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Contemporary income inequality outweighs
historic redlining in shaping intra-urban heat
disparities in Los Angeles

Anamika Shreevastava 1,2 , Glynn Hulley1, Sai Prasanth1, TC Chakraborty 3,
Diego Ramos Aguilera 4, Kelly Twomey Sanders4 & Yi Yin5

The roots of intra-urban heat disparity in the U.S. often trace back to historical
discriminatory practices, such as redlining, which categorized neighborhoods
by race or ethnicity. In this study, we compare the relative impacts of historic
redlining and current income inequality on thermal disparities in Los Angeles.
A key innovation of our work is the use of land surface temperature data from
the ECOSTRESS instrument aboard the International Space Station, enabling
us to capture diurnal trends in urban thermal disparities. Our findings reveal
that present-day income inequality is a stronger predictor of heat burden than
the legacy of redlining. Additionally, land surface temperature disparities
exhibit a seasonal hysteresis effect, intensifying during extreme heat events by
5−7 °C. Sociodemographic analysis highlights that African-American and His-
panic populations in historically and economically disadvantaged areas are
often the most vulnerable. Our findings suggest that while the legacy of red-
lining may persist, the present-day heat disparities are not necessarily an
immutable inheritance, where targeted investments and interventions can
pave the way for a more thermally just future for these communities.

Over the last few decades, research has unequivocally identified cities
as distinctly warmer entities compared to their non-urban
surroundings1,2. A large body of literature has also investigated the
complexity of intra-urban thermal landscapes3,4 and their associations
with present-day population distributions5–9. Although climate change
exposes rapidly growing urban populations to enhanced heat
hazards10,11, the inherent heterogeneity of cities further exacerbates
the inequitable distribution of its worst impacts, especially evident in
the U.S.12,13. For many U.S. cities, areas with poorer and predominantly
non-white populations tend to be warmer5–9. These disparities in heat
hazard have also been found to lead to unequal mortality/morbidity
outcomes,making them an important policy focus for equitable urban
planning14–17. Although the interplay of present-day socioeconomic
factors, demographic characteristics, and land cover properties
directly modulates the distribution of intra-urban heat exposure,

emerging evidence suggests that the roots of this thermal disparity
extend beyond contemporary factors8,18,19. Legacy issues stemming
from residential segregation policies and historical decisions based on
race/ethnicity urban planning have had an enduring impact on the
spatial distribution of multifaceted vulnerabilities within cities20–22.

Discussions around historic segregation in urban areas have fre-
quently focused on the practice of redlining, often referred to as the
Home Owners Loan Corporation (HOLC) grades23. It emerged in the
United States in the twentieth century, as part of federal housing poli-
cies, where neighborhoods were classified based on their suitability for
mortgage lending20,24,25. Often, such policies disproportionately targeted
minority communities, particularly African American and Hispanic
populations20,26,27. Urban neighborhoods were categorized and color-
coded into four different groups according to perceived desirability,
with A being the most desirable and D considered 'Hazardous' and
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marked in red, hence leading to the term redlining (Fig. 1a). This systemic
bias denied C- and D-graded neighborhoods access to loans and
investments, contributing to the enduring socioeconomic disparities.
This lackoffinancial support andequitable opportunities led to a further
decline in infrastructure, amenities, and overall neighborhood condi-
tions, including outdoor green spaces that are still visible today28–30. The
lack of shading and evaporative cooling from trees and green spaces,
combined with excess impervious built-up surfaces, increases local
temperatures within these neighborhoods31–33. As a result, residents of
historically redlinedareas areoftenexposed tohigher temperatures, and
this has been observed by previous studies inmultiple U.S. cities13,29,34–39.

In this study, we focus on the Los Angeles (LA) county’s metro-
politan region (extent shown in Fig. 1a), which is home to nearly 25

million residents. LA’ diverse topography, featuring a coastal plain
rapidly rising into the San Gabriel Mountains, coupled with the strong
coastal influence of the Pacific Ocean. This compressed diversity
results in different Köppen climate classifications, such as Mediterra-
nean (Csa, Csb), and semi-arid (BSh), to be found in close proximity
here, which in turn leads to significant variations in temperature,
precipitation, and vegetation over short distances40. For example,
coastal areas experience a moderating marine influence with cooler
temperatures and fog, while inland valleys can be significantly hotter
and drier41. As elevation increases moving into the mountains, climate
zones change dramatically. Heatwaves can occur when these coastal
processes are disrupted, leading to higher temperatures42. Over the
last few decades, LA has witnessed a gradual increase in the frequency,

