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Disproportionate exposure to urban heat island
intensity across major US cities
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Urban heat stress poses a major risk to public health. Case studies of individual cities suggest

that heat exposure, like other environmental stressors, may be unequally distributed across

income groups. There is little evidence, however, as to whether such disparities are pervasive.

We combine surface urban heat island (SUHI) data, a proxy for isolating the urban con-

tribution to additional heat exposure in built environments, with census tract-level demo-

graphic data to answer these questions for summer days, when heat exposure is likely to be

at a maximum. We find that the average person of color lives in a census tract with higher

SUHI intensity than non-Hispanic whites in all but 6 of the 175 largest urbanized areas in the

continental United States. A similar pattern emerges for people living in households below

the poverty line relative to those at more than two times the poverty line.

https://doi.org/10.1038/s41467-021-22799-5 OPEN

1 Yale-NUS College, Singapore, Singapore. 2 School of Public Policy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA. 3 Data-Driven EnviroLab,
Singapore, Singapore. 4 School of Politics and Global Studies, Arizona State University, Tempe, AZ, USA. 5 School of the Environment, Yale University, New
Haven, CT, USA. ✉email: gsheriff@asu.edu

NATURE COMMUNICATIONS |         (2021) 12:2721 | https://doi.org/10.1038/s41467-021-22799-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22799-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22799-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22799-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41467-021-22799-5&domain=pdf
http://orcid.org/0000-0003-4913-9479
http://orcid.org/0000-0003-4913-9479
http://orcid.org/0000-0003-4913-9479
http://orcid.org/0000-0003-4913-9479
http://orcid.org/0000-0003-4913-9479
http://orcid.org/0000-0003-1338-3525
http://orcid.org/0000-0003-1338-3525
http://orcid.org/0000-0003-1338-3525
http://orcid.org/0000-0003-1338-3525
http://orcid.org/0000-0003-1338-3525
mailto:gsheriff@asu.edu
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Built environments are commonly hotter than their neigh-
boring rural counterparts1. This phenomenon, commonly
referred to as the urban heat island effect, contributes to a

range of public health issues. Heat-related mortality in the USA,
for example, causes more deaths (around 1500 per year) than
other severe weather events2–4. Heat exposure is also associated
with several non-fatal health outcomes, including heat strokes,
dehydration, loss of labor productivity, and decreased
learning5–12. Characteristics of the built environment (e.g., green
space, urban form, city size, spectral reflectance) not only create
temperature differentials between urban and surrounding rural
areas13–16 but also contribute to intracity temperature
variation17–20. This variation has the potential to cause disparities
in the distribution of the burden of adverse heat-related outcomes
across sociodemographic groups.

Like other environmental stressors, such as air pollution21,
low-income or otherwise marginalized communities may
experience disproportionately higher levels of heat intensity22.
Small-scale case studies have found disparities in the distribution
of urban heat island intensity within single cities23 or differences
in exposure among population groups within a few cities in dif-
ferent countries24–26. Although evidence suggests that extreme
heat-related morbidity and mortality in cities disproportionately
affect marginalized groups27–30, there has been little research
showing whether these groups have systematic disproportionately
high exposure to the heat island effect.

Instead, research linking intracity differences in heat exposure
to sociodemographic factors has typically been done in an ad hoc
manner for a small number of individual cities23,29–32. Examining
the relationship between the distribution of annual urban heat
island exposure and income at the neighborhood level, ref. 25 find
that the distribution tended to favor those with higher incomes in
18 out of 25 selected global cities. While illustrative, these results
are difficult to generalize since the sociodemographic information
comes from a variety of sources with distinct definitions and
methods, and the sample of global cities was chosen in response
to data constraints rather than random sampling. It also does not
convey information about potential disparities for other US cities.

In 108 US cities, ref. 26 find that neighborhoods that were
redlined in the 1930s have summer surface temperature profiles
that are significantly higher than other coded residential areas
(“redlining” refers to the historical practice of denying home
loans or insurance based on an area's racial composition). In light
of substantial demographic changes and urban growth patterns
over the past 90 years, however, the extent to which this finding
translates into current racial or income disparities remains
unclear.

While these studies are suggestive, it is difficult to extrapolate
their results to a widespread or national level for several reasons.
Varying methodological approaches to quantifying urban heat
island intensity may lead to different conclusions, or analyses may
not be representative. One obstacle to a more uniform approach
has been the lack of consistent multicity delineations of urban
and rural areas that are also comparable with the administrative
areas of aggregation for which socioeconomic data are collected.
Case studies may also reflect selection bias. Prior beliefs regarding
inequitable distributions of heat exposure may have motivated
such scientific inquiry for particular locations, such that the
chosen cities may not be representative of the nation as a whole.

Combining high-resolution satellite-based temperature data
with sociodemographic data from the US Census, we find that the
average person of color lives in a census tract with higher summer
daytime surface urban heat island (SUHI) intensity than non-
Hispanic whites in all but 6 of the 175 largest urbanized areas in
the continental United States. A similar pattern emerges for
people living in households below the poverty line relative to

those at more than two times the poverty line. In nearly half the
urbanized areas, the average person of color faces a higher
summer daytime SUHI intensity than the average person living
below poverty, despite the fact that, on average, only 10% of
people of color live below the poverty line. This last finding
suggests that widespread inequalities in heat exposure by race and
ethnicity may not be well explained by differences in income
alone. While we do not observe major differences in SUHI
intensity for very young or elderly populations in most major
cities, when compared to the total population, we find that the
same racial and ethnic disparities in SUHI for specific popula-
tions of color compared to non-Hispanic whites are also con-
sistent for these age demographics.

