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Large disagreements in estimates of urban
land across scales and their implications

TCChakraborty 1 , Zander S. Venter2, Matthias Demuzere 3,Wenfeng Zhan4,
Jing Gao 5, Lei Zhao 6,7,8 & Yun Qian 1

Improvements in high-resolution satellite remote sensing and computational
advancements have sped up the development of global datasets that delineate
urban land, crucial for understanding climate risks in our increasingly urba-
nizing world. Here, we analyze urban land cover patterns across spatio-
temporal scales from several such current-generation products. While all the
datasets showa rapidly urbanizingworld,with global urban landnearly tripling
between 1985 and 2015, there are substantial discrepancies in urban land area
estimates among the products influenced by scale, differing urban definitions,
and methodologies. We discuss the implications of these discrepancies for
several use cases, including for monitoring urban climate hazards and for
modeling urbanization-induced impacts onweather and climate from regional
to global scales. Our results demonstrate the importance of choosing fit-for-
purpose datasets for examining specific aspects of historical, present, and
future urbanization with implications for sustainable development, resource
allocation, and quantification of climate impacts.

Urbanization, the global shift of rural to urban societies, leads to
replacement of natural land, as well as cropland, with roads, buildings,
pavements, parks, etc1. These land use/land cover transitions, com-
bined with anthropogenic activities in cities, together impact local
energy, water, and carbon budgets2,3. Currently, over half of the global
human population lives in urban areas, which is expected to increase
to around 68% by 20504. These urbanization estimates are defined
based on population thresholds, with no standard threshold across
countries5. Moreover, these population-based definitions do not
necessarily correspond to the physical extent of urbanized land, which
primarily modulates local to regional climates2,3, due to differing
population densification patterns in different regions of the world.

The proliferation of global satellite imagery and remote sensing
techniques has led to estimates of urbanization from a physical per-
spective using spatially continuous observations of the spectral
reflectance and emissions from the Earth’s surface6. Both physical and

population-based estimates of urban land have a wide range of appli-
cations, from quantifying risks to urban populations7–9, to providing
boundary constraints for isolating urban climate impacts8,10,11, to being
incorporated as surface inputs in weather and climate models across
scales12–15. In the last decade in particular, there have been multiple
estimates of urban land, or some proxy for urbanization, across space
and time16–20. These developments have paralleled the rise of cloud
computing capabilities and satellite missions with measurements at
finer spatial scales. There are currently at least four 10m resolution
global land use land cover products, which include an urban class, the
earliest of which having been released in 201921, and several urban-
specific datasets that span multiple decades16,22.

Due to differences in data sources,methods, and even definitions,
there has traditionally been large discrepancies in estimates of urban
land from datasets23. Previous studies that have explored these dis-
crepancies have focused on earlier-generation datasets that were
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generally coarser (~1 km), in line with the resolutions of the commonly
deployed Earth observing satellites of the time, and did not include
enough observations to provide time series of urban expansion23,24.
More recent comparisons of higher resolution datasets, primarily in
the remote sensing literature, are limited because they are either
restricted to regional extents25, or focus on comparing product
accuracies, not area estimates and product typologies and their
implications19. One recent study26 examined the discrepancies
between six 30m global urban land products, though the main
implication of these differences examined was for future urban pro-
jections. Here, we provide a comprehensive comparison of almost all
(see “Methods” for selection criteria) the medium to fine resolution
(100m to 10m) global urban datasets currently available (Table S1),
showing that the definition of “urban” remains a critical issue across
these datasets, particularly in the newer 10m resolution products.
More importantly, we examine the consequences of the choice of
dataset on a few common use cases relevant for examining urban
climate change and its human impacts. For these use cases, the choice
of dataset can have large influence on magnitude of urbanization
impacts and, in some cases, even the direction of the urban climate
signal.

Results
Country level urban land and its variability
Large variabilities in the degree of present-day urban land (for the year
2019 or 2020; see “Methods”) are seen across countries (Fig. 1a) based
on eight global datasets. China is the country with themost urban land
(264,403 km2 covering 2.82% of its total area based on the eight-
product mean), followed by the United States (183,735 km2; 1.94%),
India (85,760 km2; 2.77%), and Russia (59,311 km2; 0.35%) (Fig. 1b).
Overall, Vatican City and Singapore show the highest percentages of

urbanization (eight-product mean of 79.87% and 53.7%, respectively).
Ignoring uninhabited territories, on the low end, there are several
overseas island territories, such asCocos,Midway, and Pitcairn Islands,
with negligible urban land detected by these satellite-derived pro-
ducts. The present-day global urban land percentage varies between
0.52% in the World Settlement Footprint (WSF) 2019 dataset20 to a 4
times higher estimate of 2.07% according to the Esri Land Cover pro-
duct (for the year 2020; 1.93% for 2019)27. The eight-product mean
global urban percentage is ~0.95% (1.27 million km2).

Since countries have different baseline levels of urbanization
(Fig. 1a), we calculate the coefficient of variation or Normalized Root-
Mean-Square Deviation (standard deviation across products divided
by their mean expressed as a percentage) to standardize the degree of
disagreement between these eight data products (Fig. 1c). Larger dis-
agreements are seen for Greenland, countries in East Africa (Ethiopia,
Kenya, Uganda, and Tanzania), Russia, countries in south Asia
(Afghanistan, Pakistan, India, and Myanmar), Paraguay, etc. Better
agreements between datasets are seen for Brazil, Argentina, Japan,
most countries in Western Europe, parts of Central and South Africa,
and Canada.

