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Daytime urban heat stress in North America 
reduced by irrigation
 

TC Chakraborty    1  , Yun Qian    1  , Jianfeng Li    1, L. Ruby Leung    1 & 
Chandan Sarangi    2,3

There is considerable uncertainty regarding the impact of irrigation on heat 
stress, partly stemming from the choice of heat stress index. Moreover, 
existing simulations are at scales that cannot appropriately resolve 
population centres or clouds and thus the potential for human impacts. 
Using multi-year convection-permitting and urban-resolving regional 
climate simulations, we demonstrate that irrigation alleviates summertime 
heat stress across more than 1,600 urban clusters in North America. This 
holds true for most physiologically relevant heat stress indices. The impact 
of irrigation varies by climate zone, with more notable irrigation signals seen 
for arid urban clusters that are situated near heavily irrigated fields. Through 
a component attribution framework, we show that irrigation-induced 
changes in wet-bulb temperature, often used as a moist heat stress proxy 
in the geosciences, exhibit an opposite sign to the corresponding changes 
in wet bulb globe temperature—a more complete index for assessing 
both indoor and outdoor heat risk—across climate zones. In contrast, 
the local changes in both wet-bulb and wet bulb globe temperature due 
to urbanization have the same sign. Our results demonstrate a complex 
relationship between irrigation and heat stress, highlighting the importance 
of using appropriate heat stress indices when assessing the potential for 
population-scale human impacts.

Irrigation is one of the most widespread land management practices1 
and is critical for sustaining modern food demand. The practice of 
irrigation strategically changes the water availability of agricultural 
lands, thereby modifying surface energy and moisture budgets1,2, with 
major impacts on regional climate3,4. Irrigation modulates the potential 
for heat risk by changing near-surface temperature and humidity4 and 
through broader feedback2,5,6. The scientific discussion surrounding 
the role of irrigation in heat exposure has progressed from examining 
just air temperature changes7 to quantification of moist heat stress 
changes through competing impacts of reduced temperature and 
increased humidity4,7,8.

Studies on irrigation impacts on moist heat stress have often  
focused on South Asia, which is a global hotspot for soil-moisture- 
induced climate feedback9. Whether irrigation increases or decreases 

moist heat stress in this region has, however, been strongly debated, 
with conflicting results depending on model configuration and heat 
stress index used10–12. The latter issue is due to varying sensitivities of 
different heat stress indices to temperature and humidity12–14. Irriga-
tion also modifies the climate of North America2,6, with large biases 
in simulated surface variables attributed to its poor representation 
in models15. Modelling studies of irrigation-induced heat stress use 
coarse grids10,11, with the implicit assumption that both the irriga-
tion impact and human exposure to it can be represented appro-
priately at that scale. However, both irrigation and its intersection 
with human habitation are at substantially finer scales16. Of note, 
in North America, over 80% of people live in urban areas, which are 
rarely resolved in climate models17,18, and which also modulate local 
heat stress14. Heat stress is also strongly impacted by solar radiation, 

Received: 5 March 2024

Accepted: 15 November 2024

Published online: 9 January 2025

 Check for updates

1Pacific Northwest National Laboratory, Richland, WA, USA. 2Department of Civil Engineering, IIT Madras, Chennai, India. 3Geophysical Flows Lab,  
IIT Madras, Chennai, India.  e-mail: tc.chakraborty@pnnl.gov; yun.qian@pnnl.gov

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Nature Geoscience | Volume 18 | January 2025 | 57–64 58

Article https://doi.org/10.1038/s41561-024-01613-z

energy by the surface (Extended Data Fig. 2b), partially counteracting 
that cooling. Overall, irrigation reduces maximum and minimum air tem-
perature (T) and increases the corresponding relative humidity (RH)  
(Supplementary Figs. 1–4 and Methods). The irrigation cooling effect 
during daytime (corresponding to maximum T, referred to as ΔTmax) is 
larger than that (ΔTmin; irrigation-induced change corresponding to Tmin) 
at night (Supplementary Figs. 3a and 4a). This day–night asymmetry may 
be because ΔTmin is moderated through the reduction in the longwave 
cooling (Extended Data Fig. 2a), which is the primary heat dissipation 
mechanism at night. Less day–night asymmetry is seen for the irrigation 
impact on RH (ΔRH; Supplementary Figs. 3b and 4b). For both day and 
night, there are large spatial variabilities in the irrigation impacts on  
T and RH, with hotspots in the Midwest, which are heavily irrigated 
regions15, and parts of the US Southeast. Increases in both T and RH would 
enhance moist heat stress13,21. The competing impacts of lower Tmax and 
higher RHmin (RH is generally minimum when T is maximum during the 
diurnal cycle) tend to reduce daytime moist heat stress, seen for around 
91% of the model grids (Fig. 3c,d) for both maximum heat index (HImax) 
and Humidex (Humidexmax). As an example, the percentage of grids with 
HImax in the ‘Danger’ category, as defined by the US National Weather 
Service (NWS), decreases from 1.39% to around 0.02% due to irrigation 
(Fig. 1c). Although irrigation-induced reductions in Humidexmax are  
evident, the magnitude of change is smaller than for HImax and larger 
increases are seen in the Midwest at night (Supplementary Fig. 4d). This 
is because of the higher sensitivity to RH for Humidex than for HI12,13,22.

Influence of irrigation on urban moist heat stress
When we aggregate the irrigation impacts for over 1,600 urban clusters, 
the results are similar with the domain-wide results, with decreases in 
Tmax, HImax and Humidexmax and increases in RHmin (Fig. 2). The overall 

and resolving irrigation-induced changes to it requires fine-scale  
model simulations6,19.

Here we use multi-year convection-permitting and urban-resolving 
regional climate simulations covering most of North America to dem-
onstrate that irrigation, specifically agricultural irrigation (Supple-
mentary Fig. 1a), reduces summertime heat stress over most urban 
clusters in the region (Extended Data Fig. 1). The sign of the change is 
consistently seen for multiple heat stress indices commonly used in the 
scientific literature. However, the magnitudes of both irrigation and 
urbanization impacts depend on the heat stress index used. We further 
perform a component attribution of the wet bulb globe temperature, a 
comprehensive heat stress index that considers temperature, humidity, 
wind speed and radiation, to discuss the discrepancies between implicit 
regional modelling assumptions of heat exposure and the potential for 
real indoor and outdoor population-scale heat risk.

