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Urban vegetation, the core component of green infrastructure and critical 
for sustainable cities, is profoundly affected by the process of urbanization. 
Urbanization not only leads to substantial vegetation loss (direct impact) 
but also fosters urban vegetation growth (indirect impact). However, 
the extent to which these direct and indirect impacts affect vegetation 
dynamics across cities worldwide and how urban greening will change in 
the future remain unclear. Using satellite-based greenness and impervious 
surface datasets, we show that positive indirect impacts mitigated 56.85% 
of the negative direct impacts across 4,718 cities worldwide from 2000 to 
2019. Notably, the offsetting coefficient is much greater in Global North 
cities (79.13%) than in Global South cities (38.01%) partly due to their 
socioeconomic differences. This disparity in urban greening dynamics 
will continue in the future. Approximately 60% of Global North cities 
and 30% of Global South cities will become greener by 2040. Our results 
reveal the divergent trade-offs between vegetation loss and enhanced 
vegetation growth in cities of different socioeconomic levels and stages of 
urbanization. Such insights are crucial for a comprehensive understanding 
of urban greening dynamics and for devising strategies to attain sustainable 
development goals.

Human society has entered an urban age1,2. With economic development 
and cultural shifts, many people have migrated from the countryside 
to cities, leading to unprecedented urbanization in recent decades2–4. 
This process has led to tremendous ecological costs, including biodi-
versity loss5,6, dramatic local environmental and climate changes7,8, and 
profound impacts on vegetation growth9–11. As an important regulator 
of the regional climate and environment, urban vegetation provides 
various ecological services for residents, including mitigating urban 
heat and the urban heat island (UHI) effect12–14, affecting air quality15,16 
and improving human health outcomes17. Driven by ongoing macro-
climate changes and increasing urbanization, vegetation in cities and 

peri-urban areas has undergone profound changes18,19. However, the 
impacts of urbanization on vegetation dynamics remain inconsistent. 
Satellite-based vegetation greenness indices (a widely used measure to 
evaluate the coverage, growth and productivity of vegetation) reveal 
that urban vegetation has divergent trends across the globe18–21. Since 
vegetation strongly controls urban environmental quality and livabil-
ity, understanding the role of urbanization in regulating vegetation 
dynamics in cities and its expected effects in the future are vital for 
sustainable urban development.

The key to a comprehensive understanding of urbanization effects 
on vegetation dynamics is to separate the effects of urbanization on 
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project how this disparity in urban vegetation will change in the future. 
Our study focuses on the disparity in the direct and indirect impacts 
of urbanization on vegetation worldwide, particularly between GN 
and GS cities, and examines how socioeconomic characteristics and 
stages of urbanization contribute to these disparities. Addressing these 
questions is essential for understanding mechanisms of vegetation 
changes across global cities and offers important insights for making 
cities more resilient and sustainable amid increasing urbanization and 
global warming.

Increased urbanization and changes in urban 
vegetation
Rapid urbanization has led to a widespread rising fraction of imper-
vious surfaces (β) in urban areas across cities worldwide (Extended 
Data Fig. 1). From 2000 to 2019, the average β of 4,718 cities worldwide 
has increased from 0.4661 to 0.6195 (Extended Data Fig. 2a). Among 
the seven regions across the world (Supplementary Fig. 1), East Asia 
and the Pacific have experienced the greatest increase in impervious 
surface area during the past two decades, followed by South Asia and 
sub-Saharan Africa (Fig. 1a and Extended Data Fig. 2b). Overall, cities 
that experienced rapid urban expansion (Δβ > 0.12 per decade) during 
2000–2019 are primarily located in emerging economies (for example, 
China, India and several countries in Africa) in the GS, whereas devel-
oped cities in the GN generally show a slight increase in β (Fig. 1b and 
Extended Data Fig. 1).