Regional- to city-scale differences across datasets
We also compare the present-day estimates of urban land for four
distinct regions in the world: the Great Lakes and Mid Atlantic regions
in North America, and the Indo-Gangetic and Yangtze River Basins in
Asia (Fig. 2a). While all four of these regions are heavily urbanized, in
the last few decades, the first two have shown stable urbanization
levels, and the latter two have shown significant urban growth (see
next section for analyses of urban growth). For present-day urban
percentage, higher variabilities are seen for the Indo-Gangetic and
Yangtze River Basins (coefficients of variation of 88.1% and 83.3%,

Fig. 1 | Country level urban land and its variability across datasets. a shows
mean urban percentage based on eight global estimates of urban land by country.
b shows the overall urban percentage from these eight datasets for the ten coun-
tries with the highest mean urban area (increasing downwards). c shows the

coefficient of variation (standard deviation divided by mean) among those urban
estimates. For (a, c), the respective values are annotated for some of the bigger
countries for context. The legend value ranges exclude the upper bound.
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respectively) than for the Great Lakes and Mid Atlantic regions (56.5%
and 62.8%, respectively). We also calculate the coefficient of variation
between the eight present-day estimates for 0.9° × 1.25° grids over the
Earth’s surface (Fig. 2b). This approach is similar to that of Mu et al.26

and avoids the variabilities in how regions should be defined beyond
geopolitical boundaries. Although we use a different (partially over-
lapping) set of urban data products compared to the Mu et al.26 study,
there are some common regions with disagreements between datasets
in both studies, namely Southeast and Central Asia. We also find large
disagreements in East Africa (Fig. 2b). The differences between these
products are evident at all spatial scales, from global (for our entire
planet) to national (by country) to the grids described above to local
(for individual urban agglomerations). For example, large local scale
differences are evident for the highly urbanized Delhi Metropolitan
Area in India (Fig. 3a) and over the Shanghai Metropolitan Area in
China (Fig. 3b). Since fully exploring these differences between data-
sets for all regions of the world is not possible here, we developed a
web app for this purpose (https://ee-tc25.projects.earthengine.app/
view/urbancomparison).

The disagreements among the data products reflect differences in
methods, inputs, andnative resolutions28,29. However, a keydifficulty in
making any apples-to-apples comparisons between these datasets is
that, while all the products represent some aspect of physical urbani-
zation, they define “urban” differently. These specific definitions are
already baked into the training data (for supervised learningmethods),
accuracy estimates, and pre- and post-processing steps. For example,
among the four 10m resolution present-day estimates of urban land—
WSF 201920, Esri Land Cover30, European Space Agency (ESA)
WorldCover31, and Dynamic World32—the Dynamic World dataset calls
this class “Built Area” and includes urban vegetation andgreen space in
that definition, while the ESAWorldCover calls the class “Built-up” and
explicitly excludes urban vegetation in their class definition (Table S1).
Interestingly, while the Esri Land Cover dataset does not mention

inclusion of urban trees, it generally shows much higher urban land
percentages across scales thanESAWorldCover (Figs. 1b, 2a, 3, 4), even
though both are based on Sentinel-2 data. Some of the differences
between these three datasets are related to methodology, in that the
DynamicWorld and Esri Land Cover datasets use convolutional neural
networks that consider contextual information in the classification
through the use of convolution kernels, while the ESA WorldCover
uses a random forest approach with each pixel classified
independently22. Another difference is due to the choice of minimum
mapping unit, which is 50m× 50m for DynamicWorld32 and therefore
necessitates a mosaic of built and natural surfaces in areas labeled as
“Built Area”. Finally, the WSF 2019 dataset20 is for human settlements
and excludes roads. For readability, and in line with how someof these
products have been used in the scientific literature as a proxy for
physical urbanization33–35, we refer to all of them as “urban” in the
present study.

Urban growth over time
The explosion of medium-resolution global urban products, and glo-
bal land cover datasets in general, has been largely made possible due
to the free release of the Landsat archive in 200836. Consequently,
there are several long-term estimates of urban land at the Landsat
resolution (30m) starting from the 1980s. In contrast, the first-
generation global urban land cover products were generally limited to
the Moderate Resolution Imaging Spectroradiometer (MODIS) reso-
lution of 250–500m and starting around the year 200124. Some of
these multi-year urban land cover products do not extend till 2019/
2020 and thus were not included in the earlier comparison of present-
day urbanization. In total, we examine twelve global data products,
including the complete time series (when multiple years are available)
of the eight products considered earlier. The four new datasets con-
sidered are the Global Artificial Impervious Area (GAIA)18, World Set-
tlement Evolution (WSE)20, the Copernicus Global Land Service (CGLS)

Fig. 2 | Present-day urbanestimates across datasets fromregional to grid scale.
a Shows the urban percentage across eight datasets for four selected regions in the
world. The extent and location of these regions is shown in the inset. b Shows the

coefficient of variation (standard deviation divided by mean) among those urban
estimates for 0.9° × 1.25° grids. The legend value ranges exclude the upper bound.
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product37, and the Global Urban Footprint (GUF)38. All long-termurban
datasets show large global urban growth over time during their
respective time spans (Fig. 4a). For, GISA (Global Impervious Surface
Area)39, GAIA, and WSE—the three datasets with longest time series—
global urban percentage increased by 297.4%, 123.4%, and 111.2%,
respectively (three-product mean of 177.3%), for the 1985–2015 com-
mon period. This pattern of rapid urban expansion is consistently
echoed across all continents and for both absolute area (Fig. S1) and

urban percentage (Figs. 4, S2a; Fig. S2 is for the nations not in the
continents examined in this main text), with Africa, Asia, and
South America showing a notable rise (three- product means of
226.2%, 425.3%, and 186.5%, respectively), although from a lower
baseline compared to North America and Europe. Note that we pri-
marily focus on urban percentage throughout this analysis and the
manuscript, rather than the absolute area, since the former is more
intuitive for awide range of audiences and allows easy comparisons for