Fig. 1 | Historical redlining in Los Angeles and its present population char-
acteristics. aHistoricHomeOwner LoanCorporation’s (HOLC)mapof Los Angeles
where the urban neighborhoods were categorized into four grades of perceived
desirability: A-graded neighborhoods (considered 'Best' for investment; marked in
green), B-graded neighborhoods (considered somewhat 'Desirable'; marked in
blue), C-graded neighborhoods (considered 'Declining'; marked in orange) and
D-graded neighborhoods (considered 'Hazardous'; marked in red). Census tract
boundaries are based on 2020 shapefiles provided by the U.S. Census Bureau.
b, c Contemporary Google Earth imagery of two contrasting neighborhoods,

respectively: Pasadena, as an example of historically A-graded, and Boyle Heights,
which was historically D-graded are shown. Note the substantial difference in
access to green spaces between the two neighborhoods. d Racial and ethnic dis-
tribution in each HOLC grade based on 2020 U.S. Census tract data. Each tract is
treatedasan independent observational unit. The sample size of census tracts (n) in
each of theHOLCgrades are as follows:nA = 78,nB = 195,nC = 670, andnD = 377. Box
plots show medians (center lines), inter-quartile ranges (boxes), 5th–95th percen-
tiles (whiskers), and outliers (points).
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intensity, and persistence of heatwaves, posing a big challenge to its
citizens and policymakers43. Additionally, LA was also subject to red-
lining in thepast44. Fig. 1a, for example, displays thehistoricallymarked
census tracts of LA23 (details in Methods). While the discriminatory
practice was outlawed in 1968 with the passage of the Fair Housing
Act45,46, its effects still linger and continue to shape patterns of
inequality in many cities. Figure 1b and c, for example, illustrate how
green cover is drastically different between an A- and D-grade neigh-
borhood even today. Furthermore, significant segregation is still pre-
sent across historically redlined and non-redlined neighborhoods,
especially in White and Hispanic populations (Fig. 1d).

Most previous investigations into the intra-urban and intra-HOLC
heat inequalities have relied on Land Surface Temperatures (LST)
estimated for specific times of day from satellites in sun-synchronous
orbits (e.g., Landsat at 10:00 am)29,34–39. Here, we leverage data from
the ECOSTRESS (ECOsystem Spaceborne Thermal Radiometer
Experiment on Space Station) thermal instrument onboard the Inter-
national Space Station (ISS), whose precessing orbit allows observa-
tions at different times during the day, providing comprehensive
temporal coverage47,48 (see Methods). By leveraging ISS-borne LST
observations, here, we aim todiscern the diurnal and seasonal patterns
that may have been overlooked in previous studies, providing a more
detailedperspectiveon the temporal dynamicsof heat inequalities and
their potential implications for vulnerableandhistorically underserved
communities.

Our exploration begins by investigating the diurnal trends in LST
disparity between the two extremes ofHOLCgrades, D versus A, which
contributes directly to the existing literature5–9 of heat disparities due
to redlining observed in various U.S. cities. Acknowledging the intri-
cate link between income inequality and historic redlining
grades44,49,50, our paper then moves on to dissect the influence of
income inequality on urban heat within each HOLC grade. Specifically,
we aim to unravel the relative importance of present-day income
inequalities versus century-old segregation practices. As part of this
analysis, we delve into the areas that used to be historically redlined
but are currently affluent. We then extend our investigation to study
seasonal patterns and find an annual hysteresis effect wherein LST
inequalities can have different magnitudes despite the same mean
temperature, depending on time of year. Finally, we investigate the
relative physiological heat vulnerability and socio-demographic

profiles of the populations currently residing in these neighborhoods.
Through this comprehensive analysis, we aim to contribute to a more
holistic understanding of intra-urban thermal disparities, emphasizing
the importance of considering both income classes and historic red-
lining in evaluating the recovery and potential vulnerabilities within
communities.

Results
Utilizing the high-resolution standard Land SurfaceTemperature (LST)
product from ECOSTRESS at 70-m spatial resolution, we explore dis-
tinctive urban features thatmanifest as hotspots at various timesof the
day47,48. For instance, during daytime hours, the large warehouses in
central LA and Covina can be seen prominently due to higher rooftop
temperatures, contrastingwith the cooler, shaded roadnetworkwithin
the urban canyon (Fig. 2a). Conversely, the nighttime data reveals
paved surfaces such as road networks and the southern shipping dock,
that retain heat from the daytime (Fig. 2b). We group the selected LST
scenes into four seasons using the standard definitionof seasons in the
Northern hemisphere (Winter: Dec, Jan, Feb; Spring: Mar, Apr, May;
Summer: Jun, Jul, Aug; Fall: Sep, Oct, Nov). The hours of day were
clustered into four segments of time of day depending on how similar
the spatial LST patterns were. The emerging four segments are labeled
as follows: Morning (7 am to 11 am), Afternoon (11 am to 6 pm), Late
evening (6 pm to 12 am), Pastmidnight (12 am to 7 am). The number of
ECOSTRESS scenes used for each season and time segment are shown
in Supplementary Fig. 1. We then compute the spatially gridded time-
average of LSTs for the census tract shown in Fig. 1a for each of the
sixteen combinations of season and time-of-day (Supplementary
Fig. 1). This approach minimizes day-to-day variabilities or anomalies,
enabling a focus on the expected value of seasonal LST signals, as
illustrated in Fig. 2, and uncover the dependencies between LST and
redlining disparity with respect to time of day and season.