Results
Conceptually, an environmental risk analysis typically includes
three components: hazard—measures of the spatial distribution
of a potential harm; exposure—the intersection of the spatial
distribution of human populations with the hazard; and vulner-
ability—the propensity to suffer damage when exposed to the
hazard (see, for example, refs. 33,34). We calculate harm on
the basis of the census tract level database of SUHI intensity for
the USA we developed in ref. 35. During summer months,
relatively large SUHI intensity is associated with increased local
warming and extreme heat events in urban areas13,36,37. For
exposure, we use census tract level demographic information
from the 2017 5-year American Community Survey (ACS).

A comprehensive vulnerability assessment would require
detailed information, not only about sociodemographic variables
but also about other elements such as household resources, social
capital, community resources, comorbidities, etc. that could be
obtained at an individual or community level through localized
fieldwork38,39. Although such an assessment is beyond the scope
of this study, we consider one salient aspect, age, to evaluate
whether differences in exposure by sensitive age groups affect
conclusions drawn regarding exposure for the general population.
In both very young and older populations, the body’s ability to
thermoregulate is compromised, and many older individuals have
comorbidities or predispositions that increase the likelihood of
heat-related illness and death40,41. Between 2004 and 2018, 39%
of heat-related deaths in the USA occurred in ages 65 years or
older42. Our framework is thus consistent with several studies
using heat exposure to represent climate-related hazards and age
to represent vulnerability to analyze the risk of heat stress in
urban areas in Brazil, China, Finland, the Philippines, and the
USA34,43–46.

These combined data allow us to evaluate the relationship
between race, income, age, and mean summer daytime SUHI
intensity for all major urbanized areas in the USA (see “Methods”
for the US Census definition of an urbanized area). These 175
largest US cities cover ~65% of the total population (see Sup-
plementary Fig. 1) and are also where most US heat-related
deaths have occurred in the last 15 years42. We narrow our
analysis to the summer months of June, July, and August when
the SUHI intensity is most pronounced during the day and when
mean temperatures are generally higher than other periods
through the year47 (see Supplementary Fig. 2).

Recognizing that health impacts of summer heat exposure are
likely to be nonlinear48–51, i.e., incremental increases in envir-
onmental heat load may lead to disproportionately higher risk47,
we also consider environmental inequality metrics that evaluate
the importance of within-group inequalities with respect to SUHI
spatial distribution and exposure for different sociodemographic
groups. We discuss our findings in three parts: first, comparing
mean SUHI intensity across racial and income groups; second,
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using an inequality index to measure intragroup variation in
SUHI intensity; and third, considering vulnerability according to
age and race/ethnicity.

Mean SUHI intensity across sociodemographic groups. Table 1
(a) describes differences in exposure to SUHI by population
groups defined by race/ethnicity and income (see “Methods” for
demographic group definitions). We group urbanized areas by
Köppen–Geiger52 climate zones: arid, snow, warm temperate
(henceforth referred to as temperate), and equatorial. For total
population, summer day SUHI intensity is lowest (0.40 ± 1.75 °C)
in arid zones, potentially due to the presence of more vegetation
in urban areas compared to their rural references, which mod-
erates the urban–rural temperature differentials15,35. Most cities
are in snow and temperate zones, with a mean SUHI intensity of
about 2.2 °C.

These population averages mask differences across population
groups. With respect to race/ethnicity, in each climate zone, Black
residents have the highest average SUHI exposure, for an overall
average (±standard deviation) of 3.12 ± 2.67 °C, with Hispanics
experiencing the second highest level (2.70 ± 2.64 °C). Non-
Hispanic whites have the lowest exposure in each climate zone,
with an overall average of 1.47 ± 2.60 °C. A similar pattern
emerges across income groups: people living below the poverty
line have the highest exposure in each zone (national average
2.70 ± 2.64 °C), while people living at above twice the poverty line
have the lowest (1.80 ± 2.69 °C).

Figure 1 illustrates these sociodemographic differences in
exposure, comparing kernel density plots of the distribution of
mean SUHI across the 175 cities for different population groups.
The starkest differences appear between race, Fig. 1a, and income,
Fig. 1b. In only a few cities (n= 17) are white populations
exposed to a mean SUHI intensity greater than 2 °C, while the
corresponding number of cities for people of color is 83. A similar
number of cities (n= 82) expose below-poverty populations to
more than 2 °C SUHI. Figure 1c shows that distributions for those
below poverty and for people of color are practically identical. As
shown in Fig. 1d, e, there are not large differences in the
distributions for the very young (less than 5) or the elderly
(greater than 65) and the rest of the general population. Slightly
more cities expose populations under 5 to higher SUHI intensity,
while populations over 65 are exposed to lower mean SUHI
intensity. Restricting attention to the most vulnerable age groups
in Fig. 1g does not alter the conclusion drawn from Fig. 1a; for
both age groups people of color appear to have a worse SUHI
distribution than non-Hispanic whites.

Table 1(b) tests hypotheses that mean exposure is equal across
selected groups. We reject (p < 0.01) both the null hypothesis of
equal means for people of color and non-Hispanic whites in each
climate zone, and the null hypothesis of equal means for people
below and above two times the poverty line. Perhaps unsurpris-
ingly, the average exposure of non-Hispanic whites is also
significantly lower than the average exposure of people below
poverty. Interestingly however, outside of arid climates, the

Table 1 Mean summer daytime surface urban heat island intensity (SUHI) by climate zone and sociodemographic group.