Fig. 3 | Present-day urban extent across datasets for select cases.The spatial extents of urbanpixels for the eight datasets for a the DelhiMetropolitanArea in India and
b the Shanghai Metropolitan Area in China. Latitudes and longitudes are shown in the corners.
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the extent of urbanization between regions with wide variations
in area.

The impact of urban definition and methodology is also reflected
in the variability of the change in urban land percentage over time
across datasets. For instance, the percentage of urban land in the WSF
2019 dataset is much lower than the values in WSF 201540 for all con-
tinents, even though there should have been some urbanization
between 2015 and 2019. This is for two reasons: (1) the WSF 2019
dataset uses Sentinel-2 insteadof Landsat 8, the latter beingmuchfiner
(10m versus 30m); the scale effect29 and (2) the WSF 2019 uses
ancillary data to mask out roads to focus only on pixels where people
live (Table S1). Another evident difference in time series arises when
comparing theMODIS data41 with the others. The global percentage of
urban land increases by only 5.5% between 2001 and 2015 according to
the MODIS Land Cover; yet the GISA/GAIA/WSE mean change for the
same period is around 40.2%, almost an order of magnitude higher.
The low estimate of urban expansion in MODIS is a function of its
definition of urban as a minimum of 30% impervious at the 500m
scale42. Conceptually, this means that a MODIS pixel starts being
classified as urban at a lower percentage than other datasets, which
generally consider the dominant land cover (which can exceed 30% of
the area) as the class of a pixel or use higher impervious percentage
thresholds (50% for GAIA18, for instance), and that a pixel remains
urban over a much larger range of values (from 30% to 100%)43.
Another anomaly in the time series of urban percentage is seen over
Europe for the European Space Agency Climate Change Initiative (ESA
CCI) product, with rapid expansion between 2000 and 2006 (Fig. 4d).
This issue with the ESA CCI dataset has also been noted in other
studies44,45 and is related to a change in input dataset from theMedium
Resolution Imaging Spectrometer (MERIS) baseline27 to one with a
resolution coarser than 300m before 2003. Although it might seem

reasonable to expect that the most recent, circa 2020, products,
developed using finer resolution satellite imagery and benefiting from
the methodological advancements of the past decades, would be able
to constrain global to regional urban land themost, this is not the case.
In fact, when considering the overall time series of urban percentage
fromglobal to country scales (Figs. 4, 5), the largest deviations are seen
for the most recent years, after the 10m resolution products are
included. As described in the previous sections, these high-resolution
products represent different aspects and features of urban land due to
both methodology and prescribed typology. Since the resolution of
Sentinel-2 can actually resolve those features, this is probably resulting
in such large discrepancies between thesemost recent datasets. Other
key specifics of the differences in urban typologies in these global data
products are provided in Table S1.

Implications for observational and modeling applications
Global estimates of urban land have become critical for both science
and applications. However, most use cases of these datasets do not
simultaneously consider multiple estimates due to a combination of
legacy, convenience, and potential redundancies. Here, we examine
how the choice of dataset may lead to biases for some common use
cases. These use cases are divided into: (1) direct incorporation
of these products to generate derived datasets, (2) combining
global urban datasets with estimates of hazards to quantify urban-
specific environmental hazards and exposure, (3) using theseproducts
as surface constraints in process-based models, and (4) estimating
future urban land calibrated against historical datasets.

(1) Generating derived datasets: First, global urban land cover
datasets are used as inputs for other derived products. For instance,
the most commonly used MODIS land surface temperature (LST)
products for urban climate studies (MOD11 and MYD1146) use a

Fig. 4 | Urban percentage and its long-term changes across datasets. Urban percentage from 12 global data products for a World, b Africa, c Asia, d Europe, e North
America, f Oceania, and g South America. Long-term changes are shown for datasets that span multiple successive years.
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classification-based emissivitymethod47 with the pixel emissivity taken
from a look-up table and the class of the pixel according to theMODIS
Land Cover product. This needs to be done because LST and surface
emissivity cannot be analytically separated using only thermal
observations48. Similarly, the MODIS evapotranspiration products
mask out any pixels that are classified as urban in the MODIS Land
Cover data since the empirical model used is not calibrated for urban
surfaces49. There are also some inter-dependencies between different
global urban land cover datasets. The CGLS product uses WSF 2015 as
the training data for its “Urban / Built up” class (Table S1)37, while
“Urban Areas”, as classified within the ESA CCI product, are identified
based on the GUF dataset38 as well as the Global Human Settlement
Layer (GHSL)50 datasets (Fig. S3). Other composite urban datasets,
such as global annual urban dynamics (GAUD) dataset34, have also
been generated by combining various existing estimates (GUF, GAIA,
GHSL, etc.).