From dawn to dusk: Temperature distributions across
HOLC grades
First, we examine the variation in LST distribution across the four
HOLC grades, presented as normalized and staggered density dis-
tribution plots in Fig. 3. We discuss a typical summer day for illustra-
tion and provide the corresponding figure panels for Spring, Fall, and
Winter in Supplementary Fig. 2. In the hours past midnight and before

Fig. 2 | Spatial variability of land surface temperature over the study area.
Gridded Land Surface Temperature (LST) maps of the study area are shown for the
summer months (June, July, and August), with a representing afternoon hours (11
a.m. to 6 p.m.) andb representing nighttime hours (12 a.m. to 7 a.m.). The LSTmaps

are generated using cloud-free ECOSTRESS scenes specifically from the summer
months and corresponding time windows, collected between 2019 and 2023. All
data were processed at a spatial resolution of 70 meters.
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sunrise, the A-graded neighborhoods experience slightly cooler tem-
peratures ( <1 °C) while there is negligible difference in LST among the
B, C, and D grades (Fig. 3a). As the sun rises, temperature disparities
begin to emerge for the different redlining grades. We use the
Kolmogorov-Smirnov (KS) test to confirm that these differences are
statistically significant (see Methods). We find that C- and D-graded
neighborhoods are on average 3 °C warmer than their A-graded
counterparts (Fig. 3b). These disparities peak during the afternoon
hours (by 4–5 °C), as mean temperatures continue to rise (Fig. 3c),
before diminishing to approximately 1−2 °C during late evening hours
(Fig. 3d). Notably, C- and D-graded neighborhoods retain heat longer
than the greener A- and B-graded counterparts because of the
increased impervious fraction. As the disparity between A versus
D-graded neighborhoods in LA is primarily driven by access to green
spaces, this diurnal trend mimics that of the surface urban heat island
effect51,52. To put this in perspective, we look at the percentage of
census tracts and, consequently, people residing in neighborhoods
with LSTs surpassing a specified threshold, say 40 °C for instance. We
find that for A-graded neighborhoods, 25% of the population live in
neighborhoods with LST above 40 °C, compared to ~75% in C- and
D-graded neighborhoods (Supplementary Fig. 3). This contrast
impacts over 1million additional residents during the summer in theC-
and D-graded census tracts assessed in this study (Fig. 4b).

Table 1 summarizes the mean differences in LST between A- and
D-graded neighborhoods (ΔLSTD−A = LSTD−LSTA) for four time periods
within each season. We find statistically significant ΔLSTD−A values for
~95% of the ECOSTRESS LST maps according to the KS test (Supple-
mentary Fig. 4). The general diurnal trend remains consistent across all
seasons, wherein the LST disparity is most pronounced during the
afternoon hours, with summer and spring seasons displaying a ΔLSTD
−A in the range of 3–7 °C, whereas Fall andWinter seasons have a lower
ΔLSTD−A in the range of 2–4 °C. A detailed exploration of the drivers of
seasonal differences is provided later.

Affluence as Insulation: Joint behavior of LST, income, and his-
toric redlining
Over the past century, the city of LA has undergone substantial
transformations, including the evolution of several neighborhoods

that were historically graded as C andD, as is the case of SantaMonica,
now an affluent community (Fig. 4a). This transformation introduces a
nuanced interplay of socio-economic inequalities involving present-
day incomedynamics and historical segregation practices and leads to
the question: how does the inequality in LST vary as a function of
present-day income inequality within these historically graded
neighborhoods?

To analyze these income inequalities, we first categorize census
tracts into high-income (defined as above the 75th percentile), mid-
income (25th-75th percentile), and low-income (below the 25th per-
centile) based on median household income (Supplementary Fig. 5).
Given the evolution of present-day residential income distribution
from past segregation practices44,49,50, there is significant overlap
between the low and medium income classes with HOLC grades of C
and D (Fig. 4b). Consequently, almost 35% of the population (~1.6
million people) residing in historically redlined areas fall into the low-
income category. Moreover, within these census tracts, nearly 40 to
80% of households fall below poverty line (Supplementary Fig. 6).
Conversely, 62% of the A- and B-graded census tracts can be con-
sidered as high-income, and ~10% of these currently fall into the low-
income category.

Previous research has demonstrated a negative correlation
between LST and median household income across LA census tracts53.
In this study, we juxtapose another layer of complexity from the view-
point of historic redlining and focus primarily on the temperature dis-
tribution across income categories within each HOLC grade. We find
that LST as a function of income differs significantly even within each
HOLC grade (Fig. 4c–f). In each of the HOLC grades, the LST within the
high-income neighborhoods seem to deviate the most from LST dis-
tributions in the other two income categories. During summer after-
noons, for example, the higher income neighborhoods within the
D-graded census tracts are 7–8 °C cooler than their lower income
counterparts (Fig. 4c). Alternatively, during the coldest time of the year,
winter nights, the high income neighborhoods persistently staywarmer
by 1–3 °C (Fig. 4f), which is consistent with the inversion of LST-income
correlation reported during wintertime in LA in other studies53.