Irrigation impacts on surface climate and heat 
stress
Comparing simulations with and without irrigation, we find 
irrigation-induced decrease and increase in sensible (H) and latent heat 
fluxes (λE), respectively, during summer (Supplementary Fig. 2g,h), 
even though incoming solar radiation (K↓) barely changes (Supple-
mentary Fig. 2f). Even with no change in forcing, a decrease in the Bowen 

ratio ( H
λE

) would lead to evaporative cooling20, while the increase in λE 

would add more moisture into the near-surface air. However, there are 
other adjustments to the surface energy budget that also modulate 
the response of the climate system to the simulated irrigation. For 
instance, the surface cooling reduces the outgoing longwave feedback 
(Extended Data Fig. 2a), which, in turn, increases the net absorbed 

0.2 0.04

0.02

0

D
en

si
ty

D
en

si
ty

D
en

si
ty

89.5% grids with lower Tmax due to irrigation

91.5% grids with lower HImax due to irrigation

50.9% grids with higher Twmax due to irrigation

Without irrigation
With irrigation

72.5% grids with higher RHmin due to irrigation

91.2% grids with lower Humidexmax due to irrigation

77.1% grids with lower WBGTmax due to irrigation

0.1

0
10 15 20 20 40

RHmin

Humidexmax

WBGTmax (°C)

60 80 10025 30 35 40

10 15 20 25 30 355 10 15 20 25 30 355

100
0

0

0.1

0.2

0

0.1

0.2

0.05

0.10

0

0.05

0.10

Caution

Extreme
caution
Danger

Low
Moderate

High

Extreme

Extreme
danger

20 30 40 10 20 30 4050

HImax (°C)

Twmax (°C)

Tmax (°C)

Empirical
critical

limit

Upper
limit of

adaptability

a

e

c

b

f

d

Fig. 1 | Distribution of grid-averaged daytime surface climate and heat stress. 
a–f, Probability density distributions of grid-averaged average maximum air 
temperature (Tmax) (a), average minimum relative humidity (RHmin) (b), average 
maximum heat index (HImax) (c), average maximum Humidex (Humidexmax) (d), 
average maximum wet-bulb temperature (Twmax) (e) and average maximum wet 
bulb globe temperature (WBGTmax) (f) with and without irrigation. The vertical 

black dashed lines represent mean values and the percentage of grids showing 
irrigation-induced changes is noted. The spatial plots of changes in these 
variables are in Extended Data Figs. 3 and 5 and Supplementary Information. Heat 
risk categories used by the US National Weather Service are marked for HI and 
WBGT (c and f). For e, the upper limit of human adaptability for Tw and a lower 
empirically determined limit (Methods) are marked.
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area-weighted mean irrigation-induced urban Tmax reduction is 0.79 °C 
and the corresponding RHmin increase is 2.72%. Similarly, urban HImax 
and Humidexmax are reduced by 0.58 °C and 0.42 (Humidex is unitless), 
respectively. The percentage of urban clusters with irrigation-induced 
cooling and moistening is greater than the percentage seen for the 
model grids (94.6% versus 89.5% for Tmax and 92.1% versus 72.5% for 
RHmin; Figs. 1 and 2). The difference between these two values illustrates 
the importance of resolving urban centres, where most people live, 
instead of using regional climate simulations that ignore urban-scale 
processes, the latter being common in irrigation impact studies10,11. Irri-
gation also reduces minimum urban moist heat stress, though a larger 
fraction of the clusters shows increases in HImin and Humidexmin at night 
(Extended Data Fig. 3) compared to the changes seen during daytime 
(Fig. 2). The changes in the surface climate and heat stress estimates 
are smaller when the areas of the urban clusters are accounted for in 
most cases (comparing the means and area-weighted means in Fig. 2 
and Extended Data Fig. 3). This can be attributed to smaller impacts of 
irrigation on larger urban clusters that are farther away from the major 
agricultural regions and in coastal areas (for instance, in the Northeast 
and the South; Extended Data Fig. 1 and Fig. 2).

Impacts by climate zone
The study region and the urban clusters within it can be grouped into four 
climate zones23, namely arid, boreal, temperate and tropical (Extended 
Data Fig. 1). Given the small sample size of tropical urban clusters (n = 8), 
most of which are also coastal, it is difficult to get robust and defini-
tive irrigation signals for them. As such, the overall results below pri-
marily refer to arid, boreal and temperate climate zones. Some clear 
differences are seen in the irrigation impacts by background climate, 
with the arid urban clusters showing stronger irrigation-induced cool-
ing and moistening than in any of the other cases. Irrigation increases 
the RHmin in 96.5% of the 86 arid urban clusters (Fig. 3b). These larger 
impacts in arid zones are partly due to the proximity of these clusters 

to croplands that depend strongly on heavy irrigation (Supplementary 
Fig. 1a). In arid regions, evapotranspiration tends to be more sensitive 
to soil moisture, and thus irrigation24, which is reflected in the larger 
percentage changes in both H and λE (Supplementary Fig. 2g,h). Due 
to the compensating effects of lower T and higher RH, the dependence 
of the irrigation impacts on climate zone is lower for moist heat stress. 
While irrigation-induced HImax reduction is greatest for arid urban clus-
ters, the reduction in Humidexmax is among the lowest (Fig. 3). During 
nighttime, there is little difference in irrigation-induced cooling across 
climate zones, whereas RHmax is enhanced the most in the arid urban 
clusters (Extended Data Fig. 4). For minimum moist heat stress, there 
is similarly little difference by climate zone. The main exception is for 
arid clusters, where irrigation-induced increase in Humidex is seen  
(Extended Data Fig. 4d).

Examining contributions to outdoor heat stress
Humidex and HI are both operational heat stress indices used by the 
Meteorological Service of Canada and the US NWS, respectively. 
Another variable that has been often used to examine moist heat stress 
is the wet-bulb temperature (Tw), which we also consider here (Fig. 1e 
and Extended Data Fig. 5). Much of the scientific debate surrounding 
the impact of irrigation on heat stress is rooted in the choice of moist 
heat stress index and their different sensitivities to temperature and 
humidity10–13. However, most of these indices only consider the impact 
of temperature and humidity on heat stress and ignore solar radiation 
and wind speed (WS), both of which modify the human body’s energy 
budget and thus potential for heat loading25. Thus, we also consider 
the irrigation-induced change in a more complete heat stress index, 
namely the wet bulb globe temperature (WBGT). The outdoor WBGT 
can be written as a linear combination of T (or dry-bulb temperature), 
Tnw (natural wet-bulb temperature) and black-globe temperature (Tg):