Rapid urban expansion was accompanied by substantial  
vegetation loss and exerted negative effects on vegetation greenness 
in urban areas, which is supported by the negative correlation between 
the urban expansion rate (Δβ) and the ΔEVI (r = −0.51, P < 0.01). Most 
GS cities with marked impervious surface growth exhibit browning 
trends (Extended Data Fig. 1). However, the EVI in urban areas did not 
show an expected magnitude of decreasing trend. The average EVI 
across 4,718 cities worldwide decreased by only 0.0039 per decade 
(−1.55% per decade, Extended Data Fig. 2). Nearly half (45.2%) of the 

vegetation cover and vegetation growth status22–24. These two effects 
are also known as the direct and indirect effects of urbanization on 
vegetation22–24. Specifically, direct impact refers to vegetation loss due 
to landcover transitions from natural vegetated surfaces to impervi-
ous surfaces such as roads, buildings and parking lots during urban 
expansion and densification. In contrast, indirect effects are due to 
vegetation growth enhancement from urban environmental changes 
(for example, longer photosynthetic season due to UHI effects, greater 
CO2 fertilization effects) and result in urban vegetation composition 
differing from vegetation in the surrounding rural areas25–27. In addition, 
human management measures such as choice of urban tree species, 
irrigation and fertilization can also affect urban vegetation growth27–29. 
Several studies have separated direct and indirect urbanization effects 
by characterizing the relationship between urbanization intensity 
(fraction of impervious surface area) and the satellite-based vegetation 
index (VI) along urban‒rural gradients22,24. These studies suggested 
prevalent enhanced vegetation growth in urban environments. How-
ever, these studies, which are based on space-for-time frameworks, 
cannot provide the true temporal dynamics of urbanization-induced 
effects on vegetation18,23. Furthermore, studies of differences in the 
direct and indirect impacts of urbanization on vegetation dynamics for 
cities at different stages of urbanization and different socioeconomic 
levels during historical periods and in the future are still lacking.

In this study, we provided a global analysis of urbanization effects 
on vegetation dynamics during 2000–2019 and the expected impacts 
in the future across 4,718 cities worldwide, using the satellite-based 
Enhanced Vegetation Index (EVI) and impervious surface area data30,31. 
We quantified the direct and indirect impacts of urbanization on EVI 
variation for global cities and find that the offsetting coefficient (η) 
of indirect impact to direct impact is much higher in the Global North 
(GN) cities than in the Global South (GS) cities. We further investigated 
the contribution of their differences in climatic and socioeconomic 
characteristics to this disparity. Finally, we used machine learning 
models32, future urban fraction data33 and socioeconomic data34 to 
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Fig. 1 | Increased urbanization and the changes in vegetation greenness in 
different parts of the world during 2000 to 2019. a, Changes in the fraction 
of impervious surface area (Δβ) of cities in different regions of the world. EAS, 
East Asia and the Pacific, with city sample size of 963; ECS, Europe and Central 
Asia, 1,512 cities; LCN, Latin America and Caribbean, 553 cities; MEA, Middle East 
and North Africa, 142 cities; NAC, North America, 1,202 cities; SAS, South Asia, 
80 cities; SSF, sub-Saharan Africa, 266 cities. These regions are defined by the 

World Bank (https://data.worldbank.org.cn/country). White lines represent the 
median Δβ for each region and white dots represent the average Δβ weighted by 
urban area for each region. Shaded boxes and vertical lines represent the ranges 
of 25–75% and 5–95%, respectively. b, Probability distributions of Δβ for Global 
North cities and Global South cities. Dotted lines are the average Δβ weighted 
by urban areas for the GN cities and GS cities. c,d, The same as in a and b but for 
relative changes in the EVI (ΔEVI).
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cities were greening from 2000 to 2019, most of which were in Europe,  
North America and Northeast Asia in the Global North (Fig. 1c,d).  
In particular, some cities in northern China (for example, Beijing) 
have experienced pronounced urban expansion and greening trends 
(Extended Data Fig. 1c and Supplementary Fig. 2).

Changes in urban EVI are the result of the joint effects of macrocli-
mate changes and urbanization18,19. To quantify the direct and indirect 
urbanization impacts on vegetation dynamics, we first separated the 
contributions of macroclimate changes to EVI variation (Fig. 2). The 
effects of macroclimate change were generally positive, leading to a 
global enhanced vegetation growth by +4.93% per decade (Extended 
Data Fig. 3). Without considering the effects of urbanization, mac-
roclimate change resulted in a potential increase in the urban EVI of 
0.010 per decade globally from 2000 to 2019 (Extended Data Fig. 3).