(2) Quantifying urban-specific environmental hazards and
exposure:Second, various urban land cover datasets are used as inputs
for examining urban climate impacts and city-level environmental
hazards and exposure. The choice of dataset influences themagnitude
of these estimates. For the surface urban heat island (SUHI) intensity,
the impact of urbanization on local surface warming11, (Fig. 6a; see
“Methods”), larger values of absolute coefficient of variation are seen

for urban clusters in the Middle East, parts of India, southern and
eastern Africa, and Southwestern United States. Although most data-
sets capture the well-established impacts of background climate on
SUHI and its seasonality51, the choice of dataset can have larger impacts
in arid regions during summer and forpolar climate inwinter i.e., when
the actual SUHI signal is small, with inconsistencies seen for even the
sign of the SUHI (Fig. S4). Long-term changes in urban land are often
combined with ancillary datasets to examine land use/land cover
transitions35 and exposure to environmental hazards over time8,9,11,33.
The rates of change over time would depend on the choice of dataset
(Figs. 4, 5), whereas most studies typically use a single product. For
instance, ESA CCI Land Cover, GHSL, MODIS Land Cover, WSE have
been individually used in these types of studies8,9,11,33. Andreadis et al.33

and Rentschler et al.8 both examined increased urbanization in flood-
prone areas using two different urban land cover datasets (GAUD and
WSE, respectively); therefore finding different magnitudes of these
changes. We replicate a comparison of urban growth in flood plains52

between 1985 and 2015 based on GAIA, WSE, and GISA here (Fig. 6b),
with particularly large differences seen for Asia and Oceania. These
larger differences reflect the stronger urban growth in the GAIA
dataset (compared to the other two) in these continents (Fig. 4c, f),
with urban area increasing by 1395.6% and 998.5% between 1985 and
2015 in this product for Oceania and Asia, respectively, compared to

Fig. 5 | Country level urbanpercentage and its long-term changes across datasets.Urbanpercentage from 12 global data products for aChina,bUnited States, c India,
d Russia, e Brazil, f Japan, g Germany, h Indonesia, i France, and j Mexico. Long-term changes are shown for datasets that span multiple successive years.
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244.1% and 332.2% increase seen in the GISA dataset. The differences in
urban growth between products for the other continents are not as
large (303.4% and 476.2%,161.2% and 303.9%, and 173.5% and 229.4%
forGISA andGAIA forAfrica, Europe, andNorthAmerica, respectively).
Sometimes the choice of dataset can lead to artifacts due tomismatch
between two products. For instance, Mentaschi et al.9 combined the
GHSL 2018 dataset with the MYD11 LST product to estimate intra-
urban SUHI extremes. However, as noted earlier, this LST product is
constrainedby theMODIS LandCover through the classification-based
emissivity method47. As such, we would expect artifacts in LST for a
proportion of pixels due to the GHSL data considering a pixel as urban
while the emissivity in the LSTproduct beingdefined for a rural surface
(and vice versa). Similar artifacts would be expected for other com-
binations of MODIS LST with non-MODIS urban land cover
estimates53,54 or when MODIS LST is used to validate simulations from
models that use different urban emissivity constraints48,51,55.

(3) Constraining model simulations: Third, urban land cover
products are incorporated into process-based models, including
weather and climate models, as surface input datasets2,14,27,56. Since
different land cover types in land models use distinct prescribed
radiative, thermodynamic, and morphological properties, the land
cover data used strongly modulates crucial variables like the compo-
nents of the surface energy budget3,51,55 and thus the lower boundary
conditions for the atmosphere in coupled model simulations. One of
the most common mesoscale models used for urban climate research
—the Weather Research and Forecasting (WRF) model12,57,58—uses the
MODIS urban land cover as the default surface dataset. Newer versions
of the urban components of this model can also use the local climate
zone (LCZ) classification system59, with a recent global 100m dataset
planned to become the default urban representation for future relea-
ses of WRF15. Earth system models (ESMs) rarely resolve urban areas,
but one of the few such ESMs with an urban representation—namely
CESM60–62—uses a circa 2001 estimate of urbanization14. This urban
dataset is also used in other ESMs that have branched off from

CESM63,64 and has also been incorporated into regionalmodels65. Large
differences between these three products (MODIS Land Cover,
Demuzere et al.15, and Jackson et al.14) as well as other present-day
estimates of urban land are evident (Figs. 7a, S5). Note that except the
MODIS Land Cover data, the other two are not pure estimates of
physical urbanization. Jackson et al.14 actually uses population-based
thresholds of urban density while several of the LCZ classes represent
differentmixes between built and natural surfaces. For example, LCZ9,
the sparely built class, characterized by a high abundance of natural
land cover, behaves thermally like a natural land cover and is thusoften
excluded as a built up class66. As such, there are potential mismatches
here that should be kept in mind. Since CESM currently does not use
the low-density urban class within the urban model67, it is implicitly
assumed that anything up to medium-density, in terms of population,
would be an appropriate representation of physical urbanization at the
grid-scale. However, we find massive overestimations of urban land in
CESM for regions of the world with high population density and low
physical urbanization, such as Asia and Africa, with mean percentage
errors of 179.9% and 136.2% (compared toGISA), respectively, for those
continents (Fig. 7b). In contrast, this dataset largely underestimates
urban land for North America and Oceania compared to GISA (mean
percentage errors of −58.3% and −32.7%, respectively; Fig. 7b). Con-
sequently, since urban surfaces in the CESM Land Model (CLM) uses
specific prescribed thermodynamic, radiative, and morphological
properties, if CLM has more urban land than the ‘reality’ (globally and
for specific continents), urbanization would have a stronger bulk
impact on grid-averaged surface climate variables in those regions, all
else remaining equal. Exaggerated urban climate signals, such as urban
heat and dry islands68, should also be seen at the local scale, such as
over the urban core, if the Jackson et al.14 dataset is used in regional
coupled simulations65 that can resolve intra-urbanadvection. Similarly,
since theMODIS Land Cover can be as low as 30% impervious, amodel
(like WRF) using MODIS as the land cover constraint would over-
estimate urban impacts on climate2,55 for urban-to-rural transition