WBGT = 0.1 × T + 0.7 × Tnw + 0.2 × Tg (1)
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Fig. 2 | Irrigation-induced changes in daytime urban climate and moist heat 
stress. a–d, Irrigation-induced urban-scale changes in maximum air temperature 
(ΔTmax) (a), minimum relative humidity (ΔRHmin) (b), maximum heat index 
(ΔHImax) (c) and maximum Humidex (ΔHumidexmax) (d) for every urban cluster 

in the model domain. Each dot represents an urban cluster. The spatial means, 
area-weighted spatial means and percentage of urban clusters with values above 
0 are noted.
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Fig. 3 | Daytime irrigation impacts on urban climate and moist heat stress 
across climate zones. a–d, Distribution of irrigation-induced changes in 
maximum air temperature (ΔTmax) (a), minimum relative humidity (ΔRHmin)  
(b), maximum heat index (ΔHImax) (c) and maximum Humidex (ΔHumidexmax)  
(d) for every urban cluster in the model domain by climate zone. The means,  
area-weighted means and percentage of urban clusters with values above 0 are 

noted for each case. Each dot represents the spatial mean for an urban cluster. 
The number of clusters in arid, boreal, temperate and tropical climate are 86, 
605, 961 and 8, respectively. The boxes range from the first to third quartile  
of the subsets of data, with the median marked by a line. The whiskers extend to  
1.5 times the interquartile ranges of the boxes.
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Fig. 4 | Changes in urban outdoor wet bulb globe temperature and its 
components due to irrigation. a,b, Irrigation-induced changes in average 
maximum (a) and minimum (b) outdoor wet bulb globe temperature (ΔWBGTmax 
and ΔWBGTmin, respectively) in urban clusters. c–f, Similar to a (for ΔWBGTmax)  
but for arid, boreal, temperate and tropical urban clusters, respectively.  
g–j, ΔWBGTmin by climate zone. The contributions of change in dry-bulb or 
air temperature (ΔT), natural wet-bulb temperature (ΔTnw) and black-globe 

temperature (ΔTg) are shown. The bars represent area-weighted means, and the 
error bars show area-weighted standard errors. The distributions of the cluster-
level data and the associated box and whisker plots correspond to the right-hand 
y axis range. The number of clusters in arid, boreal, temperate and tropical 
climate are 86, 605, 961 and 8, respectively. The boxes range from the first to third 
quartile of the subsets of data, with the median marked by a line. The whiskers 
extend to 1.5 times the interquartile ranges of the boxes.
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WBGT is the International Organization for Standardization standard 
for occupational heat stress26 and performs the best at explaining physi-
ological heat strain27, with both its Tg and Tnw components explicitly 
accounting for the impact of K↓ and WS.

On average, irrigation-induced reductions in both WBGTmax and 
WBGTmin are seen over urban areas, with larger reductions for WBGTmax 
(Fig. 4a,b). Results are consistent across climate zones (and also for sev-
eral other approximations of WBGT; Extended Data Fig. 6), with excep-
tions for WBGTmin over boreal urban clusters (Fig. 4h), with negligible 
changes, and for arid urban clusters (Fig. 4g), where WBGTmin increases. 
When separating the contributions to ΔWBGT, the concurrent ΔT and 
ΔTg tend to reduce it, whereas ΔTnw increases it. Although the weight 
for Tg is smaller than for Tnw in equation 2, it has a larger range of values 
than Tnw28. These large irrigation-induced reductions in Tg occur even 
though K↓ shows no major change and WS decreases (Extended Data 
Fig. 7), which would increase heat stress, all else being equal. This is 
because T and its changes are strongly baked into Tg (equations (9) and 
(10) in Methods) and thus into WBGT. This can be illustrated by repre-
senting the spatial variability of WBGTmax as a multilinear equation of 
all its inputs (T, absolute humidity or AH, K↓ and WS; all scaled for easy 
comparison), with T showing the highest regression coefficient (1.12). 
Note that the spatial variabilities in ΔK↓ (Extended Data Fig. 7b) are 
strongly linked with changes in cloud fraction (Extended Data Fig. 8b). 
This demonstrates the importance of convection-permitting simula-
tions when examining large-scale irrigation-induced feedback, also 
seen for precipitation systems over this region6, with implications for 
WBGT. There are several other changes due to irrigation in this coupled 
framework. For instance, we find a general reduction in the planetary 
boundary layer height due to irrigation (Extended Data Fig. 9a), which is 

strongly associated with ΔTwmax (Extended Data Fig. 9b) and consistent 
with global-scale analyses using coarser reanalysis data29.

Impacts of urbanization versus irrigation
Urbanization generally increases local T, the urban heat island effect, 
and reduces RH, the urban dry island effect, with these competing 
changes affecting local heat stress14. Many studies have focused on this 
local impact of urbanization on heat stress17,30–34. Similar to the discus-
sions surrounding irrigation, the scientific focus has recently switched 
to moist heat stress indices at these scales. With the intent of better 
examining urban heat stress, we use a third set of simulations with urban 
land removed to compare the urbanization and irrigation impacts on 
various heat stress indices. Whereas irrigation mainly reduces urban 
heat stress, the impact of urbanization is mixed, with urbanization 
increasing nighttime heat stress and generally decreasing daytime 
heat stress. The only exception is seen for HImax, which increases due 
to urbanization (Fig. 5e). That urbanization reduces or barely impacts 
daytime heat stress goes against standard discourse on additional 
impact of urbanization on local heat stress, which frequently focuses 
on daytime conditions, but is consistent with previous observation 
results14. The urban impacts on T, RH and heat stress indices at night 
are individually larger over urban areas than the impact of irrigation 
(Fig. 5b,d,f,h,j,l). For daytime (rather, maximum values), the impact 
of urbanization can be more or less than that for irrigation depending 
on the variable. Finally, while the focus here was on the local impact of 
urbanization and the regional impact of irrigation on local urban heat 
stress, urbanization may also modify regional climate through various 
mechanisms35–38. Such regional urban impacts may become increasingly 
important as cities grow and evolve in the future39.
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Fig. 5 | Impacts of urbanization versus irrigation. a–l, Irrigation- and 
urbanization-induced changes in maximum air temperature (ΔTmax) (a), relative 
humidity (ΔRHmax) (c), heat index (ΔHImax) (e), Humidex (ΔHumidexmax)  
(g), wet-bulb temperature (ΔTwmax) (i), wet bulb globe temperature (ΔWBGTmax) 
(k) and minimum air temperature (ΔTmin) (b), relative humidity (ΔRHmin) (d), heat 
index (ΔHImin) (f), Humidex (ΔHumidexmin) (h), wet-bulb temperature (ΔTwmin)  
(j) and wet bulb globe temperature (ΔWBGTmin) (l) for urban clusters in the model 
domain. The total changes represent the combined effects of both. The bars 

