annual mean UHII across global cities in 2050.  775 

 776 

 777 

  778 
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 779 

 780 

Fig. S16. Cooling effects of different albedo and vegetation strategies on cold and 781 

heat days | In subfigure (a), the 'red' and 'blue' bars denote the urban surface air 782 

temperature (SAT) reduction (delta Ta) when surface albedo is increased on heat and 783 

cold days, respectively, while the 'gray' bar demonstrates the urban SAT growth when 784 

surface albedo is decreased on cold days. In subfigure (b), the 'red' and 'blue' bars 785 

denote the urban SAT reduction when vegetation cover is increased on heat and cold 786 

days, respectively. ‘Iv1’ to ‘Iv5’ represent the regulatory intensity of the vegetation 787 

strategy, with levels ranging from low (e.g., increases of 4%, 6%, and 8%) to high 788 

(e.g., increases of 20%, 30%, and 40%). ‘Ic-a1’ to ‘Ic-a5’ indicate the regulatory 789 

intensity of the constant surface albedo strategy, ranging from low (e.g., increases of 790 

4%, 6%, and 8%) to high (e.g., increases of 20%, 30%, and 40%). ‘Is-a’ denotes the 791 

regulatory intensity of the season-dependent albedo strategy, i.e., surface albedo was 792 

decreased by 4%, 6%, and 8% of the initial condition for cities with high, medium, 793 

and low albedo intensity classes on cold days.  794 

 795 

  796 
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 797 

Fig. S17. Comparison between the original and estimated MMT (unit: oC; e), 798 

MMP (unit: %; f), and the cumulative mortality (unit: %) at temperature 799 

percentiles (i.e., 0 – 5%, 5% – MMT, MMT – 95%, 95 – 100%; a to d) using 80% 800 

of the data for training and 20% for validation.  801 

 802 
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 803 

Fig. S18. Correlation coefficient (r) and mean absolute error (MAE) changes for 804 

the estimated MMT (unit: oC) and for the estimated cumulative mortality 805 

(unit: %) at different temperature percentiles for the 100 random splits when 806 

training the random forest model | The 'k1' to 'k4' represent the temperature 807 

percentile intervals of 0 – 5, 5 – MMT, MMT – 95, and 95 – 100, respectively.  808 

 809 



 51 / 65 

 810 

Fig. S19. Comparison of the UHI-induced temperature-related mortality across 811 

global cities using different city samples and scheme for modeling | a, c, and e 812 

show the UHI-induced annual, heat-related, and cold-related mortality for global 813 

cities estimated by combining the temperature-association data obtained from 380 city 814 

samples, respectively; b, d, and f show the comparison of UHI-induced annual, heat-815 

related, and cold-related mortality estimates by combining the temperature-816 

association data obtained from 705 city samples and from 380 city samples, 817 
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respectively; g show the show the UHI-induced annual net mortality for global cities 818 

estimated by combining the temperature-association data obtained from 380 city 819 

samples using an eight percentiles division scheme (i.e., 0% – 2.5%, 2.5% – 10%, 820 

10% – 25%, 25% – 50%, 50% – 75%, 75% – 90%, 90% – 97.5%, and 97.5% – 821 

100%); and h shows the comparison of the UHI-induced annual net mortality by four-822 

division (i.e., >5%, 5% – MMT, MMT – 95%, and >95%) and eight-division 823 

temperature percentile scheme, both based on the temperature-association data 824 

obtained from 380 city samples. In subplots b, d, f, and h, the solid line represents the 825 

median value, while the lower and upper lines denote 25th and 75th quantiles, 826 

respectively. The lower and upper bounds of the whiskers indicate the outlier range 827 

with an outlier coefficient of 1. 828 

  829 
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 830 

 831 

Fig. S20. Potential impacts of model biases on the heat-related, cold-related, and 832 

annual mortality estimates for global 3,280 cities | The 'UHI', 'EVI', and 'Albedo' 833 

along the x-axis denote the original estimated cumulative mortality due to the UHI 834 

effect, vegetation modification strategy, and albedo modification strategy, 835 

respectively. In contrast, 'UHI_bias', 'EVI_bias', and 'Albedo_bias' denote the 836 

estimated cumulative mortality due to the UHI effect and the vegetation and albedo 837 
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modification strategies by considering model biases. In subplots a to c, the small box 838 

represents the mean value, and the solid line represents the median value; the lower 839 

and upper lines denote 25th and 75th quantiles, respectively, while the lower and 840 

upper bounds of the whiskers indicate the outlier range with an outlier coefficient of 841 