If we now consider the neighborhoods that are in the high-income
bracket within the C- and D-graded neighborhoods, they

Fig. 3 | Land surface temperature distributions by time and redlining grade.
Normalizeddensity distribution plots of LSTover the course of an average summer
day (i.e., Jun, Jul, Aug) are staggered and shown for the time segments: a past
midnight, b morning, c, late evening, and d afternoon. Each distribution is color-

coded according to HOLC grade, and the median LST for each grade is written on
the left. The horizontal axis is standardized across subplots, with each subdivision
representing a consistent 2. 5 °C interval to facilitate visual comparison.
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predominately lie in areas that benefit from the cooling effects of
coastal sea-breeze influences (e.g., Santa Monica), as highlighted in
Fig. 4a. Additionally, some neighborhoods around Beverly Hills, which
used to be historically redlined, have also dramatically increased in
affluence, possibly due to the rise of LA’s Hollywood industry. This
reorganization is driven by two complementary economic forces that
are drivers of environmental gentrification54: siting55–57 and sorting58,59.
Simply put, the naturally cooler and greener neighborhoods increased

in affluence as they were preferentially sought out by people who
could afford it58,59. In parallel, low-income neighborhoods are often
selected as sites for industrial development, revealing disparities in
siting behaviors and the impact of environmental awareness on the
placement of facilities in communities of color55–57. While some
neighborhoods serve as anecdotal examples of places thatwere able to
invest in further greening as they became more affluent (as observed
around the Hollywood region)60, establishing a clear causal link

Fig. 4 | Land surface temperature distributions by income within redlining
grades. a Present-day income distribution within historically C- and D-graded
neighborhoods, with the lightest green shade highlighting areas that were his-
torically redlined but are currently affluent. Three income classes are defined as
high-income (defined as above the 75th percentile), mid-income (25th-75th percen-
tile), and low-income (below the 25th percentile) based on median household
income. Census tract boundaries are based on 2020 shapefiles provided by the U.S.
Census Bureau. b Bar graph of total population currently residing in each

combination of income class and HOLC grade. c–f Box plots of LST distributions
across the HOLC grades and income categories are shown for summer afternoons,
summer nights, winter afternoons, and winter nights. All differences within each
HOLC are statistically significant (p < 0.05). A number of census tracts (n) used to
derive the statistics for each income group are as follows: ForA:nhigh = 57, nmid = 21,
nlow =0; For B:nhigh = 73, nmid = 90,nlow = 32; For C: nhigh = 74, nmid = 356, nlow = 240;
For D: nhigh = 45, nmid = 172, nlow = 160. Box plots showmedians (center lines), inter-
quartile ranges (boxes), 5th-95th percentiles (whiskers), and outliers (points).
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between income, urban greening, and heat impacts54 is beyond the
scope of this study.

In summary, across the four examples shown here and those
shown in Supplementary Fig. 7 for the other seasons and times of day,
the LST distribution for low-income neighborhoods are not statisti-
cally different across different HOLC grades. The high andmid-income
group, on the other hand, show statistically significant LST differences
as a function of their HOLC grade. This is further illustrated in Sup-
plementary Fig. 7 where we organize the LST distributions grouped by
income category first, and then their HOLC grade. Therefore, we
conclude that present-day income inequality is a stronger indicator of
LST disparities than past redlining practices.

Greening to senescence: hysteretic dynamics of thermal dis-
parities across Seasons
We now introduce a more nuanced LST disparity metric using a
combination of both historic redlining and present-day income

inequality, by computing the difference between the extreme cases
identified above, ΔLSTHOLC,income = LSTD,Low − LSTA,High. Compared to
ΔLSTD−A from Table 1, we find that the general diurnal and seasonal
trendofΔLSTHOLC,income is still the same; but themagnitude of disparity
is larger in eachcase,with summer afternoons’ LSTdisparities reaching
as high as 5–7 °C (Table 2, and Supplementary Fig. 4). To evaluate how
LST disparity responds to extreme heat events, we evaluate the cor-
relation between ΔLSTHOLC,income and mean LST for each of the 332
unique scenes collected from ECOSTRESS. Figure 5a shows a robust
positive correlation (R2 = 0.83) that indicates the thermal disparities
aremore pronounced on hotter days, such as during heatwave events,
with an increase of nearly 1 °C rise inΔLSTHOLC,income for every 6 °C rise
in mean LST (Slope = 0.16). This demonstrates that historically
D-graded and lower income communities live in neighborhoods with
disproportionately higher LST compared to their historically A-graded
and affluent counterparts, an effect that is more marked during a
heatwave.