Direct and indirect impacts of urbanization on 
vegetation
We obtained the direct impacts of the changes in β (that is, loss of veg-
etation cover) on EVI (Fig. 2 and Supplementary Fig. 3). Consistent with 
the spatial distribution of Δβ, GS cities generally experienced greater 
adverse direct impacts than GN cities did (Fig. 3a–c and Extended Data 
Fig. 4). Cities in China (for example, Chengdu) and West Africa experi-
enced the most drastic urbanization and considerable direct impacts 

on the EVI (|ωd| > 20% per decade), while cities in North America, Europe 
and Central Asia (for example, Chicago and Paris) experienced slight 
increases in impervious surface area (Δβ < 0.04 per decade) and moder-
ate direct impacts (|ωd| < 10% per decade) on the EVI from 2000 to 2019 
(Fig. 3a and Supplementary Figs. 4–6). Globally, direct impacts resulted 
in an average decline in the EVI of 0.0324 per decade (ωd = −11.93% per 
decade) from 2000 to 2019 (Fig. 3c and Extended Data Fig. 4).

The indirect impacts of urbanization on the EVI were calculated 
from the differences between the observed VI and the hypothetical VI 
(VIh), which considered both urbanization-induced vegetation loss and 
the response of vegetation growth to macroclimate change (Fig. 2). 
The indirect urbanization effects largely promoted vegetation growth 
in urban areas (ωi = +9.31% per decade), resulting in a global average 
increase in the EVI of 0.0184 per decade from 2000 to 2019 (Fig. 3d–f 
and Extended Data Fig. 4). In addition, the indirect impacts were posi-
tive in the vast majority (94.56%) of global cities, indicating prevalent 
vegetation growth enhancement in urban environments (Fig. 3c,d). 
Some cities in China presented the most pronounced positive indirect 
effects on vegetation growth (ωi > 16% per decade), and most cities in 
North America and Europe also typically presented, albeit smaller than 
the magnitudes seen for China, positive indirect effects (ωi > 4% per 
decade) (Fig. 3d,e). Among the seven regions, East Asia and the Pacific 
and sub-Saharan Africa had the greatest extent of vegetation growth 
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Fig. 2 | Schematic diagram of the effects of urbanization and macroclimate 
change on vegetation growth. The greenness-based vegetation index (VI) of an 
urban pixel can be decomposed into contributions from vegetated surfaces and 
non-vegetated surfaces (impervious surfaces). VI′ (the blue dashed line) is the 
potential VI change without considering increased urbanization. Urbanization 
leads to vegetation cover loss through landcover transformation from vegetated 
surfaces to impervious surfaces, causing decreased VI. The brown dashed line 
represents the hypothetical VI (VIh) that is affected only by macroclimate changes 

and vegetation loss. The difference between VIh and VI' is the direct impact of 
urbanization on the EVI (Idirect). ωd is the percentage of VI decline caused by direct 
impact. The difference between the observed VI (black line) and VIh is the indirect 
impact of urbanization (Iindirect), which indicates the response of vegetation 
growth to urbanization. ωi is the percentage of vegetation growth variation 
caused by the indirect effects of urbanization. η is the offsetting coefficient of the 
indirect impacts to the direct impacts.
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enhancement (Fig. 3e). Negative indirect impacts were observed in 
some cities (5.15%, for example, in Baghdad, Iraq) in the tropics or 
arid regions, most of which were in the Global South (Fig. 3d and Sup-
plementary Fig. 7).