1.5. 842 

 843 

 844 

  845 
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 846 

Fig. S21. Comparison of cold-related and heat-related mortality risk between the 847 

estimates derived from the prediction model and the original statistical results 848 

for 49 sample cities in Africa and South Asia | In subplots c and d, the small box 849 

represents the mean value, and the solid line represents the median value; the lower 850 

and upper lines denote 25th and 75th quantiles, respectively, while the lower and 851 

upper bounds of the whiskers indicate the outlier range with an outlier coefficient of 852 

1.5. 853 

 854 

 855 

  856 
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 857 

 858 

Fig. S22. Assessment of the UHI impact on temperature-related mortality 859 

globally based on the sWBGT index | a-c illustrate the sWBGT-based and air 860 

temperature-based UHI impacts on heat-related (a), cold-related (b), and annual net 861 

mortality (c), where the values refer to the cumulative impacts of the UHI on the 862 

temperature-related mortality from the daily scale for each city. d-e depict the 863 

continental (d; 1394 Asian cities, 196 African cities, 614 European cities, 841 North 864 

American cities, 188 South American cities, and 47 Oceanian cities) and climate zone 865 

(e; 1706 warm cities, 441 tropical cities, 754 cold cities, and 379 arid cities) statistics 866 

of the sWBGT-based UHI impacts on temperature-related mortality. AS: Asia, AF: 867 

Africa, EU: Europe, NA: North America, SA: South America, OC: Oceania. In 868 

subplots d and e, the small box represents the median value, while the lower and 869 

upper lines denote 25th and 75th quantiles, respectively. The lower and upper bounds 870 

of the whiskers indicate the outlier range with an outlier coefficient of 0.5. The r and 871 

p values in subplots a to c are derived from a two-sided t-test with no adjustments. 872 

  873 
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 874 

 875 

Fig. S23. Assessment of the dual effects of UHI on temperature-related mortality 876 

in 317 cities worldwide based on both meteorological station-based air 877 

temperatures and remotely sensed air temperatures | a-b show the results at global 878 

317 cities and continental (28 Asian cities, 51 European cities, and 226 North 879 

American cities) scales, while c-d show the results at climate zone (176 warm cities, 880 

13 tropical cities, 97 cold cities, and 29 arid cities) scales. Note that only continents 881 

and climate zones with more than 10 cities are shown, with the data in parentheses 882 

representing the number of cities. AS: Asia, EU: Europe, NA: North America. In 883 

subplots a to d, the solid line represents the mean value, and the small box represents 884 

the median value; the lower and upper lines denote 25th and 75th quantiles, 885 

respectively, while the lower and upper bounds of the whiskers indicate the outlier 886 

range with an outlier coefficient of 1.5. 887 

  888 
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 889 

 890 

Fig. S24. The correlation coefficients (r) and significance levels (p) for the 891 

monthly linear relationship between the cooling strategies and air temperature in 892 

cities | In subplots a and c, the number of city samples from January to December are 893 

2218, 2219, 2298, 2314, 2377, 2440, 2441, 2448, 2368, 2298, 2298, and 2225, 894 

respectively. The solid lines in a and c represent the mean values, while the dots 895 

represent the median values; the lower and upper lines denote 25th and 75th quantiles, 896 

respectively, while the lower and upper bounds of the whiskers indicate the outlier 897 

range with an outlier coefficient of 1.5. The p values in subplots b and d are derived 898 

from a two-sided t-test with no adjustments. 899 

  900 
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 901 

 902 

Fig. S25. Accuracy assessments on the fitted slopes between temperature and 903 

vegetation (albedo) | The numbers in subplots c to f represent ten result values 904 

through a tenfold randomization of the training and validation samples. The solid 905 

lines in c to f represent the median values, while the dots represent the mean values; 906 

the lower and upper lines denote 25th and 75th quantiles, respectively, while the 907 

lower and upper bounds of the whiskers indicate the outlier range with an outlier 908 

coefficient of 1.5.  909 

  910 
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