Table 1 | Diurnal and seasonal variation in LST disparities (ΔLSTD−A), defined as the difference between historically redlined (D-
graded) and non-redlined (A-graded) neighborhoods (LSTD − LSTA) in Los Angeles

Winter Spring Summer Fall

Past Midnight −0.26 ± 0.84 °C 0.42 ± 0.58 °C 0.74 ± 0.34 °C 0.33 ± 0.59 °C

Morning 1.27 ± 1.38 °C 1.90 ± 1.38 °C 2.43 ± 1.04 °C 1.04 ± 1.08 °C

Afternoon 2.23 ± 1.01 °C 3.87 ± 0.81 °C 4.18 ± 0.70 °C 2.41 ± 1.11 °C

Late Evening 0.15 ± 0.59 °C 1.05 ± 0.71 °C 1.30 ± 0.53 °C 0.52 ± 0.77 °C

Values represent the mean temperature difference ± standard deviation across different times of day and seasons, with the greatest disparities observed during summer afternoons.

Table 2 | Diurnal and seasonal variation in LST disparities (ΔLSTHOLC,income), defined as difference between D-graded and low-
income neighborhoods versus A-graded and high-income neighborhoods (LSTD,Low − LSTA,High) is shown

Winter Spring Summer Fall

Past Midnight −0.63 ± 1.00 °C 0.47 ± 0.79 °C 1.10 ± 0.42 °C 0.33 ± 0.81 °C

Morning 1.49 ± 1.86 °C 2.75 ± 1.96 °C 3.42 ± 1.22 °C 1.61 ± 1.54 °C

Afternoon 2.90 ± 1.38 °C 5.42 ± 0.98 °C 5.80 ± 0.73 °C 3.31 ± 1.43 °C

Late Evening −0.01 ± 0.75 °C 1.43 ± 1.06 °C 2.09 ± 0.66 °C 0.74 ± 0.91 °C

Values represent the mean temperature difference ± standard deviation across different times of day and seasons, with the largest disparities occurring during summer afternoons.

Fig. 5 | Seasonal hysteresis in thermal disparities. a The correlation between the
mean LST disparity (defined as difference between D-graded and low-income
neighborhoods versus A-graded and high-income neighborhoods, i.e.,
ΔLSTHOLC,income = LSTD,Low−LSTA,High) andmean LST is shown. Eachpoint represents
a unique LST scene acquired by ECOSTRESS. The overlaid line indicates a positive
correlation with an R2 of 0.83 and a slope of 0.16, which implies a nearly 1 °C rise in
ΔLSTHOLC,income for every 6 °C rise in mean LST. b Same as a, except ECOSTRESS
scenes are grouped by time of day (e.g., afternoon or past midnight) and season

(Winter, Spring, Summer, Fall), and the average for each group is plotted. Each
point represents the mean ΔLSTHOLC,income for a given season and time-of-day
group, with error bars showing standard deviation across scenes within that group.
The seasonal trajectory is depicted using the arrows, highlighting the hysteresis for
the afternoon (solid line) and nighttime (dashed line). Sample size (n = number of
ECOSTRESS scenes) for each group are: Afternoon-Winter (n = 22), Spring (n = 26),
Summer (n = 44), Fall (n = 33); Past Midnight- Winter (n = 18), Spring (n = 24),
Summer (n = 21), Fall (n = 21).
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Shifting our focus away from the linear correlation, we find a clear
hysteresis or a looping patternwhenwe group the data by seasons and
time of day (Fig. 5b). If we consider the daily maximum temperatures
that are corresponding to afternoon hours (shown in a solid line), the
thermal disparity,ΔLSTHOLC,income, increases fromWinter to Summer as
themean LST increases. Additionally, although themean LST in Spring
and Fall are very similar, the respective ΔLSTHOLC,income are distinctly
different. In essence, this means that seasonal variation of
ΔLSTHOLC,income as a function of mean LST exhibits a time-dependent
response between the forcing (i.e. mean temperature of a given day)
and its effects on the system (i.e., thermal disparity,ΔLSTHOLC,income, on
the given day). We find that this hysteresis pattern is primarily driven
by variations in vegetation activity, with differences in photosynthesis
and evapotranspiration cooling between spring greening and fall
senescence (Supplementary Fig. 8). Fall season tends to run hotter and
drier in LA, with frequent heatwaves occurring later in the year causing
major wildfires43. This is particularly notable in greener and wealthier
neighborhoods where the Normalized Difference Vegetation Index
(NDVI) exhibits greater annual variation than the lower income,
D-graded neighborhoods with year-long higher impervious land cover
fraction (Supplementary Fig. 8). The same hysteresis pattern is also
evident for dailyminimum temperature at nighttime (shown in dashed
line in Fig. 5b) as well as other times of day which are listed in Table 2
and shown in Supplementary Fig. 9. This finding aligns with the sea-
sonality observed in city-averaged surface urban heat islands (SUHI),
with higher SUHI intensity observed in spring and summer compared
to SUHI in fall and winter61–64.