represent area-weighted means and the error bars show area-weighted standard 
errors. The distributions of the cluster-level data and the associated box and 
whisker plots correspond to the right-hand y axis range. The number of clusters 
in arid, boreal, temperate and tropical climate are 86, 605, 961 and 8, respectively. 
The boxes range from the first to third quartile of the subsets of data, with the 
median marked by a line. The whiskers extend to 1.5 times the interquartile 
ranges of the boxes.
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Role of choice of heat stress index on results
Impacts of land use and land management practices, such as urbani-
zation and irrigation, on physiologically relevant heat stress can be 
difficult to isolate due to the number of factors involved, choice of 
variables and methodological uncertainties. An index that is commonly 
used in the geosciences as a proxy for heat stress is the psychrometric 
or thermodynamic wet-bulb temperature Tw10,17,21,33,40–42. Although Tw 
does not always linearly correspond to health outcomes43 and ranks 
towards the bottom of thermal stress indicators for explaining variance 
in physiological heat strain (WBGT ranks at the top, and both Humidex 
and HI are close to the top)27, it being a thermodynamic variable deriv-
able from first principles makes it conceptually simple to diagnose and 
attribute33,44. Moreover, some physiological studies have indeed shown 
impacts of Tw on heat stress beyond specific thresholds (Fig. 1e)45. How-
ever, Tw is also commonly used at values lower than these thresholds 
to understand the direction of change due to various perturbations 
to the climate system9,10,12,17,33,40. For irrigation, we find that the direc-
tion of the change in Tw does not correspond to the change in WBGT 
(Fig. 4), the latter being a more effective indicator of physiological heat 
strain under both indoor and outdoor conditions27. For the natural 
wet-bulb temperature Tnw, which also includes the impact of K↓ and 
WS and is a component of WBGT, its irrigation-induced change also 
shows an opposite sign from the change in WBGT in most cases (Fig. 5).  

On the other hand, for urbanization, the signs of ΔTnw and ΔWBGT 
are consistent (Fig. 6).

Assessing realistic potential for human exposure
The solar radiation and wind speed at 4 km, used in the WBGT calcu-
lation, would not sufficiently resolve urban-scale heat hazard due 
to large variabilities in morphology and shade structures46. This is 
an example of a somewhat common spatiotemporal incoherence 
in studies that link model-simulated heat stress indices to human 
impacts. This is partly due to the coarse model resolutions used in 
many studies10,11,17. There are large spatial variabilities within model 
grids that are relevant for both human exposure, such as those within 
urban areas22, and for regional climate feedback, including from irri-
gation (Extended Data Fig. 8)6. Climate models, for instance, do not 
consider the location of different surface types within a model grid, thus 
only calculate one-dimensional interactions between the atmosphere 
and biosphere within sometimes a hundred kms or more17. Doing so 
misses important gradients relevant for heat exposure, such as from 
rural to urban areas and across other land-cover transitions38. In our 
convection-permitting and urban-resolving simulations, we observe 
a discrepancy between the number of model grids and urban clus-
ters experiencing irrigation-induced reduction in moist heat stress. 
This discrepancy arises from the spatial distribution of urban areas in 
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Fig. 6 | Changes in urban outdoor wet bulb globe temperature and its 
components due to urbanization. a,b, Urbanization-induced changes in average 
maximum (a) and minimum (b) outdoor wet bulb globe temperature (ΔWBGTmax 
and ΔWBGTmin, respectively) in urban clusters. c–f, Similar to a (for ΔWBGTmax), 
but for arid, boreal, temperate and tropical urban clusters, respectively.  
g–j, Similarly, ΔWBGTmin by climate zone. The contributions of change in  
dry-bulb or air temperature (ΔT), natural wet-bulb temperature (ΔTnw) and 
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means, and the error bars show area-weighted standard errors. The distributions 
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tropical climate are 86, 605, 961 and 8, respectively. The boxes range from the 
first to third quartile of the subsets of data, with the median marked by a line.  
The whiskers extend to 1.5 times the interquartile ranges of the boxes.
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relation to the regular model grids (Figs. 1 and 2, Supplementary Fig. 2 
and Extended Data Fig. 1).

Other major sources of incoherence stem from simplistic 
assumptions used to link climate-scale variables to potential for 
human impacts25. When quantifying impacts due to climate change, 
urbanization or irrigation, there is an implicit assumption that the 
majority of the residents in the study region would be exposed to 
these extremes. This is not a reasonable assumption, especially in 
urban areas, where people spend most of their time indoors, espe-
cially during the warmest times of the day. Using an indoor estimate of 
WBGT, where we reduce both K↓ and WS to zero and modify equation 
(2), we still find irrigation-induced reductions in WBGT (Extended 
Data Fig. 10). This kind of estimate assumes that the outdoor climate 
(T and RH) and indoor climate are identical, which is also incorrect 
due to various factors, from air conditioning use to building insula-
tion. These factors relate to population-scale vulnerability to heat, 
modulating overall heat risk. The common use of Tw thresholds to 
quantify extreme heat risks also follow these somewhat ideal assump-
tions, with potential for both over and under estimations compared 
to the real environment. The upper adaptability limit of Tw of 35 °C is 
based on an idealistic model of the human body. Quoting Sherwood 
and Huber44, “Our limit applies to a person out of the sun, in gale-force 
winds, doused with water, wearing no clothing and not working.” 
Intuitively, these assumptions are rarely relevant for indoor or out-
door conditions. In indoor conditions, gale-force winds are generally 
impossible, and the ambient T and RH cannot simply be sourced from 
outdoor climatological signals. In outdoor environments, the adapt-
ability limit would be lower than 35 °C due to more heat needing to 
be dissipated in active conditions and due to strong impact of solar 
radiation on heat loading25. However, we would only expect a small 
fraction of the population of a grid to be outdoors during the peak 
heat stress hours.