To explore how the indirect effects differ across global cities, we 
further investigated the influences of urbanization intensity, climatic 
and socioeconomic factors on the magnitude of vegetation growth 
enhancement driven by urbanization (ωi) (Fig. 4a,b). We found a strong 
positive correlation between the rate of urban expansion (Δβ) and 
ωi (r = 0.54, P < 0.01), demonstrating increasing vegetation growth 
with more rapid urbanization (Fig. 4a). In addition, the urbanization 
intensity at the reference time (β2000) is positively correlated with ωi 
(partial correlation coefficient = 0.33, P < 0.01, Fig. 4b), indicating that 
vegetation growth was more promoted in cities that experienced earlier 
urbanization (higher β2000). Controlling the urbanization intensity (β) 
and its trend (Δβ), partial correlation analysis suggested a negative 
relationship between mean annual temperature (MAT) and ωi (Fig. 4b). 
This indicates greater positive indirect impacts on vegetation growth 
in cold regions. Moreover, economic prosperity had a positive influ-
ence on urban vegetation growth (positive relationship between gross 
domestic product (GDP) per capita and ωi, Fig. 4b). We also detected 
negative relationships between ωi and the population density (partial 
r = −0.17, P < 0.01), the annual growth rate of population density (partial 
r = −0.14, P < 0.01) and economic growth rate (partial r = −0.12, P < 0.01) 
(Fig. 4b). Overall, the indirect effect of urbanization on vegetation 
growth is strongly affected by a city’s socioeconomic characteristics 
and the stage of urbanization.

Contrast in offsetting coefficients between the  
GN and GS
The prevalent vegetation growth enhancement in urban environments can 
alleviate the adverse effects of vegetation losses due to urbanization. Here 
we used the offsetting coefficient (η, defined as the ratio of indirect impact 
to direct impact) to measure this compensation effect (Fig. 5). Globally, 
positive indirect impacts offset 56.85% of the negative direct impacts 
from 2000 to 2019, with an evident latitudinal pattern of η (Fig. 5a,b).  
Cities in the middle- and high-latitude regions in the Northern Hemisphere 
generally had greater offsetting coefficients (average η = 72.61% for cities 
north of 30° N) than other regions, and the tropical zones in the Southern 
Hemisphere present the lowest offsetting coefficient (average η = 23.26%) 
(Fig. 5b). This disparity is associated with the background climate as 
 cities in cold regions generally had greater indirect impacts on veg-
etation growth (Fig. 4b). In addition, the spatial heterogeneity of the  
offsetting coefficient is also closely associated with socioeconomic 
level, as suggested by the substantial and statistically significant posi-
tive correlation between η and the Human Development Index (HDI, a 
comprehensive measure of socioeconomic development) (Spearman’s 
r = 0.43, P < 0.001, Fig. 5c).

Vegetation growth enhancement can offset a greater proportion 
of the negative impacts of vegetation loss in cities with high HDIs 
(Fig. 5c). On the one hand, cities with high HDIs generally had lower 
increase in impervious surface area (Δβ) during 2000–2019, exerting 
less adverse direct impacts on vegetation (Extended Data Fig. 5a,b). On 
the other hand, higher HDIs are linked to higher GDP per capita (r = 0.87, 
P < 0.01) and lower population density (r = −0.55, P < 0.01). This leads 
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Fig. 3 | Direct and indirect effects of urbanization vegetation greenness from 
2000 to 2019 across 4,718 cities worldwide. a, Magnitude of the EVI decline 
caused by the direct effects of urbanization (ωd) during 2000 and 2019 across 
4,718 cities. b, The ωd of cities in different regions across the world. Abbreviations 
and number of cities for the different regions as in Fig. 1a. White lines represent 
the median Δβ for each region, and white dots represent the average Δβ weighted 

by urban areas for each region. Shaded boxes and vertical lines represent the 
ranges of 25–75% and 5–95%, respectively. c, Probability distributions of ωd for 
Global North and Global South cities. Dashed lines are the average Δβ weighted 
by urban areas for the GN and GS cities. d–f, The same as in a–c but for the 
magnitude of EVI variation caused by the indirect effects of urbanization (ωi).
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to greater vegetation growth enhancement in cities with high HDIs 
(Extended Data Fig. 5c). Notably, cities in the GN generally have higher 
HDIs than GS cities, with significant differences in η between GN and 
GS cities (P < 0.01, using the two-sided non-parametric Wilcoxon test) 
(Fig. 5d,e). The average η of GN cities is 79.13%, which is twice that of 
GS cities (38.01%). Moreover, 90.6% of cities with positive total effects 
of urbanization (η > 100%) are in the GN, but 75.1% of cities with nega-
tive indirect impacts (η < 0) are in the GS (Fig. 5e). The differences in η 
between the GN and GS suggest the contrasting effects of urbanization 
on urban greening over the past two decades, which are closely associ-
ated with a city’s socioeconomic level.