Beyond exposure: unpacking population vulnerability to
extreme heat
The overall risk to residents is determined by both exposure to heat
hazards and the population’s vulnerability, which denotes the like-
lihood of experiencing harm when exposed to such hazards65,66. Esti-
mating heat exposure requires consideration of variables beyond
surface temperature, such as near-surface air temperature (Tair, which
is typically measured at 2 meters above ground level), wind speed,
solar irradiance, cloudiness, and humidity67. Some studies have used
the Weather Research Forecasting Model (WRF)41,68 or in-situ Tair
measurements to estimate subsequent heat stress metrics69,70. While a
comprehensive exposure assessment is beyond the scope of this
study, we examined gridded Tair from a recent global 1 km dataset71 to
compare variations in Tair across the HOLC grades. We observe similar
overarching patterns in thermal disparities in the modeled Tair as in
LST, i.e. elevated Tair disparities are maximum during summer, espe-
cially during afternoon hours by 1−2 °C (see Supplementary Fig. 10).
This finding aligns with a recent study demonstrating that LST can
capture the general direction of pervasive Tair disparities across HOLC
grades although themagnitude is generally lesser for Tair compared to
LST13. The patterns in moist heat stress metrics, which are particularly
relevant in coastal cities like LA,may bemore significantly different41,72,
which requires further future investigation. Note that themodeled Tair
dataset we use is typically limited as itmay underestimate actual urban
thermal extremes71 and does not capture the nuanced differences in
urban form and function due to local histories such as historic red-
lining. Therefore, remotely sensed LST remains our best option for
obtaining fine-scale spatially continuous thermal disparities within the
city. Additionally, since many thermal disparities within cities arise
from differences in tree cover18, heat exposure metrics incorporating
solar radiation and subsequent tree shading effects may exhibit
greater disparity than seen in Tair or moist heat stress alone73.

We now evaluate the relative extent to which LA neighborhoods
would be vulnerable to heat, using the IPCC’s definition of vulnerability
as ‘the propensity or predisposition to be adversely affected, including
sensitivity or susceptibility to harm and lack of capacity to cope and
adapt’74. To this end, we evaluated the effective contribution of 26

variables that are indicative of increased vulnerability to heat impacts.
These consider aspects such as preexisting health conditions75,76, living
andworking conditions77–79, financial situation17, and social isolation of
thepopulation80. The sourceof data is discussed in theMethods, and a
complete list of variables is available in Supplementary Fig. 11b. By
design, we exclude the variables related tomedian household income,
ethnicity, and historical redline since we evaluate heat vulnerability as
a function of these factors in Fig. 6.

To obtain a single condensed metric of heat vulnerability, we
performed a principal component analysis (PCA) on the identified
variables81. Through an in-depth exploration of variable loadings, we
find that the first PC explains more than one-third of the observed
variance (eigenvalue: 10.0, explained variance: ~35%). PC1 captures a
multidimensional sensitivity to heat with strong and positive correla-
tions with health variables such as obesity, diabetes, and asthma, as
well as moderate positive correlations with socioeconomic factors
such as extreme poverty, under-education, energy deficit households,
predominantly outdoor workers, and overcrowded and inadequate
housing conditions. PC2 (eigenvalue: 4.0, explained variance: ~13%)
has strong correlations with individuals who live alone, renters, and
those lacking access to personal vehicles or the ability to drive towork,
reflecting anadditional sensitivity to heat driven by social isolation and
harsh working conditions. Lastly, PC3 (eigenvalue: 2.5, explained var-
iance: ~8%) captures a segment of the population that is elderly, lives
alone, and experiences adverse health conditions such as diabetes and
stroke (further details in Supplementary Fig. 11b). Each PC is by defi-
nition orthogonal to the others, and thus they are best treated as
separate textitdimensions of vulnerability. In the remainder of this
work, we focus on the first PC only, given that it is the most compre-
hensive, and refer to it as the vulnerability score.

The spatial distribution of the vulnerability score is shown in
Fig. 6a, revealing a higher vulnerability in central LA and valley regions.
Despite its cosmopolitan nature and sociodemographic diversity, LA
displays stark racial and ethnic geographic segregation even today. In
Fig. 6b, we plot the majority ethnic group living in each census tract
(the spatial map of percentage prevalence for each ethnicity is shown
in Supplementary Fig. 12). We find that the juxtaposition of heat vul-
nerability with the ethnic and racial distributions of the city is parti-
cularly concerning as an environmental justice issue. Notably, we find
that people of color are more vulnerable to heat impacts (Supple-
mentary Fig. 13). For example, southern and south-eastern LA neigh-
borhoods such as Boyle Heights, Lincoln Heights, East LA, and valley
regions such as San Fernando and Covina are predominantly Hispanic.
On the south-central side, where heat vulnerability is high, themajority
of residents are African American. In addition, these neighborhoods
are also at the intersection of historic redlining (Fig. 1a), lower
household income (Fig. 4a), and higher afternoon LST (Supplementary
Fig. 1). Viewed from the lens of income inequality and HOLC grade in
Fig. 6c, we find that the vulnerability score is low for the high-income
neighborhoods regardless of their redlining history. In the medium
and low-income neighborhoods, the vulnerability score scales directly
as a function of HOLC grade, with the low-income and D-grade
neighborhoods being the most susceptible (racial and ethnic dis-
tribution sorted by both HOLC grades and income classes are given in
Supplementary Fig. 14).