Climate zone
(number of urbanized areas)

Arid Snow Temperate Equatorial Total

(19) (44) (110) (2) (175)

(a) Population-weighted means: Total 0.40 2.23 2.21 2.76 2.06
(1.75) (2.71) (2.78) (2.20) (2.72)

By race/ethnicitya: People of color 0.65 3.44 2.93 3.19 2.77
(1.61) (2.57) (2.74) (2.15) (2.70)

Hispanic 0.74 3.65 3.03 3.02 2.70
(1.55) (2.72) (2.65) (2.19) (2.64)

Non-Hispanic Black 0.74 3.71 3.04 3.74 3.12
(1.59) (2.33) (2.76) (1.91) (2.67)

Non-Hispanic White 0.11 1.67 1.54 1.93 1.47
(1.86) (2.58) (2.65) (2.06) (2.60)

Non-Hispanic Other 0.22 2.68 2.60 2.34 2.41
(1.78) (2.60) (2.84) (2.13) (2.80)

By income: Below poverty 0.74 3.32 2.92 3.42 2.77
(1.61) (2.67) (2.78) (2.02) (2.73)

1–2 × poverty 0.69 2.87 2.64 3.32 2.50
(1.62) (2.69) (2.72) (2.03) (2.67)

Above 2 × poverty 0.22 1.87 1.95 2.41 1.80
(1.79) (2.63) (2.76) (2.21) (2.69)

(b) Difference in means: People of color−Non-
Hispanic white

0.54*** 1.77*** 1.39*** 1.26*** 1.30***

(0.059) (0.100) (0.206) (0.020) (0.171)
Below poverty− 2 × poverty 0.52*** 1.45*** 0.96*** 1.01*** 0.97***

(0.070) (0.142) (0.094) (0.001) (0.071)
People of color− below poverty −0.10** 0.13* 0.02 −0.23 −0.00

(0.039) (0.071) (0.066) (0.042) (0.063)
Non-Hispanic white− below poverty −0.63*** −1.65*** −1.38*** −1.50*** −1.30***

(0.070) (0.094) (0.167) (0.022) (0.127)

Source: Author calculations, based on data from US Census Bureau and ref. 24. Panel (a): Population-weighted means of urbanized area SUHI intensity in °C. Standard deviation is given in parentheses.
Panel (b): Difference in group means. Standard errors clustered by urban area are given in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01.
aHispanic is defined as all who report “Hispanic, Latino, or Spanish origin” as their ethnicity, regardless of race. People of color includes all Hispanic and all who do not identify as white alone. Black and
white include all who identify as these races alone but not Hispanic. Other includes all other non-Hispanic races alone and more than one race.
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average exposure of people of color is not significantly lower than
the average exposure of people below poverty despite the fact that
only 10% of people of color live below the poverty line.

The values in Table 1 are weighted by population, thus raising
the possibility that a few exceptionally large urbanized areas may
be driving the results. By illustrating the spatial distribution of
significant city-level racial and income disparities in SUHI
exposure, the maps in Fig. 2 visualize the geographic scope of
the phenomenon presented in the table. For each comparison,
circles and triangles identify which group has the higher average
SUHI exposure in each city. Symbols with black outlines indicate
cities for which the differences in means are statistically
significant (p < 0.05). (Supplementary Table 1 displays city-level
results used to generate these maps). In Fig. 2a, map shows that
people of color have higher SUHI exposure than non-Hispanic

whites in 97% of cities nationally, and that this difference is
significant in three quarters of cities. By zone, this proportion
ranges from 42% in arid climates to almost 90% in snow. In
contrast, non-Hispanic whites have a significantly higher
exposure in only a single city, McAllen, TX. In Fig. 2b, the map
shows a similar pattern for income. For over 70% of cities people
below poverty have a significantly higher exposure than people
above twice the poverty line (and in no city do they have a
significantly lower exposure). In only 7% of cities nationwide does
the average person of color have a lower exposure than the
average person living below the poverty line (Fig. 2c).

Intragroup variation in SUHI intensity. A potential drawback to
focusing on average exposures by demographic group is it can
mask the existence of potential hotspots, geographic areas in
which individuals are exposed to elevated levels of the hazard.
Hotspots are particularly problematic when comparing exposures
across groups if the additional damage caused by an incremental
temperature increase grows as temperatures rise. In such cases,
even if two groups were to hypothetically face the same average
exposure, a group in which half of individuals were exposed to a
temperature of, say, 38 °C and half were exposed to 32 °C, would
suffer higher adverse effects than a group in which all individuals
were exposed to 35 °C.

The Kolm–Pollak (KP) inequality index (see “Methods”) is a
tool for ranking group distributions of exposures when there are
potential differences in dispersion of outcomes within each group
(e.g., hotspots). Table 2(a) summarizes the average KP inequality
index values for each city by population group and climate zone.
A higher value corresponds to a less equal distribution of SUHI
exposures within each group, with zero indicating a perfectly
equal exposure (i.e., no within-group variation).

In general, cities in arid climates tend to have the lowest
intragroup variation, and cities in snow and temperate zones have
the highest. Within a given zone, however, index values are
remarkably similar across population groups. Table 2(b) evaluates
the hypothesis that index values vary significantly by demo-
graphic groups. Differences, measured in °C, are small in
magnitude and not generally significant. Taken together, results
in Table 2 suggest that the group means presented in Table 1 do
not mask significant differences in variation within demographic
groups. That is, the presence of relative hotspots is not likely to be
higher among people living below the poverty line, for example,
than people living at more than twice the poverty line.
Consequently, for the remainder of this analysis we focus on
average exposure levels for each group.