In summary, although examining heat stress signals is crucial for 
understanding the effects of climate perturbations on the potential 
for heat exposure, one should be cautious when directly attributing 
those signals to population-scale impacts. Evidently, this is true not 
only for Tw, a frequently used index in the geosciences10,21,44, but also 
for other more physiologically relevant indicators of heat stress and 
even the use of only T to predict mortality/morbidity risks47. A more 
constructive approach may involve defining scenarios of heat exposure 
that consider realistic levels of activity and exposure to indoor versus 
outdoor environments.
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Methods
Model simulations
We use the Weather Research and Forecasting (WRF) model48 version 
3.8.1 with 4 km horizontal grids and a vertical resolution of 90 m near-
est to the surface. The model is run with 64 vertical layers with a model 
top at 100 hPa. The WRF domain, covering most of North America 
east of the Rocky Mountains, is shown in Supplementary Fig. 1. The 
simulations are driven using initial and boundary conditions from 
the National Centers for Environment Prediction North American 
Regional Reanalysis product49. The Noah land surface model50 with a 
single-layer canopy model51 is used to represent urban surfaces. This 
implementation has three urban types with different density classes, 
that is, low-intensity residential (LIR), high-intensity residential (HIR) 
and commercial/industrial/transportation (CIT). We use the Defense 
Meteorological Satellite Program 1-km stable nighttime light product52 
to determine urban grids and their density class. Specifically, grid 
points with lighting index of 25–50, >50–58 and >58 are identified as 
LIR, HIR and CIT, respectively. For each urban class, urban fraction and 
thermal, radiative and morphological surface properties are prescribed 
(https://github.com/wrf-model/WRF/blob/master/run/URBPARM.
TBL). Finally, anthropogenic heating, characterized by a diurnal cycle 
with two peaks at rush hours of 08:00 and 17:00 local standard time, 
is incorporated in the model simulations with maximum values of 
20 W m−2, 50 W m−2 and 90 W m−2 for LIR, HIR and CIT, respectively53. 
An irrigation scheme is also included in the Noah land surface model 
to mimic sprinkler-type irrigation, the most common irrigation type in 
the United States, over the model domain. This is done by first incorpo-
rating a global map of potential irrigation areas (%) from the Food and 
Agriculture Organization54 for each model grid and then combining 
that with the cropland and grassland grids, as defined by the Interna-
tional Geosphere-Biosphere Programme classification scheme in the 
Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover 
dataset55 to determine which grids will need irrigation. We assume that 
irrigation only happens during the growing season (April to October) 
when the root zone soil moisture availability (MA) is below a specific 
threshold. Here MA is defined as:

MA = SM − SMWP
SMFC − SMWP

(2)

where SM, SMFC and SMWP are, respectively, the soil moisture content, 
soil moisture field capacity and soil moisture wilting point averaged 
for the entire soil column in Noah.

The growing season is defined when the green vegetation fraction 
(VF) is above the threshold (VFthresh) defined by:

VFthresh = VFmin + 0.4 × (VFmax − VFmin) (3)

where VFmax and VFmin are the climatological maximum and minimum 
VF from the MODIS monthly estimates for each grid. During the grow-
ing season, MA is computed at 6:00 a.m. local time each day, and the 
irrigation is triggered when MA < 0.5. The daily amount of irrigation for 
the grid, which is distributed evenly during a 4-h time window between 
6:00 a.m. and 10:00 a.m. local time, is the difference in the soil moisture 
holding capacity and current soil moisture content for the entire soil 
column in Noah multiplied by potential irrigation area2,15. Because the 
pervious fraction for the urban grids in the single-layer canopy model 
is treated as grassland, the irrigation scheme would also work for those 
grids, as long as the other conditions are satisfied. More details about 
the model configuration can be found in Sarangi et al.32 and Li et al.6

Three sets of WRF simulations are run, each initialized for 15 March 
and run until 1 September. The first set is the control or ‘no urban’ simu-
lation, where the urban grids are replaced with the dominant nearby 
land-cover type. The second set of simulations (the ‘urban’ run) incor-
porated urban surfaces and anthropogenic heat flux32. The third set of 

simulations (the ‘irrigation’ run) also includes the impact of irrigation 
throughout the model domain6. The first two simulations (‘no urban’ 
and ‘urban’ runs) do not include irrigation. The sets are initialized inde-
pendently for each year between 2008 and 2012, together forming an 
ensemble of simulations. We focus our analysis on the summer period 
and thus only use model results for June, July and August for each year. 
We should note here that we do not have a fourth set of simulations with 
irrigation and no urbanization. This is because we treat the ‘urban’ case 
as the default and estimate the urban and irrigation impacts by adding 
and removing urbanization and irrigation, respectively.

Generating urban clusters
The nightlights-derived urban surface dataset incorporated into the 
WRF model is also used to generate urban clusters in the model domain. 
This is done by first rasterizing the processed WRF surface dataset and 
then vectorizing contiguous urban grids into distinct urban clusters. 
This generates 1,662 clusters within the model (Extended Data Fig. 1). 
The location of the centroid of each cluster is used to determine the 
predominant Köppen–Geiger climate zone23 that the cluster belongs 
to. On the basis of this analysis, there are 86, 605, 961 and 8 clusters 
in arid, boreal, temperate and tropical climate, respectively, within 
the model domain. Two of the 1,662 clusters have a mismatch with 
the extent of the Köppen–Geiger dataset and are not included in the 
climate zone analysis.

Heat stress indices
We consider several indices to examine the impact of irrigation and 
urbanization on heat stress. This includes two operational indices, 
the heat index (HI), used by the US National Weather Service, and the 
Humidex, used by the Meteorological Service of Canada, the psychro-
metric or thermodynamic wet-bulb temperature (Tw), a measure of the 
adiabatic saturation temperature of air and a commonly used proxy for 
moist heat stress in the geosciences21,41,44, and the wet bulb globe tem-
perature (WBGT)26, a comprehensive indicator of heat exposure that 
explicitly accounts for radiation and wind in addition to temperature 
and humidity.

The HI is calculated in multiple steps56. First, an initial HI estimate 
is made using an approximation of the Steadman57 equation:

HI = 0.5 × [T + 61 + [(T − 68) × 1.2] + (0.094RH)] (4)

Here, T is in °F and RH is expressed as a percentage. If the average of this 
estimated HI and the value of T < 80 °F, this initial estimate is used as the 
final HI. If that average ≥ 80 °F, a more complex expression (equation (4)),  
the Rothfusz regression56, is used.

HI = −42.379 + 2.04901523 × T + 10.14333127 × RH

−0.22475541 × T × RH − 6.83783

×10−3×T2 − 5.481717 × 10−2 × RH2

+1.22874 × 10−3×T2 × RH + 8.5282

×10−4 × T × RH2 − 1.99 × 10−6 × T2 × RH2

(5)

Additional adjustments are made in the final value of HI for  
various humidity thresholds. For instance, when 80 °F ≤ T ≤ 112 °F and 

RH < 13%, ( 13−RH
4

)√
17−|T−95|

17
 is subtracted from the original HI value. 

When RH > 85% and 80 °F ≤ T ≤ 87 °F, ( RH−85
10

)( 87−T
5

) is added to that origi-

nal HI value.