Projected urban EVI changes from 2020 to 2040
To project urban vegetation changes in the future, we used future 
urban cover fraction data, socioeconomic data and machine learning 
models to estimate the direct and indirect impacts of urbanization 

on vegetation under three Shared Socioeconomic Pathways (SSP) by 
2040 (Methods). Cities in East Asia and the Pacific are expected to 
have the most prominent vegetation degradation among the seven 
regions, with greatest EVI decline in southern China (ΔEVI < −20%) 
(Fig. 6). These regions are still in states of rapid urbanization and eco-
nomic development, leading to great direct impacts on vegetation 
greenness (Extended Data Figs. 6–8). However, most cities in North 
America, Europe and Central Asia will become greener by 2040, with 
notably positive climatic and indirect impacts and moderate direct 
impacts (Fig. 6 and Extended Data Figs. 6–8).

Notably, the differences in the total effects of urbanization on  
vegetation between the GN and GS cities remain under the three SSP 
scenarios. The indirect urbanization impacts are expected to com-
pensate for more direct impacts in the GN cities than in the GS cities 
(Extended Data Fig. 9). Thus, cities with greening trends are mostly 
in the GN, while most cities in the GS (~70%) will still be browning 
(Fig. 6c,f,i). Overall, global cities will be greener under the SSP1–Rep-
resentative Concentration Pathways (RCP)2.6 scenario, with a higher 
ΔEVI (−0.93%) and proportion of greener cities (51.5%) than those under 
the SSP2–RCP4.5 (−1.75%, 45.8%) and SSP5–RCP8.5 (−2.29%, 45.2%) 
scenarios from 2020 to 2040.

Discussion
Rapid urbanization across the globe not only causes vegetation loss 
but also accelerates vegetation growth due to urban environmen-
tal changes, human management practices and urban greening 
policies22,24. Previous studies have revealed divergent trends in urban 
vegetation dynamics, but the attribution of urbanization to vegetation 
dynamics often differs in direction and extent3,11,21. In this work, we 
provide a global analysis of the historical impacts of urbanization on 
vegetation dynamics and projected vegetation changes in the future.  
By providing insight into the direct and indirect urbanization impacts 
on vegetation dynamics, our quantitative results at the global scale 
expand our understanding of vegetation responses to urbaniza-
tion over space and time. In addition, our work separated the influ-
ences of macroclimate changes on vegetation growth, which largely 
reduced the uncertainty in estimating the impact of urbanization on 
vegetation dynamics. Our framework is also suitable for assessing 
urbanization-induced vegetation changes at the subcity scale, which 
can provide more details of vegetation responses to urbanization.

Our analysis demonstrates that the prevalent vegetation growth 
enhancement in urban areas offset over half of the negative direct 
effects of urbanization across global cities during 2000–2019. In par-
ticular, our results demonstrate the contrast in the total impacts of 
urbanization on vegetation between cities in the GS and GN, and the 
contrast will persist under different scenarios in the future. This con-
trast is primarily associated with differences in their stage of urbaniza-
tion. The process of industrialization in most Global South countries 
(for example, China, India and many African countries) began after 
the mid-twentieth century3,4. The mass migration of people to cities 
occurred at the end of the twentieth century and the beginning of 
twenty-first century1,3. This caused remarkable urban expansion35 and 
considerable adverse direct impacts on vegetation (Fig. 3) in East Asia, 
South Asia and Africa. Global North cities, however, have expanded 
mildly since 2000, with slight negative direct impacts but notable 
positive indirect impacts on vegetation growth (Fig. 3). The nota-
ble positive indirect effects might be due to more well-established 
green spaces that have more structurally developed vegetation (for 
example, trees and shrubs) in these mature cities20. Besides, we also 
notice another type of city with a trajectory of both slight direct and 
indirect impacts of urbanization on vegetation. These cities are mainly 
in the Middle East and South America, which have been highly urban-
ized in the late twentieth century. However, the population growth in 
cities surpasses the economic level and urban infrastructure capac-
ity in these regions, which are considered to be ‘over-urbanized’4,36.  
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This might exert greater ecological pressure on the environment with 
less green infrastructures in urban areas4,20. The differences in the direct 
and indirect impacts of urbanization across global cities indicate the 
divergent trade-offs between urbanization and ecological conservation 
among cities at different stages of development.