Vulnerability. Analyzing vulnerability is a relevant factor in
considering the implications of the difference in mean exposures
presented in Table 1. Since SUHI intensity is more damaging to
people over the age of 65 years, the fact that all people of color
might be exposed to higher average SUHI than non-Hispanic
whites may not be problematic, for example, if its vulnerable
(over 65) subpopulations are not exposed in the same way. Map
in Fig. 2d indicates that people over 65 have lower SUHI expo-
sures than those under 65 in 86% of US cities. While this dif-
ference is significant for only 16% of cities, there are no cities in
which they have a significantly higher exposure. Table 3(a) pre-
sents mean SUHI exposure levels by race and ethnicity, restricting
attention to two particularly vulnerable subpopulations: those
over 65 years old and those below the age of 5 years. Comparing
the exposure levels of these ages in Table 3(a) with group-wide
exposure in Table 1(a), we see that for people of color exposure
levels are nationally the same or higher for these vulnerable
groups: 2.76 ± 2.64 °C for those below 5 and 2.88 ± 2.77 °C for
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Fig. 1 Distribution across cities of mean summer daytime surface urban
heat island (SUHI) intensity by sociodemographic group. Each panel
compares kernel density estimates for two sociodemographic groups.
Diagrams are normalized so that the area under each curve equals 175
cities. Hispanic is defined as all who report “Hispanic, Latino, or Spanish
origin” as their ethnicity, regardless of race. People of color includes all
Hispanic and all who do not identify as white alone. a Non-Hispanic white
vs. all people of color. b 2× above poverty vs. below poverty. c Below
poverty vs. all people of color. d Over 5 vs. under 5. e Under 65 vs. over 65.
f Over 65: non-Hispanic white vs. all people of color. g Under 5: non-
Hispanic white vs. all people of color. a illustrates that people of color have
an average SUHI exposure greater than 2 °C in more cities than non-
Hispanic whites.
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those above 65, compared to 2.77 ± 2.70 °C for all people of color.
For non-Hispanic whites, however, these vulnerable populations
have slightly lower exposures: 1.45 ± 2.53 °C for those below 5
and 1.44 ± 2.60 °C for those above 65, compared to 1.47 ± 2.60 °C
for the entire white population. Table 3(b) compares mean
exposures of these vulnerable ages across racial/ethnic groups.
The patterns are almost identical to results in Table 1(b): people
of color in each age group have significantly higher exposure
levels than their white peers in each climate zone.

Discussion
Framework for understanding inequalities in SUHI. This
analysis provides a framework for quantifying the intercity and
intracity distribution of SUHI intensity by race, income, and age
that considers both the intensity of the exposure as well as the
inequality of distribution for different population subgroups. We
find that the distributions of summer daytime SUHI intensity,
taking into account both the mean and dispersion, is worse for
both people of color and the poor, compared to white and
wealthier populations in nearly all major US cities. As illustrated
in Fig. 2, this pattern holds not only at the national level, but in
almost all major urban areas regardless of geographical location
or climate zones, with a particularly intense difference in the
Northeast and upper Midwest of the continental United States.
These findings provide comprehensive evidence supporting the
narrative presented by earlier case studies that minority and low-
income communities bear the brunt of the urban heat island
effect23,25,26,29–32,35, air temperature23, and heat stress31 in indi-
vidual or multicity studies.

Although age presents a vulnerability to SUHI, and elderly
individuals aged 65 and older comprise a substantial percentage
(39%) of heat-related deaths in the USA42, our finding that
populations over 65 are on average slightly less exposed (1.84 °C
versus 2.06 °C for those under 65) could have several explana-
tions. Because SUHI intensity and greenness (as measured by
normalized difference vegetation index) are negatively
correlated35, cooler areas tend to be greener. There is evidence
that populations over the age of 65 tend to live in suburban areas
in the USA. Approximately half live in rural areas or in urban
areas with less than 1 housing unit per acre, and 28% live in
suburban areas53, which are typically greener than denser urban
areas, except in arid climates15,54,55. Considering the intersection
of race and age demographics, however, the same racial and
ethnic disparities in SUHI intensity for specific populations of
color compared to non-Hispanic whites are also consistent for
both very young and elder populations3, meaning non-white
populations over the age of 65 or less than 5 are still exposed to
higher levels of SUHI than their white counterparts. The fact that
older people of color have a slightly higher SUHI exposure than
all people of color suggests that they may be less able to escape the
heat by changing location than their white counterparts.

The Intergovernmental Panel on Climate Change has identified
the “increasing frequency and intensity of extreme heat, including
the urban heat island effect” as a relevant hazard for certain age
groups (i.e., elderly, the very young, people with chronic health
problems), which creates a risk of increased morbidity or
mortality during extreme heat periods37. Relating intercity SUHI
disparities to health outcomes is challenging due to both
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Fig. 2 Sociodemographic differences in mean summer daytime surface urban heat island intensity by major urban area. Symbols outlined in black depict
statistically significant differences in mean exposures (p < 0.05). Tables embedded in the lower left-hand corners indicate proportion of cities in each
category (e.g., worse for ▵ or worse for ◦) by climate zone. Supplementary Table 1 provides detailed results for each city. Hispanic is defined as all who
report “Hispanic, Latino, or Spanish origin” as their ethnicity, regardless of race. People of color includes all Hispanic and all who do not identify as white
alone. a Non-Hispanic white (◦) and people of color (▵). b Above 2 × poverty (◦) and below poverty (▵). c Below poverty (◦) and people of color (▵).
d Below 65 (◦) and above 65 (▵).
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prevalence of confounding factors in the populations groups, as
well as the differences between land surface temperature (LST)
and more comprehensive metrics of heat stress56. There is,
however, evidence of disparities in heat-related health outcomes
across the USA and for individual cities42,57. For example, ref. 57

finds positive correlations between heat-related mortality rates
and poverty for neighborhoods in New York City. More recently,
ref. 42 found higher heat-related mortality rates among non-
Hispanic American Indians/Alaska Natives and Blacks than for
non-Hispanic whites at the national level.