Redlined areas are also shown to be linked with the heightened
risk of other adverse health outcomes such as asthma and cancer, as a
result of exposure to adverse environmental conditions21,22. This is
because they are often located near industrial zones, polluted areas, or
highways, leading to poor air and water quality46,55–57. Here, we use
CalEnvironScreen’s Pollution Burden82,83 (see Methods) to show that
D-graded neighborhoods also experience higher overall pollution
levels as a combination of these factors (Fig. 6d). Despite the absence
of green spaces, mitigating indoor exposure to extreme heat is still
feasible through the use of air conditioning, as exemplified in cities like
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Dubai. Perhaps unsurprisingly, our analysis of access to air con-
ditioning and usage shows that access to AC as well correlates strongly
with income84,85 (Fig. 6e, details inMethods). TheACusageonlyweakly
correlates with HOLC grade in the middle-income category, and resi-
dents in low-income neighborhoods have limited AC usage despite
HOLC grade. The widest distribution is observed in the historically
D-graded high-income neighborhoods as they are mostly situated
along the California coastline (Fig. 4a). The coastal cooling benefits
explainwhy the electricity usagedata reveals lessACusage, despite the
affluence of these neighborhoods86.

Discussion
Our study sheds light on the intricate dynamics of thermal inequalities
within urban areas of the greater Los Angeles region. The historical
legacy of redlining, a discriminatory practice that occurred nearly a
century ago, continues to cast a long shadow here, intertwining with
the heightened risk of adverse heat-related outcomes for vulnerable
populations. Our analysis illuminates a nuanced interplay between
historic redlining and present-day income inequality, revealing both
persistent challenges and potential avenues for intervention.

Comparing historically redlined areas with contemporary low-income
neighborhoods uncovers persistent thermal disparities, suggesting
that the injustices of the past continue to disproportionately burden
marginalized communities. This raises a critical question: are the
thermal disadvantages associated with these neighborhoods an irre-
versible consequence, inextricablywoven into their physical and social
fabric?

Our findings offer a cautiously optimistic answer. Lower tem-
peratures experienced by the wealthier neighborhoods in historically
redlined zones demonstrate that heat mitigation can be enhanced
through resource allocation and strategic urban planning. This reor-
ganization reflects environmental gentrification propelled by two
economic drivers: siting and sorting. Affluent individuals gravitate
towards naturally cooler and greener neighborhoods, driving up
property values, while low-income areas often become sites for
industrial development, exacerbating environmental disparities.While
this finding does not diminish the urgency of addressing the plight of
residents currently trapped at the nexus of historical disenfranchise-
ment and economic hardship, it underscores that the negative impacts
of extreme heat are not necessarily an immutable inheritance of

Fig. 6 | Vulnerability to heat in Los Angeles. a Map of the vulnerability score,
computed as the first Principal Component of socioeconomic and physiological
factors, is shown for all the census tracts of LA. A higher score (closer to 6) cor-
responds to greater vulnerability, while a lower score (closer to -6) indicates less
vulnerability. b Map of the majority racial and ethnic groups that currently live in
each census tract (Data: 2020 Census). This map serves to illustrate the racial and
ethnic segregation and self-organization still prevalent in present-day LA. Boxplots

of (c) vulnerability score (PC1), d normalized pollution burden score (source:
CalEnviroScreen), and e access to air conditioning (percentage of households per
census tract) organized by income classes and HOLC grades (shown in color). A
number of census tracts used to derive the statistics for each group is the same as
those in Fig. 4. Box plots showmedians (center lines), inter-quartile ranges (boxes),
5th–95th percentiles (whiskers), and outliers (points). Census tract boundaries are
based on 2020 shapefiles provided by the U.S. Census Bureau.
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historic biases. By implementing strategic investments in green infra-
structure, heat-resilient housing, and community outreach programs,
we can alleviate part of the thermal burdens borne by communities
historically neglected under redlining practices87,88.

Our use of ECOSTRESS thermal data from the International Space
Station provides a unique and comprehensive perspective, allowing us
to explore diurnal and seasonal variations in intra-urban thermal
inequities for the first time. We find that thermal disparities escalate to
up to 5−7 °C during extreme heat days such as heatwaves and exhibit a
seasonal hysteresis pattern driven by the spring greening and fall
senescence of local vegetation. It is important to note that LA is a
rather uniquely situated city with a climate shaped by complex topo-
graphy and contrasting desert and coastal influences. As such, these
findings may not be extendable to other U.S. cities without further
investigation. Lastly, examining the demographics of the most ther-
mally burdened and susceptible neighborhoods exposes a concerning
disparity: the African-American and Hispanic populations in histori-
cally redlined and economically disadvantaged areas dis-
proportionately suffer from this thermal injustice. Further
compounding their vulnerability is limited access to air conditioning
and increased exposure to higher pollution levels within their neigh-
borhoods. Our research aims to serve as a compelling call to action,
urging us to address the intertwined issues of climate change and
environmental injustice. By equipping decision-makers and commu-
nities with targeted solutions, we can address some of these thermal
inequities plaguing urban landscapes and build resilient pathways
toward a future where heat stress does not disproportionately burden
marginalized communities.