Humidex is calculated using the following equation58:

Humidex = T + 0.5555 × (6.11 × e5417.753×(
1

273.16
− 1

273.15+Td
) − 10) (6)

where Td is the dew-point temperature in °C.
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The value of Tw is derived from iteratively solving the follow-
ing expression, which is based on applying the leaf energy budget 
equation to a wet-bulb thermometer under adiabatic conditions59, and 
is an explicit function of T and the vapour pressure (ev):

T + 1
γ ev = Tw + 1

γ ev∗ (Tw) (7)

where γ is the psychrometric constant with a value of 0.66 mb °C−1 and 
ev*(Tw) is the saturation vapour pressure at Tw.

Finally, WBGT is calculated as a linear combination of T, the natural 
wet-bulb temperature (Tnw), and the black-globe temperature (Tg)60.

WBGT = 0.1 × T + 0.7 × Tnw + 0.2 × Tg (8)

Equation (7) is for outdoor conditions. For indoor conditions, the 
WBGT reduces to:

WBGT = 0.7 × Tnw + 0.3 × Tg (9)

To estimate Tg, we use the following equations61 that explicitly 
account for the wind speed (WS) in m s−1 and solar radiation (K↓)  
in W m−2.

Tg = T − 0.3 + 0.0256 × K↓ − 0.18WS1/2 (K↓ ≤ 400Wm−2) (10)

Tg = T + 12.1 + 0.0067 × K↓ − 2.4WS1/2 (K↓ > 400Wm−2) (11)

This method has the largest errors at the K↓ discontinuity but 
performs well for high and low values of K↓

61, which is what we focus 
on (next subsection). Unlike Tw, Tnw is measured under real (usu-
ally non-adiabatic) conditions, which means it is also impacted by 
WS and K↓. So, we calculate Tnw from Tw based on a method used by 
Kestrel monitor manufacturers and previously used in the heat stress 
literature62, which accounts for WS and K↓. When Tg – T < 4:

Tnw = T − C × (T − Tw) (12)

C = 0.85 (WS < 0.03ms−1) (13)

C = 1 (WS > 3ms−1) (14)

C = 0.96 + 0.069log10WS (0.03ms−1 ≤ WS ≤ 3ms−1) (15)

When Tg – T ≥ 4:

Tnw = Tw + 0.25 × (Tg − T ) + e (16)

e = 1.1 (WS < 0.1ms−1) (17)

e = −0.1(WS > 1ms−1) (18)

e = 0.1
WS1.1

− 0.2(0.1ms−1 ≤ WS ≤ 1ms−1) (19)

When calculating indoor WBGT using equation (8), K↓ and WS are set 
to zero when calculating Tg (in equations (9) and (10)).

Both HI and WBGT are now used operationally by the US NWS, and 
the heat risk categories used in most of this region63 for both are shown in 
Fig. 1c,f. Given the variety of formulations, the difference in magnitude, 
and sometimes the direction, of irrigation impacts on all these different 
heat stress indices (main text) is a function of the various sensitivities of 

these indices to the inputs, particularly humidity12,13,22. Of note, theoreti-
cal human adaptability limits of Tw have often been derived based on 
simple models for the human body44. This has prompted widespread 
use of Tw as a heat stress index in the geosciences10,17,21,33, even though 
Tw does not map well with heat strain compared to more operational 
heat stress indices27. More recently, Vecellio et al.45 experimentally deter-
mined that heat stress can become uncompensable at lower thresholds 
of Tw in healthy adults, though these thresholds also depend on ambient 
vapour pressure. The upper adaptability limit for Tw of 35 °C and the 
lowest limit found for warm-humid environments in Vecellio et al.45 
(30.34 °C) are shown in Fig. 1e.

Data processing
The hourly model outputs of each day are combined (averaged) to pro-
duce the composite diurnal cycles for summer for all five years (based 
on 460 days for the entire study period covering June, July and August 
of 2008 to 2012) and each year separately. Our analyses primarily focus 
on the average maximum (maximum of this averaged diurnal cycle) and 
average minimum (minimum of this averaged diurnal cycle) values of 
the variables. In addition to these variables, we estimate average WS, 
K↓, sensible heat flux (H) and latent heat flux (λE) and cloud fraction (CF; 
averaged over all vertical model layers) for each grid (Supplementary 
Fig. 2 and Extended Data Figs. 6 and 7). The differences between the 
‘irrigation’ and ‘urban’ simulations are used to quantify the impacts 
of irrigation, while the difference between the ‘urban’ and ‘no urban’ 
simulations represent the urban impacts. In addition to the grid-wise 
estimates of changes, the model results are also aggregated into the 
1,662 urban clusters. The cluster generation and spatial aggregation 
is done using the Google Earth Engine cloud computing platform64.

To examine the importance of different inputs on WBGTmax, we 
use a multilinear equation.

WBGTmax = β0 + β1 × T + β2 × AH + β3 ×WS + β4 × K↓ (20)

Within this linear framework, β0 is the intercept and β1, β2, β3 and 
β4 are the regression coefficients representing the sensitivity of the 
spatial distribution of WBGTmax to the independent variables, with each 
data point being one grid in the model domain. AH is the absolute 
humidity, which we use here instead of RH because RH is also a function 
of T. In the main text, however, we mainly report the results on RH as it 
is a common meteorological variable and because it is directly used in 
most of the equations of moist heat stress. Because the independent 
variables in equation (19) have different ranges, we rescale all of them 
to lie between 0 and 1. Note that the values of T , AH, WS and K↓ (here 
and in Figs. 4 and 6 and Extended Data Fig. 10) are for the times corre-
sponding to the WBGTmax, which do not necessarily correspond to their 
average maximum or average minimum (for AH) values. A similar 
equation can be written for WBGTmin. Unlike WBGTmax, which depends 
strongly on T , AH and K↓ (main text), the spatial variability of WBGTmin 
is mostly driven by T , with β1, β2, β3 and β4 of 0.90, 0.06, −0.7 and −0.07, 
respectively. Note that a negative regression coefficient for AH is found 
for the WBGTmax model. This is not physically consistent, because all 
else remaining equal, an increase in AH will increase WBGTmax. However, 
this is because there are confounding factors that simultaneously 
impact multiple variables in equation (19). While a known limitation of 
such parametric regression models, it is still useful here to interpret 
the relative importance of the inputs to WBGT.