Our results reveal that the differences in urban vegetation dynam-
ics between GN and GS cities are also closely related to their socioeco-
nomic characteristics, which affect the indirect effects of urbanization 
on vegetation growth. The developed cities in the GN generally have 
higher economic levels than do the GS cities (Extended Data Fig. 10). 
The positive correlation between GDP per capita and the indirect 
effects (ωi) indicates the role of artificial management measures in 
urban greening dynamics as wealthier cities or communities usually 
invest more in urban green infrastructure to improve environmental 
quality and greenspace supply for residents (Fig. 4b and Supplemen-
tary Fig. 8)19,37,38. In addition, we detected negative influences of dense 
population and high economic growth rate on urban vegetation growth 
(Fig. 4b). A dense population and rapid economic development would 
exert greater pressure on the urban environment, leading to a negative 
influence on vegetation growth19,20. Compared with the developed cit-
ies in the GN, GS cities have much higher population densities (about 
three times that of GN cities) and population growth rate (more than 
twice that of GN cities) (Extended Data Fig. 10). In addition, urbaniza-
tion in the GS was accompanied by more rapid economic development 
(Extended Data Fig. 10). Overall, GN cities commonly experienced 

greater positive indirect urbanization effects on vegetation growth 
than the GS cities and have greater offsetting coefficient of indirect 
effect to direct effect (Fig. 5e). Recent studies have revealed the con-
trast in infrastructure37–39, human exposure to green spaces40 and 
the cooling benefits of greenspace14 among cities in the GN and GS. 
The divergent greening trends of the GN and GS cities would lead to 
greater inequality in human exposure to green spaces. Because of the 
important role of urban vegetation in reducing human exposure to 
high temperatures and heat stress12–14, providing health benefits17 and 
augmenting residents’ living comfort, the United Nations underscores 
the necessity of ‘providing universal access to greenspace for urban 
residents’ as part of the 11th Sustainable Development Goals41. Rational 
city planning that considers both urban expansion and urban renewal is 
urgently needed to balance the trade-off between urban development 
and its ecological and environmental consequences in Global South 
cities. Increasing regional or international economic aid would help to 
increase investment in urban greening in GS cities, which is beneficial to 
achieve equitable urban greening ecosystem services across the world.

Some levels of uncertainty and limitations should be acknowl-
edged. First, uncertainties in the impervious surface and EVI datasets 
should be noted. Due to differences in data sources, spatial resolutions 
and algorithms used for inversion, there are some discrepancies in esti-
mates of impervious surface area from datasets across scales31,42. Here 
we used the GISA 2.0 dataset with a high resolution of 30 m, which con-
siders the consistency of some existing products and is more accurate 
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and stable31. Even so, unrecognized green spaces or buildings due to 
data resolution might result in misestimation of the direct and indirect 
impacts20,42. For example, many residential gardens and street trees 
are smaller than the 30 m landcover pixel, potentially leading to an 
underestimation of vegetation cover20,42,43. Advances in remote sens-
ing technology, such as more accurate land cover with finer resolution 
and detailed characterization of the functional type and structure of 
urban vegetation, would be helpful for improving the understanding 
of urban greening dynamics and associated drivers in future stud-
ies. Second, the responses of vegetation growth to urbanization may 

vary at temporal and spatial scales across different parts of a city. For 
instance, previous studies have revealed the disparities in vegetation 
dynamics between urban cores and urban fringes (greening in the 
centre while browning in expansion areas)18,43 and between rich zones 
and slum areas (for example, green gentrification)44. In this study, 
we focus on the average impacts at the city scale, and the prediction 
of future urban vegetation change is limited to existing urban areas. 
Future studies can apply our framework at the subcity scale and in 
specific regions to access details of urbanization-induced vegetation 
changes. Third, indirect urbanization impacts are the combined result 
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of various interacting biogeochemical mechanisms (for example, 
extended growing seasons, greater CO2 fertilization effects, elevated 
nitrogen deposition) and anthropogenic factors (for example, urban 
planning, the species composition of urban vegetation and invest-
ment in green infrastructure)18,22,26. Although the significant positive 
correlation between the rate of urban expansion and ωi demonstrates 
the benefits of urban environmental changes on vegetation growth 
(Fig. 4a), it is still challenging to differentiate the contribution of each 
potential mechanism. Future studies on the attribution of urban veg-
etation changes are crucial for understanding the mechanisms of 
vegetation responses to future urbanization and climate change5,22,25.