Locally-tailored SUHI mitigation strategies. In addition to
evaluating the general scope of potential heat-related environ-
mental inequality concerns, the metrics developed in our study
can identify precisely in which cities specific sociodemographic
groups are most adversely exposed to SUHI intensity and to
potential heat-related health effects for vulnerable groups. These
data can thereby assist policy makers in designing interventions
to address this exposure differential, as well as facilitate analysis of
different scenarios to select the most appropriate strategy to
mitigate exposure in an equitable manner. According to ref. 47,
many cities do not take into consideration the spatial location of
the most exposed populations in climate mitigation planning and
whether areas that present increased sociodemographic vulner-
abilities, such as age or high minority populations, are coincident
with areas exposed to higher temperatures.

Consideration of background climate differences, which have
been found to strongly modulate the thermodynamics of SUHI
intensity15,16, are critical for adapting city-specific intervention
strategies to reduce both total exposure and disparities in its
distribution58. Because we use a globally consistent dataset

derived from satellite remote sensing35, our data allow for
comparison of SUHI given differences in background climates
and sociodemographics. Decision-makers and urban planners can
utilize this information as a starting point to identify best
practices and strategies for mitigating the overall SUHI as well
as inequalities in its distribution, although there are certainly
localized, context-specific factors that must be considered when
determining SUHI management strategies. Studies have demon-
strated the importance of coproduction (i.e., involving citizens in
the production of knowledge and planning decisions) in
developing tailored urban environmental policies59. Manoli
et al.60, who used similar globally consistent satellite-derived data
to evaluate drivers of SUHI in 30,000 cities around the world,
acknowledge that these data can provide a first-order analysis to
understand base-level SUHI exposures and differences to
complement more fine-grained data on local factors that
influence the SUHI (see “Study limitations” section for more
discussion on data issues).

For example, the presence (or absence) of urban vegetation is
often proposed as a strategy to reduce the urban heat island
effect13,16,20,61, climate change more generally62, and for
their other cobenefits63–66. Access to green space has been found
to be inversely correlated with median income67. Actions such as
planting trees in low-income and minority neighborhoods, which
has been shown to reduce summertime afternoon temperatures
by as much 1.5 °C68, can increase property values and housing
costs. Previous work indicates that these housing price effects
may displace minority residents the policies were designed to
help69,70. Evidence suggests that homeowners value cooler
temperatures and that local temperature differentials are
capitalized into housing prices71. It is therefore unsurprising that

Table 2 Kolm–Pollak inequality index of summer daytime surface urban heat island intensity (SUHI) by climate zone and
sociodemographic group.

Climate zone

Arid Snow Temperate Equatorial Total

(a) Population-weighted index means: Total 0.12 0.29 0.27 0.20 0.26
(0.09) (0.11) (0.12) (0.03) (0.13)

By race/ethnicitya: People of color 0.10 0.24 0.23 0.19 0.22
(0.07) (0.08) (0.12) (0.02) (0.11)

Hispanic 0.09 0.25 0.21 0.20 0.19
(0.06) (0.08) (0.11) (0.02) (0.11)

Non-Hispanic Black 0.09 0.19 0.22 0.15 0.21
(0.05) (0.07) (0.08) (0.01) (0.08)

Non-Hispanic White 0.14 0.27 0.27 0.18 0.26
(0.12) (0.11) (0.12) (0.04) (0.12)

Non-Hispanic Other 0.13 0.25 0.27 0.20 0.26
(0.08) (0.11) (0.17) (0.03) (0.16)

By income: Below poverty 0.10 0.25 0.24 0.17 0.23
(0.08) (0.10) (0.11) (0.02) (0.11)

1–2 × poverty 0.10 0.26 0.24 0.17 0.22
(0.08) (0.11) (0.11) (0.02) (0.11)

Above 2 × poverty 0.13 0.28 0.27 0.21 0.26
(0.10) (0.11) (0.13) (0.04) (0.13)

(b) Difference in mean index values: People of color−Non-
Hispanic white

−0.04 −0.04 −0.04 0.01 −0.04*

(0.055) (0.031) (0.030) (0.018) (0.023)
Below poverty− 2 × poverty −0.03 −0.02 −0.03 −0.04 −0.03

(0.048) (0.032) (0.029) (0.014) (0.023)
People of color− below poverty 0.00 −0.02 −0.01 0.02* −0.01

(0.038) (0.027) (0.026) (0.007) (0.020)

Source: Author calculations, based on data from US Census Bureau and24. Panel (a): Population-weighted mean of urban area Kolm–Pollak indexes in °C with moderate inequality aversion. Standard
deviation is given in parentheses. Panel (b): Difference in group means. Robust standard errors are given in parentheses.
*p < 0.10.
aHispanic is defined as all who report “Hispanic, Latino, or Spanish origin” as their ethnicity, regardless of race. People of color includes all Hispanic and all who do not identify as white alone. Black and
white include all non-Hispanics identifying as these races alone. Other includes all other non-Hispanic races alone and more than one race.
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people living below the poverty line have higher average
temperature exposures than those at over two times above the
poverty line in 94% of major urbanized areas in our study.

Complexity in disentangling race, income, and SUHI. The
effect of historical practices of real estate, urban development, and
planning policies that promoted spatial and racial segregation in
US cities26,72, as well as the fact that people of color tend to have
lower income than white populations in the USA makes it diffi-
cult to disentangle purely economic reasons for the unequal
distribution of SUHI intensity exposure to those based upon
racial factors. We can, however, shed light on the complex rela-
tionships between race, poverty, and urban heat by comparing the
SUHI distributions faced by people of color to those faced by
people living below the poverty line.