Fig. 6 | Impacts of variability in urban estimates on observational assessments.
a Shows the absolute coefficient of variation in calculated surface urban heat island
intensity during 2018–2022 summer for around 10,000 global urban clusters from

eight urban land cover datasets. b Shows estimated change in urban land in flood
plains for theworld and all continents between 1985 and 2015 from three long-term
urban estimates.
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zones, especially since urbanmodels traditionally have not accounted
for urban vegetation56, which generally increases at the edges of cities.

(4) Future urban projections: Fourth, the differences in present-
day and historical estimates of urban land also influence future urban
projections. Several products have recently been developed to repre-
sent future urbanization scenarios69–72 that can be used directly or
incorporated into weather and climate models12,57,73. This use case also
represents a special subset of the first point on derived datasets. We
see large differences between these future estimates (Fig. 8a), which
would depend on methodology (different growth models), input data
(choice of historical urbanization estimate for model calibration and
future population projection constraints), and assumed scenario of
urbanization. For instance, Gao & O’Neill (2020)70 consider distinct
urbanization patterns across 375 sub-regions, while Chen et al.69 use
only 32 regions. Although both datasets are trained using GHSL, the
Chen et al.69 data are further calibrated against the ESA CCI estimate
for 2015. The Li et al.71 and He et al.72 datasets are trained using annual
nighttime light observations and the GAIA data, respectively. When we
separate the sets of urban projections by continent, it becomes clear
that the differences between them are not merely in terms of magni-
tude (Fig. 8). For instance, for the Shared Socioeconomic Pathways
(SSP) corresponding to sustainable development (SSP1), the Li et al.71

dataset shows most urban land at the end of the century for Africa,
Asia, Europe, and South America. However, for the same scenario, He
et al.72 dataset shows the highest end-of-century urban percentage for
North America, while the Chen et al.69 dataset shows the highest urban
land among datasets for Oceania. Another discrepancy between

datasets is the gradual acceleration of urbanization in Gao & O’Neill
(2020)70 past mid-century versus a strong plateauing of urban growth
in the He et al.72 dataset. This discrepancy is related to the choice of
future population projection used to develop the two datasets. These
differences and inconsistencies between projections are seen for
almost all the SSP scenarios, which reinforces the importance of being
cognizant of dataset choice when reporting scientific results, quanti-
fying impacts, and informing policy.

Discussion
In light of the development of multiple new global urban datasets at
finer resolutions in the last decade, our goal here was to examine
whether these state-of-the-art products provide better constraints on
our understanding of urbanization across scales. The datasets con-
sidered here include thirteen historical urban land cover products (the
twelve in Fig. 4 plus GHSL; see “Methods”), two datasets specifically
used in process-based urban models, and four future projections of
urban land. Unlike past studies, primarily in the remote sensing lit-
erature, that focus on accuracy assessments22,24,25 or compare newly
developed data products against other available datasets18,19,32,71, our
main goal was to explore what these disagreements mean for appli-
cations of these datasets in modeling and observational studies. As
such, this study is broader in scope compared to those efforts and
relevant to researchers and practitioners interested in the urban
environment beyond remote sensing experts. We find large disagree-
ments between the global urban data products across spatiotemporal
scales. In fact, the largest divergences between datasets are seen for

Fig. 7 | Differences with model representations of urbanization. a Shows global
urban percentage across eight urban land cover datasets as well as two additional
estimates of urban areas used in weather and climatemodels over Europe. LCZ 1 to
10 refer to the ten built up local climate zones. b Shows linear regressions between
grid-wise urban percentage in the GISA dataset for the year 2001 versus the total

urban percentage from medium density, high density, and tall building districts
classes of the Jackson et al. (2010)14 dataset for the world and each continent. The
line of best fit, coefficient of determination (r2), mean bias error (MBE), mean
percentage error (MPE), and sample size (n) are provided for each case.
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Fig. 8 | Future projections of urban land from various datasets. Projected percentage of global urban area from 2020 to 2100 for various Shared Socioeconomic
Pathways (SSPs) based on multiple km-scale estimates for a World, b Africa, c Asia, d Europe, e North America, f Oceania, and g South America.
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the most recent years from global to continental to country scales
(Figs. 4, 5) on inclusion of the new 10m resolution products. At this
resolution, it is possible to partially resolve urban vegetation, settle-
ments, and roads, making the different urban definitions produce
larger variations, with the Esri Land Cover and WSF 2019 datasets
showing the highest and lowest urban land percentage, respectively
(Fig. 1b). This variability in urban estimates across scales underscores
the challenge in achieving a standardized measure of urban land even
with globally available satellite observations.