Methods
Home Owner’s Loan Corporation (HOLC) redlining score
Redlining was a historically discriminatory practice that emerged in
theUnited States during the 1930s andpersisted for several decades. It
involved the systematic denial of financial services, particularly loans
and mortgages, to individuals and communities in certain neighbor-
hoods, which was incidentally associated with income and racial/eth-
nic characteristics. We use Meier and Mitchell’s dataset23 for the
historic HOLC map of LA, where they calculated a historic redlining
score from the summed proportion of HOLC residential security
grades multiplied by a weighting factor based on area within each
census tract according to the 2020 census tract boundaries.

Land surface temperature from ECOSTRESS
Our primary dataset is the standard Land Surface Temperature (LST)
product from ECOSTRESS with a spatial resolution of 70 × 70 meters
(at nadir) acquired over the LA region since mid-2018. ECOSTRESS, or
the ECOsystemSpaceborneThermalRadiometer Experiment on Space
Station, was launched to the International Space Station in June 2018,
and it currently provides the highest combined spatial (70m at nadir),
spectral (3/5 bands), and temporal (3–5 days) resolution thermal
infrared data from space with observations available over the diurnal
cycle47. The ECOSTRESS LST product has been validated to a total
uncertainty of 1.07 K using 14 global sites covering a wide range of
surface types and atmospheric conditions48. We process a total of 345
complete and cloud-free scenes within the Los Angeles region based
on all five years of ECOSTRESS operation (2018-2023).

Kolmogorov-Smirnov statistic to test LST distribution
dissimilarity
The Kolmogorov-Smirnov (KS) statistic is a non-parametric test used
to assess the goodness of fit between an empirical distribution and a
theoretical distribution or between two empirical distributions. It
measures the maximum absolute difference between the cumulative
distribution functions of the observed and expected data. KS statistic
was chosen because the temperature distributions were non-normally

distributed. The null hypothesis of the KS test is that the two dis-
tributions are identical, and a significant result indicates a rejection of
this hypothesis, suggesting a significant difference exists between the
distributions being compared.

Principal Component Analysis of vulnerability to heat
The social, demographic, and health data employed in the vulner-
ability index is obtained from four publicly available sources at the
census tract level: the American Community Survey (ACS), CalEnvir-
oScreen 4.0 (CES)82, the Climate and Economic Justice Screening Tool
(CEJST), and CDC’s 500 Cities Project (CDC), encompassing variables
measuring living conditions, social isolation, age and health, literacy,
occupation, and transportation barriers that have been demonstrated
to enhance the relative risk of heat mortality or morbidity17,75–80. We
perform feature selection to remove redundant variables using a
hierarchical clustering approach, eliminating variables that have cor-
relations > 0.9, resulting in 26 variables being selected. We also per-
form feature scaling before starting the PCA.We run the PCA using the
Python scikit-learnPCApackage,which returns the relative influenceof
each variable on the principal components. Please see Supplementary
Fig. 11 for further details.

CalEnvironScreen’s pollution burden score
CalEnviroScreen is a tool developed by the California Environmental
Protection Agency to assess and identify communities dis-
proportionately burdened by pollution82,83. It calculates pollution bur-
dens by considering various factors such as air quality (ozone,
particulate matter), toxic releases, impaired water bodies, solid waste
sites, cleanup sites, traffic density, and pesticide use. It aims to address
environmental justice concerns by identifying and assisting dis-
advantaged communities vulnerable to the adverse effects of pollution.

Estimates of air conditioning access and usage
The estimates of air conditioning prevalence at the census tract level
were derived from various demographic factors, climate conditions,
and geographic differences84. The logistic model was constructed
using American Housing Survey metropolitan and national microdata
spanning from 2013 to 2019 and was then applied to American Com-
munity Survey data to predict air conditioning prevalence for 115
metropolitan areas in the United States. This is closely related to the
probability of AC ownership. In most regions of the U.S. where AC
penetrations tend to be very high, this correlation is acceptable, but
California has lower penetrations than most US states because of the
coastal influence, and this relationship breaks down86. We improve
upon this estimate by assessing the electricity-temperature relation-
ship of smart-meter records of 200,000 homes in Southern California
over the years 2015-2016, using data provided by local utility Southern
California Edison (SCE)85. As a result, our estimates more closely cap-
ture the actual usage of AC. Please see Supplementary Fig. 15 for fur-
ther details.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The ECOSTRESS Land Surface Temperature (LST) data generated in
this study are freely available at the NASA LP DAAC repository under
accession code ECO2LSTE v001. The smart meter data used to esti-
mate air conditioning usage is protected by an NDA and not available
due to privacy agreements with Southern California Edison (SCE). The
sociodemographic, environmental, and health variables used for vul-
nerability assessment are publicly available from the American
Community Survey (ACS), CalEnviroScreen 4.0, CDC 500 Cities
Project, and the Climate and Economic Justice Screening Tool.
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