Validating impact of simulated irrigation on climate
We compare the model-simulated variables against reference data for 
both the regions common to the reference data and by climate zone to 
check how well the irrigation scheme improves model performance 
(Supplementary Fig. 2). For Tmax, Tmin, RHmax, RHmin, WS and K↓, we use 
the GRIDMET dataset for the same period ( June, July and August of 
2008 to 2012) as the reference, which is available over continental 
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United States at 4 km resolution65. Because GRIDMET does not have  
H and λE, which are strongly influenced by irrigation, we use the 
ERA5-Land reanalysis dataset66 instead, which is available globally at 
roughly 9 km resolution. In both cases, we only choose the grids that 
are common to both model simulations and the reference dataset. For 
almost all the variables (except WS; Supplementary Fig. 2e), the irriga-
tion scheme improves model performance compared to the reference 
data. There are some cases of degraded model performance, especially 
over tropical areas, but the irrigation scheme generally improves model 
accuracy. Of note, magnitudes of T, RH and K↓ are well captured by the 
model, which gives us confidence in its ability to capture irrigation 
impacts on moist heat stress. Because these datasets do not resolve 
urban climate signals67, we do some additional evaluation by examining 
the variability in urban-scale average maximum and average minimum 
T using a recently released urban-resolving global 1 km dataset68. These 
comparisons are also made for northern hemisphere summer ( June, 
July, August) for 2008 to 2012 (Supplementary Fig. 5). The overall vari-
ability in Tmax and Tmin across the 1,662 urban clusters is well captured 
by the model, with r2 values above 0.85 in all cases. The inclusion of 
irrigation reduces the positive mean bias error in Tmax and Tmin (Sup-
plementary Fig. 5c), which is consistent with previous results on the 
role of irrigation in model biases in this region15. It is important to note 
that the validation is done as a sanity check against an independent 
estimate, and one would rarely expect complete agreement between 
the two datasets. We choose the Zhang et al.68 dataset since it is the only 
urban-resolving dataset of its kind. However, it is not a true observa-
tional benchmark because it uses an empirical approach to link 
satellite-derived surface temperature to T, which can be tricky over 
urban areas22. These model simulations have also been independently 
evaluated in previous studies at the regional to domain scales6,32.

Examining robustness of wet bulb globe temperature signals
Due to the lack of availability of all relevant model variables, we had to 
rely on certain empirical approximations when estimating the compo-
nents of WBGT instead of using more direct formulations69. This would 
lead to some differences in the magnitude of the calculated WBGT. With 
that being said, the relevant question, in the context of the main results 
of this study, is whether the approximation would change the direction 
of the irrigation-induced WBGT signal. We have already demonstrated 
that irrigation generally reduces both HI and Humidex, two other moist 
heat stress indices that are more relevant to physiological impacts 
on humans than Tw27. To check the robustness of the irrigation signal 
for WBGT, we consider three other formulations that have been used 
in the geoscience heat stress literature. First, we recalculate Tw and 
then Tnw and WBGT using the formulation development by Stull70. 
This equation, given by,

Tw = 273.15 + (T − 273.15) × atan[0.151977(RH + 8.313659)1/2]

+atan[(T − 273.15) + RH] − atan[RH − 1.676331] + 0.00391838(RH)3/2

×atan[0.023101RH] − 4.686035
(21)

is also an approximation but has also been used in the recent heat stress 
literature14,17,42. We also consider two direct formulations of WBGT, 
one developed by Bernard and Iheanacho71 for WBGTmax and given by:

WBGTmax = −0.0034HImax
2 + 0.96HImax − 34 (22)

where HImax is in °F; and another by Ono and Tonouchi72:

WBGT = 0.735 × T + 0.0374 × RH + 0.00292 × T × RH + 7.619 × K↓

−4.557 × K↓
2 − 0.0572 ×WS − 4.064

(23)

Both of these direct formulations have been used in other 
recent studies34,38,73, which allows us to contextualize the results 
of the present study within the existing scientific literature. For all 
four estimates of WBGT (Supplementary Fig. 6), irrigation reduces 
urban WBGTmax, though there are some disagreements for tropical 
urban clusters, which we already treat with caution due to the small  
sample size.

Limitations of model simulations
Regardless of the method used to estimate WBGT and other variables, 
it is important to keep in mind that these results are based on model 
simulations. Irrigation, for instance, is somewhat idealistic in our model 
simulations, and in reality, would be affected by both water demand, 
as considered here, and water availability and allocation and human 
decisions. For instance, when we compare the irrigation water use 
simulated by the model against reference irrigation water withdrawal 
data for 2015 from the US Geological Survey (Fig. 1)74, around an order 
of magnitude difference is seen between the two, even though the 
model captures the hotspot of irrigation water use within the domain 
(Supplementary Fig. 1b). However, this comparison has several limita-
tions that would exaggerate the difference between the simulated and 
reference irrigation rate. First, the reference data are given as a daily 
average (mm per day) for a whole year (including cold season), while 
our simulations are only for the summer period, which is the growing 
season for several major crops in the region. Thus, we would expect 
summertime mean irrigation rate to be much higher than annual mean 
irrigation rate. Second, the reference data are developed by combining 
several data sources, many of which are static and from various distinct 
years. However, irrigation water use can change substantially from year 
to year depending on weather and climate conditions. Third, due to US 
Geological Survey restrictions on data release of individual farmers, 
the irrigation acre inputs used to generate the reference are expected 
to be biased low. There are several other uncertainties in the reference 
data that may lead to an underestimation of water use in the reference 
data. For instance, conveyance loss and irrigation efficiencies are not 
considered in many cases when producing that dataset but would still 
add to the surface water budget. Many of these uncertainties, some of 
them provided by state, are discussed in Painter et al.74 Given that refer-
ence data for seasonal irrigation are not available at sufficient spatial 
resolution, developing these datasets is critical so that future studies 
can better understand how ‘real world’ irrigation impacts the season-
ality of the North American climate system. Although our simulated 
irrigation rate is most probably greater than ‘real world’ irrigation, there 
are diagnostic advantages of using a stronger perturbation to better 
separate the irrigation signal from the noise (internal variability) in 
coupled simulations. Overall, even if ‘real world’ irrigation rates were 
used in these simulations, we would not expect the sign of the moist 
heat stress signals to change.

Because these are fully coupled convection-permitting runs, 
the simulations can also be sensitive to initial conditions. To check 
for consistency of the key results, we calculate the percentage of 
the model grids where irrigation reduced moist heat stress (HI and 
Humidex) for the individual years, that is, for each member of the 
ensemble (Extended Data Fig. 10). Although the values are different 
across years, the simulations all consistently demonstrate that irriga-
tion mostly reduces daytime moist heat stress in this region. Finally, 
these results are for agricultural irrigation and not urban-scale irriga-
tion, which can vary widely between cities and can be quite different 
from irrigation in the background rural areas, particularly relevant 
for arid cities67.