While there is some overlap of individuals belonging to both
groups, such individuals are a minority; according to the 2017 5-
year ACS, only about 10% (ranging from 0.4 to 18.9%) of people
of color live below the poverty line in these major urbanized
areas. If income were to determine local summer daytime SUHI
intensity exposure, one would expect that the typical person of
color would have a lower exposure than the typical person living
below poverty. Table 1 shows that this hypothesis is unsupported:
across the entire sample the mean SUHI exposure of a person of
color (2.77 ± 2.70 °C) is practically identical to that of a person
living below poverty (2.77 ± 2.73 °C). The distribution of
temperature differentials across cities is also similar for these
two groups (Fig. 1). Nationally, we observe few cities (about 10%)
with statistically significant differences between the mean SUHI
intensities for these groups (Fig. 2c).

Illustrative examples. While the SUHI distributions for below
poverty and people of color are nearly identical (Fig. 1), patterns
of exposure by sociodemographic group are not all the same
between cities. Figure 3 provides an illustrative example, con-
trasting the cases of Baltimore, MD, and Greenville, SC. In Bal-
timore, the temperature exposure of the average person of color is
about 0.7° cooler than the average person in poverty, whereas the
opposite is true for Greenville. Figure 3a, b shows that in
Greenville, the Black population is highly concentrated in the
warmest census tracts, while the poor population is more widely
dispersed to cooler areas away from the city center. In Baltimore
by contrast, Fig. 3c, d indicates that the poorest census tracts tend
to be the warmest, while the Black population is much more
evenly spread through the city.

As these illustrative examples of Greenville, SC, and Baltimore,
MD, show, while many factors might explain our observed
difference in below poverty and minority populations’ SUHI
exposure in these two cities, prior research on residential housing
markets in the USA has shown that racial and ethnic segregation,
among factors other than consumer preference alone, determine
where certain groups live73,74.

Future challenges. The patterns of systematically higher SUHI
exposure for low-income populations and communities of color
in nearly all major US cities may lead to further inequality if these
disparities persist or worsen. Currently disadvantaged groups
suffer more from greater heat exposure that can further exacer-
bate existing inequities in health outcomes and associated eco-
nomic burdens, leaving them with fewer resources to adapt to
increasing temperature75. Increasing trends of urbanization,

Table 3 Mean summer daytime surface urban heat island intensity (SUHI) by climate zone and age.

Climate zone

Arid Snow Temperate Equatorial Total

(a) Population-weighted means—Below 5 years old: Total 0.55 2.38 2.37 2.94 2.20
(1.67) (2.66) (2.73) (2.16) (2.68)

People of colora 0.73 3.41 2.94 3.24 2.76
(1.57) (2.53) (2.68) (2.06) (2.64)

Blackb 0.85 3.81 3.13 3.82 3.21
(1.54) (2.26) (2.72) (1.82) (2.62)

Hispanicc 0.81 3.58 3.01 3.01 2.69
(1.53) (2.66) (2.62) (2.11) (2.60)

Non-Hispanic whited 0.16 1.59 1.53 1.88 1.45
(1.80) (2.49) (2.59) (2.16) (2.53)

Above 65 years old: Total 0.16 2.03 1.96 2.58 1.84
(1.82) (2.66) (2.79) (2.19) (2.72)

People of colora 0.55 3.58 3.01 3.38 2.88
(1.62) (2.54) (2.82) (2.13) (2.77)

Blackb 0.69 3.82 3.22 3.77 3.28
(1.63) (2.33) (2.83) (1.92) (2.72)

Hispanicc 0.65 3.85 3.16 3.32 2.80
(1.53) (2.79) (2.70) (2.16) (2.68)

Non-Hispanic whited −0.02 1.69 1.51 1.91 1.44
(1.87) (2.57) (2.66) (2.01) (2.60)

(b) Difference in means—Below 5 years old: People of colora−Non-Hispanic
whited

0.57*** 1.82*** 1.41*** 1.36*** 1.31***

(0.078) (0.106) (0.159) (0.018) (0.138)
Above 65 years old: People of colora−Non-Hispanic whited 0.57*** 1.88*** 1.50*** 1.47** 1.44***

(0.086) (0.111) (0.258) (0.080) (0.209)

Source: Author calculations, based on data from US Census Bureau and ref. 35. Sample includes all urbanized areas with 2017 population over 250,000. Panel (a): Population-weighted means of
urbanized area SUHI intensity in °C. Standard deviation is given in parentheses. Panel (b): Difference in group means. Standard errors clustered by urban area are given in parentheses. alone.
**p < 0.05, ***p < 0.01.
aPeople of color includes all Hispanic and all who do not identify as white alone.
bBlack alone, including Hispanic black.
cDefined as all who report “Hispanic, Latino, or Spanish origin” as their ethnicity, regardless of race.
dNon-Hispanic white alone.
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demographic shifts with aging populations, and the projected rise
in extreme heat-related events due to climate change37, may
compound certain groups’ vulnerability to extreme heat in the
future29,38. From an environmental equity and justice perspective,
understanding where these disparities in heat exposure exist
today can inform future efforts to design policy interventions to
ameliorate them.