We discuss the implications of these observed differences
between the products for several use cases (Figs. 6, 7, 8). The results
demonstrate that it is important to be cognizant of the specifics of the
datasets and any potential dependencies to ensure application-
appropriate analyses. For instance, given the capability to separate
roads and building roofs with current high-resolution satellite obser-
vations, particularly using Sentinel-2 and commercial satellites, we
should rethinkwhether itmakes physical sense to still include rooftops
in estimates of many urban environmental hazards, such as from
floods and heat, given where urban residents are more likely to be
exposed. Approaches to doing this may involve combining datasets
with andwithout roads, ideallywith otherwise similar urban typologies
or adjusting datasets usingmasks for building rooftops. However, note
that these approaches, and the data sources chosen, may have similar
uncertainties, which one should be conscious about when exploring
application workflows74. Also note that there are other limitations to
physiologically-relevant urban heat hazard estimates using satellites
that are beyond the scope of this study68,75. Similarly, as the newer
urban land cover datasets are incorporated into process-based mod-
els, it is important to be aware of consistency in definitions between
urban representations inmodels and the classification typologies used
in data products. Using Dynamic World, which includes some vegeta-
tion in the urban class, is not appropriate if themodel treats the entire
urban grid as an impervious surface, such as in CESM, its offshoots63,64,
and most versions of WRF. Similarly, since WSF 2019 removes urban
roads, incorporating this dataset into process-based models with a
typical urban canyon structure, which includes both buildings and
roads, is not recommended as doing so will capture only a fraction of
the physical impact of urbanization onweather and climate. Structural
differences between models are commonplace in the Earth sciences,
which has encouraged the use of ensemble estimates to lend robust-
ness to projections and for uncertainty quantification. Surface data-
sets, such as those for urban land, are an additional free parameter that
can be largely decoupled from implementations of model physics.
Uncertainty estimates due to differences in land use projections are
much rarer76, and do not currently resolve urbanization at finer
scales77. Based on the differences seen here (Fig. 8), we recommend
using multiple datasets, when possible and when the definitions of
“urban” align with the assumptions of the use case, both to provide
more robust estimates of uncertainties for urban-resolving climate
projections and to better quantify hazards for rapidly urbanizing
populations. Moreover, for local- to regional-scale science and appli-
cations, it is generally preferrable to use maps developed for those
areas instead of global datasets, since the former are better calibrated
to capture the unique urban development patterns of those areas. In
summary, the appropriate preprocessing methods of urban land pro-
ducts vary between datasets and for different applications and scales.
These should be determined case by case with guidance from relevant
domain experts.

Various urban datasets have been and are being used for
informing policy and decisions across scales. Urban planners at the
municipal and national level rely on maps of urban land and its evo-
lution over time to design policies that ensure sustainable urban
development, relevant to Sustainable Development Goal 11 (SDG-11)
charted by the United Nations Member States78. Although urban
decision makers may have some detailed local maps at the city level,

these are generally static, leading to reliance on satellite-derived pro-
ducts to explore patterns of urban compaction and sprawl over time
and set policies consistent with, for example, the 15-Minute City, 3-30-
300, and Compact City paradigms79–81. Consequently, many research-
ers have attempted to generate datasets to aid this sort of decision
making, frequently constrained by estimates of urban land; similar to
those examinedhere82,83. Urbandatasets, as incorporated into process-
based models, are also used to quantify future urban climate impacts,
such as on extreme heat and precipitation events, to inform govern-
ment agencies84. At the national level, authorities will soon have to
report on changes in urban extent and the ecosystem services this
affects under the newly adopted statistical standard for the System of
Environmental-Economic Accounting Ecosystem Accounting 85. This
policy framework aligns with the International Union for Conservation
of Nature ecosystem typology86, which includes a mosaic definition of
urban areas, thereby aligning more with products like Dynamic World
and others that adopt a larger minimum mapping unit. However,
regardless of the urban dataset chosen, ecosystem accounting prac-
titioners are encouraged to adopt design-based methods for estimat-
ing areas from maps derived with remote sensing87. Finally, explicit
futureprojections of urbanization have started tobe incorporated into
Integrated Assessment Models, which are often used to set national-
scale energy policies and emission targets88. Given the variations in the
temporal and spatial patterns of urban land across datasets seen here,
we suggest that decision makers consider a variety of datasets to
informpolicies fromurban to national scales. Similarly, data producers
should try to bemore up front about the assumptions underlying their
datasets, particularly when the intent is to assist policymaking. In a
world of cheap compute and increasingly available high-resolution
satellite imagery, we expect such global data products to continue to
be published. Moreover, these datasets will continue to be used for
large-scale studies to answer various research questions43,89,90, some
quite outside the range of uses that have been illustrated in the present
study. Given this rapid pace of dataset generation and usage, a con-
centrated and sustained effort is needed from the urban scientific
community to assess fit-for-purpose datasets for distinct science and
applications before they are adopted to quantify the costs and benefits
of environmental solutions and support broader policies.