Data availability
The relevant variables from the model simulations and the processed 
data by urban cluster can be accessed via Zenodo at https://doi.
org/10.5281/zenodo.12522655 (ref. 75).
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Code availability
The code used for estimating the different heat stress indices can 
be accessed via Zenodo at https://doi.org/10.5281/zenodo.12522655 
(ref. 75).
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Extended Data Fig. 1 | Generated urban clusters for region of interest. Sub-figure a shows the location, extent, and background Köppen-Geiger climate zone of all 
1662 urban clusters generated in the region of interest from the model’s surface dataset. Sub-figure b is similar to a, but shows the centroids of the clusters instead of 
their extent for easier visibility.
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Extended Data Fig. 2 | Changes in mean outgoing longwave radiation and net 
radiation over urban clusters due to irrigation. Urban-scale irrigation-induced 
changes in mean a outgoing longwave radiation (ΔL↑), and b net radiation (ΔRnet) 

due to irrigation for every urban cluster. Each dot represents the spatial mean 
for an urban cluster. The urban spatial means, area-weighted spatial means, and 
percentage of urban clusters with values above 0 are also noted.
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Extended Data Fig. 3 | Changes in nighttime urban climate and moist heat 
stress due to irrigation. Urban-scale irrigation-induced changes in a minimum 
air temperature (ΔTmin), b maximum relative humidity (ΔRHmax), c minimum heat 
index (ΔHImin), and d minimum Humidex (ΔHumidexmin) due to irrigation for 

every urban cluster. Each dot represents the spatial mean for an urban cluster. 
The urban spatial means, area-weighted spatial means, and percentage of urban 
clusters with values above 0 are also noted.
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Extended Data Fig. 4 | Irrigation impacts on nighttime urban climate 
and moist heat stress across climate zones. Distribution of irrigation-
induced changes in a minimum air temperature (ΔTmin), b maximum relative 
humidity (ΔRHmax), c minimum heat index (ΔHImin), and d minimum Humidex 
(ΔHumidexmin) for every urban cluster in the model domain by climate zone. The 

means, area-weighted means, and percentage of urban clusters with values above 
0 are noted for each case. Each dot represents the spatial mean for an urban 
cluster. The number of clusters in arid, boreal, temperate, and tropical climate 
are 86, 605, 961, and 8, respectively.
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Extended Data Fig. 5 | Changes in psychrometric wet-bulb temperature. 
Irrigation-induced grid-wise changes in a maximum and, b minimum 
psychrometric wet-bulb temperature (ΔTwmax and ΔTwmin, respectively) over 
the model domain. Sub-figures c and d are similar to a and b, but for urban-scale 

changes. Each c and d, each dot represents the spatial mean for an urban cluster. 
The urban spatial means, area-weighted spatial means, and percentage of urban 
clusters with values above 0 are also noted for these.
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Extended Data Fig. 6 | Consistency in irrigation-induced outdoor wet bulb 
globe temperature signals. Irrigation-induced changes in average a maximum 
and b minimum outdoor wet bulb globe temperature (ΔWBGTmax and ΔWBGTmin, 
respectively) in urban clusters. Sub-figures c, d, e, and f are similar to a (for 
ΔWBGTmax), but for arid, boreal, temperate, and tropical urban clusters, 
respectively. Similarly, sub-figures g, h, i, and j are for ΔWBGTmin by climate zone. 
Different methodologies are used to estimate WBGT, including the numerical 
method used in the main text, WBGT derived from the wet-bulb temperature 

values based on Stull, and two direct equations (Direct1 and Direct2). See 
Methods for more details. The bars represent area-weighted means and the error 
bars show area-weighted standard errors. The distributions of the cluster-level 
data and the associated box and whisker plots correspond to the right-hand y axis 
range. The number of clusters in arid, boreal, temperate, and tropical climate are 
86, 605, 961, and 8, respectively. The boxes range from the first to third quartile of 
the subsets of data, with the median marked by a line. The whiskers extend to  
1.5 times the interquartile ranges of the boxes.
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Extended Data Fig. 7 | Changes in wind speed and incoming shortwave 
radiation due to irrigation. Urban-scale irrigation-induced changes in a average 
wind speed (ΔWS), and b incoming shortwave radiation (ΔK↓) for every urban 

cluster in the model domain. Each dot represents the spatial mean for an urban 
cluster. The urban spatial means, area-weighted spatial means, and percentage of 
urban clusters with values above 0 are also noted.
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Extended Data Fig. 8 | Changes in cloud cover due to irrigation and its control 
on incoming shortwave radiation change. Urban-scale irrigation-induced 
changes in a average cloud fraction (ΔCF) for every urban cluster in the model 
domain. Each dot represents the spatial mean for an urban cluster. The urban 
spatial means, area-weighted spatial means, and percentage of urban clusters 

with values above 0 are also noted. Sub-figure b shows associations between 
the irrigation-induced change in incoming shortwave radiation (ΔK↓) and ΔCF. 
Each data point is one urban cluster. The lines of best fit and the coefficient of 
determination (r2) is noted. The color indicates the density of data points.
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Extended Data Fig. 9 | Changes in planetary boundary layer height due to 
irrigation and its control on wet-bulb temperature change. Urban-scale 
irrigation-induced changes in a average planetary boundary layer height 
(ΔPBLH) for every urban cluster in the model domain. Each dot represents the 
spatial mean for an urban cluster. The urban spatial means, area-weighted spatial 

means, and percentage of urban clusters with values above 0 are also noted. Sub-
figure b shows associations between the irrigation-induced change in maximum 
psychrometric wet-bulb temperature (ΔTwmax) and ΔPBLH. Each data point is 
one urban cluster. The lines of best fit and the coefficient of determination (r2) is 
noted. The color indicates the density of data points.
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Extended Data Fig. 10 | Changes in urban indoor wet bulb globe temperature 
and its components due to irrigation. Irrigation-induced changes in average a 
maximum and b minimum indoor wet bulb globe temperature (ΔWBGTmax and 
ΔWBGTmin, respectively) in urban clusters. Sub-figures c, d, e, and f are similar to 
a (for ΔWBGTmax), but for arid, boreal, temperate, and tropical urban clusters, 
respectively. Similarly, sub-figures g, h, i, and j are for ΔWBGTmin by climate zone. 
The contributions of change in natural wet-bulb temperature (ΔTnw), and black-

globe temperature (ΔTg) are shown. The bars represent area-weighted means 
and the error bars show area-weighted standard errors. The distributions of the 
cluster-level data and the associated box and whisker plots correspond to the 
right-hand y axis range. The number of clusters in arid, boreal, temperate, and 
tropical climate are 86, 605, 961, and 8, respectively. The boxes range from the 
first to third quartile of the subsets of data, with the median marked by a line. The 
whiskers extend to 1.5 times the interquartile ranges of the boxes.
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