Study limitations. While the SUHI database used in this study
has been validated against other published estimates35, we
recognize limitations of its use as a metric to identify which
groups may be more vulnerable to heat stress within cities. Our
environmental equity analysis assumes that SUHI intensity is
harmful. While this assumption is likely to be justified in the
summer periods evaluated in this study, the effect may be bene-
ficial in cities exposed to extreme winter cold76. Although in
theory the association between SUHI intensity and income and
race could imply less extreme cold-related stress in poorer and
predominantly non-white neighborhoods, other research suggests
that these winter benefits may not materialize35. Nonetheless,
intracity variation should be taken into account while planning
strategies both to reduce mean SUHI and to address environ-
mental disparities in its exposure within cities.

Heat stress also depends on factors other than LST and air
temperature, including humidity, wind speed, and radiation77.
SUHI intensity, however, is still a useful proxy for the urban
contribution to local heat stress35. Our analysis relies on satellite-
based estimates, which could overestimate UHI magnitude
compared to in situ weather stations, particularly during
daytime78, when shade from tree canopies or buildings reduce
air temperature in a way that is not captured from a satellite’s
vantage point. Our estimates, therefore, likely slightly over-
estimate the absolute measures of UHI (in °C), but in lieu of
dense, widely accessible ground-based air temperature networks,
satellite-derived estimates represent the best available data source.

We assume every individual residing in a census tract has the
same temperature exposure. In reality, temperatures and demo-
graphic characteristics may vary within a tract, and exposures can
depend on individual behavior or conditions (home air
conditioning, time spent outdoors, etc.). Our analysis also
assumes that people pass the entire day in their census tract,
abstracting from the possibility that they spend work or leisure
time in other locations with distinct SUHI profiles.

The choice to use census tract as the unit of analysis is a
compromise based on the relative precision of demographic and
satellite data. Precise demographic data are publicly available at

the smaller census block group level, and aggregating to larger
tracts implies a loss of information. In other contexts, the
environmental justice literature suggests that such aggregation
can underestimate racial disparities due to the “ecological
fallacy”79. In contrast, although satellite data are available at a
resolution of 1 km, this pixel-level data have a relatively high
degree of uncertainty, particularly for urban areas80. Since census
tracts, unlike block groups, typically contain more than one pixel,
averaging the satellite data to this level of aggregation provides
more reliable surface temperature estimates.

We also do not evaluate inequities in SUHI among
demographic groups over time. Future research could evaluate
whether disparities in SUHI exposure have improved or worsened
in time. A recent study examining inequality in fine particulate air
pollution (PM2.5) found that between 1981 and 2016, absolute
disparities between more and less polluted census tracts in the
USA declined but that relative disparities have persisted, meaning
the most exposed subpopulations in 1981 remained the most
exposed in 201681. Incorporating a time-series panel dataset on
SUHI intensity and sociodemographic characteristics would allow
for future understanding of the role climate change and
increasing temperatures may have on worsening heat exposure
disparities over time.

Methods
SUHI intensity database. Existing maps of SUHI intensity use physical boundaries
(e.g., boundary based on built-up, impervious land cover usually measured through
satellite remote sensing) as the units of calculations for delineating both urban areas
and their corresponding rural references, making them unsuitable for use with
socioeconomic data without significant uncertainties. To deal with this scale mis-
match between administrative and physical boundaries, we use summertime (June,
July, and August; Supplementary Fig. 1) values from our recently created SUHI
database for the USA that is consistent with census tract delineations35.

This dataset uses global LST products from NASA’s MODIS sensor82 and the
land cover product from the European Space Agency83. It calculates SUHI intensity
at the census tract level by combining the land cover data with the census tracts
that intersect US urbanized areas, as defined by the US Census Bureau84.

We use the simplified urban extent method15 to define the SUHI intensity of an
urban census tract t as the difference between the tract’s mean LST and the mean
temperature of the rural reference r, the nonurban, nonwater land cover pixels
within the tract’s urbanized area

SUHIt ¼ LSTt � LSTr : ð1Þ
Urbanized area boundaries do not necessarily coincide with those of census

tracts. In such cases, we adjust the approach to include only pixels within the
urbanized area of a census tract to calculate LSTt. For more details, see ref. 35. The
distributional analysis thus implicitly assumes no one resides in the nonurbanized
portions of those outlying tracts.

Since previous studies have demonstrated the importance of background
climate in modulating the SUHI intensity15,16, we also examine the relationship
between disparities in SUHI exposure and the Köppen–Geiger climate zone85. The
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Fig. 3 Distribution of surface urban heat island intensity (SUHI) by race and income in Greenville, SC, and Baltimore, MD. The correlation between
SUHI intensity (dark orange and red) and census tracts that are predominantly non-Hispanic Black (in dark purple) and low-income areas (in dark teal)
differs across cities. Hispanic is defined as all who report “Hispanic, Latino, or Spanish origin” as their ethnicity, regardless of race. a Greenville, SC: SUHI
and race. b Greenville, SC: SUHI and income. c Baltimore, MD: SUHI and race. d Baltimore, MD: SUHI and income.
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possible impact of background climate has policy implications, since it constrains
what city planners can do to mitigate the city-specific SUHI and its distributional
impacts.