Methods
Datasets
We consider multiple global urban land cover datasets that have been
developed over the last couple of decades to both examine differences
between them across spatiotemporal scales and to discuss the impacts
of these differences on a few use cases. Our focus here is primarily on
datasets that have 100m or finer resolutions, with the majority being
derived from Landsat or Sentinel-2 satellite observations. We also
consider the MODIS Land Cover and ESA CCI Land Cover datasets,
which are at 500m and 300m, respectively. The former is one of the
few physical estimates of global urban land that has been continuously
updated since Potere et al.24 and the latter because it is one of the few
land cover products based on theMERIS and has beenused formultiple
applications27. We do not consider any regional land cover datasets or
land cover datasets released after 2021. This is why we did not focus on
the latest version (P2023A) of the GHSL in our main analysis. However,
since this product has been used for various applications, we make an
exception and provide results for 2018 “built spaces” (at 10m resolu-
tion) and the 5-year “degree of urbanization” estimates from 1985 to
2020 (at 1000mresolution) in the supplementary information (Fig. S3).
The former is used for a small discussion about potential mismatches
for urban applications (see Results section). For reference, the global
urban (“built spaces”) percentage in the 10m GHSL P2023A is lower
(0.49%) than the correspondingMODIS estimate (0.59%). Also note that
the GHSL 10m product includes road surfaces (global percentage of
0.02%) under a subset of “open spaces”, while “built spaces” includes
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different types andheights ofbuildings. Among thedatasets considered
with varying time series, we choose those with data for 2019 and/or
2020 as present-day estimates. This is done because thatmaximizes the
number of datasets that can be used for this comparison since several
(eight) global 10m land cover datasets were released in 2020 and some
datasets end in 2019. Combining the two years should have minimal
impact on differences between products since a single year would not
lead to major urban changes and because 2020 was also the year of
multiple COVID-19 lockdowns that significantly halted infrastructure
development projects. The earliest year considered for multi-year
datasets is 1985. It should be noted that new global land cover datasets
are being developed at a rapid rate. We did not consider some datasets
since they were not been publicly released while this work was being
done91,92 and some because they are essentially combinations of other
datasets over the similar time periods34. Overall, we aimed for our
selection of datasets to represent the primary modes of variability in
resolution, methodology, urban definitions, and time spans. Table S1
provides an overview of all these datasets, including the urban defini-
tion used and other notes relevant to this study.

In addition to the satellite-derived estimates of urban land, we
consider two global datasets that are used in regional and global urban
modeling. First is the recent 100m global urban LCM estimates by
Demuzere et al.15, which will be the default urban representation for
future releases of the WRF model, one of the most commonly used
mesoscale model for urban climate studies12,57,58. Second is the 1 km
estimate of urban densities used in global models such as the Com-
munity Earth System Model (CESM)67, the Energy Exascale Earth Sys-
tem Model (E3SM)63, and the Climate Change coupled climate model
(CMCC-CM2)64, as well as regional models like RegCM (Regional Cli-
mate Model)65, from Jackson et al.14. The former is valid for the year
2018 while the latter is for 2001. While the Demuzere et al.15 dataset
maps 17 LCZs,weonly consider the 10 LCZs that aredirectly relevant to
the built environment for our analysis (Figs. 6a, S2b, S5).

Finally, we consider four recent projections of future urbanization
under various SSPs, which are socioeconomic equivalents to future
emission scenarios93. The resolutions of these datasets range from 1/
8th degree (with fractional urban land) in Gao & O’Neill (2020)70 to
1 km in Chen et al.69, Li et al. (2021)71, and He et al. (2023)72. This
resolution would be considered coarse in the current remote sensing
literature and fine in the climate modeling domain. While He et al.
(2023)72 includes more scenarios than the other datasets, only the
common five (SSP1, SSP2, SSP3, SSP4, and SSP5) are used for the
comparison (Fig. 8). SSP1 represents the “sustainability” scenario, SSP2
corresponds to the “middle-of-the-road” scenario, SSP3 is the “regional
rivalry” scenario, SSP4 is the “inequality” scenario, and SSP5 denotes
the “high-emission” scenario93.

Regions of interest
We consider four sets of regions of interest in this study to calculate
total urban land for each. First, we consider all countries as recognized
by the World Bank (Fig. 1). No disputed territories are considered,
which cover a negligible portion of the global land surface. Second, we
consider four regions of interest, namely the Great Lakes region, Mid
Atlantic region, Indo-Gangetic Basin, Yangtze River Basin (Fig. 2a) to
illustrate the variability between datasets at the regional scale. Third,
we consider the Köppen-Geiger climate zones94 to examine the varia-
bility of the SUHI intensity for different background climate (see more
below). Finally, we divide the global land surface into 0.9° latitude ×
1.25° longitude grids to estimate grid-level urban percentage and
disagreements between datasets for them. This is a common resolu-
tion used to run CESM61.

Surface Urban Heat Island estimates
We illustrate the role of the choice of urban land cover dataset on a
well-known urban climate signal—the SUHI effect. We calculate the

SUHI for over 10,000 urban clusters using the Simplified Urban Extent
algorithm, which has been used in the urban climate literature in the
past to examine the SUHI across scales48,54. Of note, the algorithm
separately calculates the urban and rural LST for each cluster, their
difference being the SUHI intensity. The urban LST is the average LST
of all urban pixels (for each of the 8 present-day estimates of urban
land) within a cluster, while the average LST of the non-urban pixels is
the rural LST. The LST data used here are from the Landsat collection
2 science product95 for 2018–2022, which covers the time of the 2019/
2020 global urban land cover datasets used. Water pixels are masked
out for both urban and rural cases before generating the urban and
rural LST based on the Global Surface Water product96. Due to the 16-
day returnperiodof Landsat 8,multiple years of data are needed to get
sufficient clear-sky observations. Separate analyses are done for sum-
mer (June, July, and August for clusters whose centroids are in the
northern hemisphere and December, January, February for clusters in
the southern hemisphere) and winter (vice versa) after quality con-
trolling all Landsat image using pixel-level quality control flags to
minimize contamination from clouds and cloud shadows (Figs. 6a, S4).