Demographic data. We assign the same SUHI intensity to every individual living
in a given census tract. Demographic group averages are calculated as weighted
means across census tracts, in which the weights correspond to the number of
people of a given group residing in a tract. Census tract level demographic data
come from the 2017 ACS 5-year Data Profile86,87. We collect data on race, eth-
nicity, poverty status, age, and age by race for all 46,346 census tracts in the 175
census-defined urbanized areas that contain more than 250,000 residents (Sup-
plementary Fig. 2). Our set of urbanized areas ranges from 43 to 4470 tracts, with a
median of 582 (Supplementary Table 2). Responses to race include options for
single race (e.g., Black only) as well as multiple races. Hispanic is an ethnicity
reported in addition to race (e.g., Black only and Hispanic). Regardless of race, it is
defined as any who respond “yes” to the Census question asking whether the
person is “of Hispanic, Latino, or Spanish origin”88. For the total population, we
generate categories for two non-Hispanic single race groups (Black, white), His-
panic of any race, and “Other”. Other includes non-Hispanics of other single races,
including Black or African American, Asian, American Indian and Alaska Native,
Native Hawaiian and other Pacific Islander, and non-Hispanics reporting two or
more races. We also create a People of Color category that includes all Hispanic
and all who do not identify as white alone. For age categories, we use the same race
and ethnicity groupings to develop under 5 and over age 65 categories. Since ACS
age data do not differentiate Black by Hispanic ethnicity, however, Black Hispanics
appear in both the Black and Hispanic categories in Table 3 only.

The ACS reports poverty status as household income relative to the poverty
line. This income is not measured in dollars since the poverty line depends on the
number of individuals in the household. We use these data to generate three
income categories: at or below the poverty line, from one to two times the poverty
line, and at or above two times the poverty line (the highest recorded category).
While results for each of these income categories are provided in our tables, for the
ease of exposition, we focus our discussion on the tails of the income distribution:
the poor (those below poverty) and the relatively rich (above two times).

Inequality metrics. The goal of comparing exposure levels across population
groups is to determine whether a distribution of SUHI intensities for a given group
is preferable in some sense to that of another. In contrast to approaches identifying
correlations between summer temperatures and neighborhood characteristics such
as historical redlining26 or percentage poor or low income, e.g., ref. 23, we place the
unit of analysis on the individual to better understand human welfare implications
of SUHI exposure.

There is no clear link between what individuals find desirable and the
significance of statistical correlations between neighborhood attributes. It is
theoretically possible, for example, for the average individual in a demographic
group to be better off with a positive (versus negative) correlation between summer
heat and their group’s majority status in a neighborhood if most members of the
group happen to live in neighborhoods in which they are a minority.

A simple individual-based metric such as mean exposure is potentially
misleading due to nonlinear adverse health impacts of summer heat. Evidence
suggests that above a moderate threshold damage is an increasing convex function
of temperature, i.e., a 1° temperature increase causes more damage at higher
temperatures48–51. In such cases, Jensen’s inequality implies that, all else equal, the
average health damage for a population in which everyone faces an identical
summer heat exposure will be lower than that of a population with the same mean
exposure but an unequal temperature distribution. It follows that for any unequal
temperature distribution there exists a more desirable (from a health perspective)
distribution characterized by a higher mean and no inequality. That is, a perfectly
equal summer temperature distribution is generally preferable to an unequal
distribution with the same mean.

Using this principle, we adapt an ethical framework commonly used to study
income distributions to compare distributions of environmental harm89. Under
this framework, a distribution is considered more desirable than another if it would
be chosen by an impartial agent who knows only that she will receive an outcome
from that distribution but is ignorant regarding what that outcome will be.
Reframing the problem of ranking SUHI exposure distributions as one of rational
choice made behind a “veil of ignorance”90,91, provides an intuitive approach
founded on explicitly specified individual preferences.

To implement this method, we transform distributions of SUHI intensity across
individuals in a demographic group to “lotteries” in which the probability of
receiving a given exposure corresponds to the proportion of people in the group
receiving that exposure. The more desirable distribution is the lottery that would be
chosen ex ante by an impartial representative agent who only knows that her ex
post exposure will be randomly drawn from that lottery. This choice in turn
depends on assumptions made about the agent’s tastes regarding the harm caused
by different levels of exposure.

The equally distributed equivalent (EDE)92,93 is a construct for cardinally
ranking all possible lotteries. It represents the value of the outcome (in our case,
SUHI intensity) that, if experienced by everyone in the group, would make the

impartial agent indifferent between the actual unequal distribution and the
hypothetical equal distribution.

In summer, the EDE is generally higher than the mean of the actual
distribution, i.e., the agent would be willing to bear a higher average intensity if she
knew that she were guaranteed not to randomly draw a value higher than the
mean89. The gap between the EDE and the mean is an index of inequality within a
given group, indicating the maximum additional SUHI intensity per person that
would make the representative agent indifferent between the actual distribution
and the hypothetical equal distribution.

As described in ref. 89 and Supplementary Note 1, the KP inequality index has
several desirable features relevant to characterizing distributions of environmental
harm. For an N-dimensional vector of SUHI intensities x, with each element
corresponding to the exposure of individual n in a given urbanized area, the KP
inequality index can be expressed

IðxÞ ¼ � 1
κ
ln

1
N

∑
N

n¼1
eκ �x�xn½ � ; for κ< 0: ð2Þ

Here, �x is the mean outcome and κ is a parameter indicating the degree to which
inequality in the distribution is undesirable due to increasing marginal damage.
The KP EDE is simply IðxÞ þ �x. As is standard in the literature, we present results
for a range of possible values for κ (see Supplementary Tables 3–5).

Software. All statistical analyses were conducted in Stata (Version 15) and R
(Version 3.6.3). Figures were made using ggplot294 and tmap95,96 packages in
R. The SUHI dataset was created using the Google Earth Engine platform97.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
SUHI intensity data are available for exploration on an interactive Google Earth Engine
platform tool, available at https://datadrivenlab.users.earthengine.app/view/usuhiapp and
also for download at https://data.mendeley.com/datasets/x9mv4krnm2/2. Sociodemographic
data were collected from the US Census Bureau 2017 5-year ACS via the API at https://api.
census.gov/data/2017/acs/acs5/variables.html.

Code availability
Code to reproduce the figures is available upon reasonable request.
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