Urban growth in flood plains
We examine the impact of choice of different estimates long-term
urbanization on urban exposure analysis following Andreadis et al.
(2022)33 and Rentschler et al. (2023)8. For this, we consider the GAIA 18,
GISA 39, andWSE 20 datasets, which have the longest time series. For the
first and last years of the commonperiod (1985 and 2015, respectively),
we calculate the total urban land globally and by continent that over-
laps with the Global high-resolution floodplains dataset52. The per-
centage change between 1985 and 2015 is calculated for the world and
each continent by dataset (Fig. 6b). Themost urban growth is seen for
GAIA and the lowest for GISA or WSE (depending on continent).

Grid-wise comparison between satellite-derived and model-
prescribed urban datasets
For each 0.9° latitude × 1.25° longitude grid on the Earth’s surface, we
calculate the urban percentage for 2001 fromGISA and from the sumof
the medium density, high density, and tall buildings district classes of
the Jackson et al. (2010)14 dataset. GISA is used since it shows thehighest
accuracy among the urban datasets for present day (Table S2; also
discussed later) and the year 2001 is considered since it is the approx-
imate validity of the Jackson et al. (2010)14 estimate. The low density
class from Jackson et al. (2010)14 is not included since it is not con-
sidered in CESM simulations67. Only the gridswith non-zero values from
both datasets are considered. Jackson et al. (2010)14 detects urban land
in much fewer grids (6858) compared to GISA (8587). Separate corre-
lations are shown for all commonglobal grids andby continent (Fig. 7b).
The main accuracy metrics used are mean bias error and mean per-
centage error (MPE). As an example, for Asia, the mean urban percen-
tage in Jackson et al. (2010)14 is 1.18% higher than the value detected by
GISA based on all common grids with any urban land. In percentage
terms (percentage of a percentage), Jackson et al. (2010)14 shows over
double the urban percentage (MPE = 136.2%) than GISA for Asia.

These same grids are also used to estimate the degree of dis-
agreement (through coefficient of variation) between the eight data-
sets representing present-day urban land. For this analysis, only those
grids were chosen for which all eight datasets show non-zero urban
area (Fig. 2b). Thiswould underestimate the disagreements sincemany
of the datasets, although technically global, detect no urban land for
some grids while others do. The differences between the coverage of
these datasets can also be explored through this web app: https://ee-
tc25.projects.earthengine.app/view/urbancomparison.

Data processing
All the datasets are processed on the Google Earth Engine cloud
computing platform97. The total area of each region of interest (the
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denominator to estimate urban percentage) is the geometric area of
each vector (corresponding to countries or regions). For summarizing
the total urban area of these regions of interest, we calculate the sum
of area of “urban” pixels within each vector using the native resolution
of the corresponding dataset as the scale of aggregation. The country
level regions of interest and another set of boundaries for the Eur-
opean and Asian part of Russia are combined to summarize results by
continent. For the SUHI estimation, a scale of 100m is used for all
cases, which is the native resolution of the Landsat 8 thermal band.
Among the global urban land cover datasets considered, Dynamic
World is unique in that a classification is done for every Sentinel-2
scene. Here, we only consider the pixels as urban if the mode of all the
overlapping scenes for the year 2020 are urban. Comparisons of
median, mode, and means of these images show relatively small
differences22.

Validation
Our primary goal in this study was not to focus on comprehensive
accuracy assessments of these datasets. This is because of two main
reasons. First, there havebeenmultiple accuracy assessments ofglobal
land cover estimates across scales16,18,22,24,25. Second, given the differ-
ences in urban definitions in these datasets, standard accuracy esti-
matesmaynot beparticularly helpful. There has beendiscussion about
the term “ground-truth” in the broader remote sensing community
that is relevant here98. However, as a sanity check, we provide basic
accuracy estimates of the eight datasets used for representing present-
day (2019/2020) urban land using the validation dataset created by the
Dynamic World team32. The development of the training data
employed 70 annotators, who manually labeled land use and land
cover types in high-resolution images from Sentinel-2 for random
dates in 2019. The annotation was done following the classification
typology of the Dynamic World dataset. We chose this dataset since it
is the largest available validation data that is relevant at the 10m scale.
Our accuracy estimates for the world and all the continents are sum-
marized in Table S2 and show the percentage of the urban pixels in the
reference that are correctly identified as urban in the dataset (overall
accuracy). Based on this assessment, the GISA andWSF 2019 products
perform the best followed by Esri Land Cover and Dynamic World.
Overall, MODIS Land Cover performs the worst. However, beyond this
sanity check, we should be cautious about the implications of these
accuracy estimates. As an example, note that the urban definition in
the DynamicWorld dataset includes amixture of residential buildings,
streets, lawns, trees, isolated residential structures or buildings sur-
roundedby vegetative land cover (TableS1). Therefore, it is amosaiced
land cover definition, partly because it uses a minimum mapping unit
of 50m× 50m. Other products like World Cover with 10m× 10m or
GISA with 30m× 30m minimum mapping units may not be directly
comparable (Table S1). Another example of a typological difference is
thatWSF 2019 does not even include roads. Basically, due tomismatch
between land cover typology in the global datasets and the typology
consideredwhen creating ground truth data, it is difficult to provide an
unbiased conclusion about relative accuracies of these datasets.

Data availability
All data presented in this paper are archived here: https://doi.org/10.
6084/m9.figshare.25225535.

Code availability
The codes used for processing the global datasets are archived here:
https://doi.org/10.6084/m9.figshare.25225535.
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