Methods
Urban boundary and impervious surface area
The multitemporal global urban boundary (GUB) dataset45 was used 
to extract the urban areas in our study. The GUB dataset is based on 
the spatial distribution of artificial impervious areas from Landsat 
data and can capture the complicated shapes of urban extent well. We 
selected cities with areas larger than 10 km2 in 2018, which included 
both metropolitan cities and many small cities that house millions of 
urban residents. The study area for each city was the urban area in 2018.

The global impervious surface area dataset (GISA 2.0) was used 
to quantify the fraction of impervious surfaces (β)31. This dataset has 
long-term records from 1985 to 2019 with a spatial resolution of 30 m. 
Compared with existing global impervious surface datasets, the GISA 
2.0 dataset considers the consistency of existing products and is more 
accurate and stable31. We aggregated the GISA 2.0 dataset to 500 m 
resolution and calculated the fraction of impervious surfaces of each 
500 m pixel. The values of β ranged from 0 (fully vegetated surface) to 
1 (fully built-up surface). We calculated the β for each city per year and 
their trends from 2000 to 2019.

The projected urbanization intensity in 2040 was obtained from 
a global dataset of urban fractions with a 1-km resolution. This dataset 
provides urban fraction data under eight SSP–RCP scenarios from 
2020 to 2100 (5-year interval), which can explicitly capture the gradual 
variations in impervious surface area within pixels33. We calculated the 
changes in the urbanization intensity (Δβ) of each city between 2020 
and 2040 under three SSP–RCP scenarios (SSP1–RCP2.6, SSP2–RCP4.5 
and SSP5–RCP8.5) to estimate the projected direct impacts of urbaniza-
tion on vegetation greenness in urban areas.

Satellite-based vegetation index
The EVI with a 500 m spatial resolution from the MODIS data products 
(MOD13A1 v.6.1) was used as an indicator of vegetation growth state in 
this study30. EVI minimized canopy background variations and removed 
residual atmosphere contamination caused by smoke and subpixel 
thin cloud clouds using the blue band. We filtered the pixels with low 
confidence using the quality assessment layer and then integrated 
the 16-day EVI to yearly data by calculating the annual mean EVI from 
March of each year to February of the following year since the MOD13A1 
product is only available since 18 February 2000. We used the annual 
average EVI for each 500-m pixel and calculated the annual mean EVI for 
each city to represent the average state of urban vegetation from 2000 
to 2019. We also calculated the annual mean leaf area index (LAI) for 
each city using the MODIS LAI products (MOD15A2H)46. We addressed 
the relationship between EVI and LAI to estimate the future climatic 
impact on the urban EVI. The R2 of the quadratic regression between 
the LAI and EVI (LAI = (a × EVI + b)2) is 0.591 (Supplementary Fig. 9).

Climatic and socioeconomic factors
The climate data were obtained from the TerraClimate dataset. Terra-
Climate is a dataset of the monthly climate and climatic water bal-
ance for global terrestrial surfaces since 195847. This dataset provides 
time-varying climate data with high spatial resolution for ecologi-
cal and hydrological studies. All the data have a monthly temporal 

resolution and a ~4-km spatial resolution. We extracted the 2-m air 
temperature, precipitation and the potential evapotranspiration (PET) 
to calculate the mean annual temperature (MAT), mean annual precipi-
tation (MAP) and aridity index (AI, defined as the ratio of MAP to PET) 
for each city from 2000 to 2020.

Global gridded datasets for the HDI and GDP produced by 
ref. 48 were used in this study. This dataset provides the global 
5-arc-min-resolution purchasing power parity GDP per capita, total 
GDP and HDI for the period 1990–2015. The HDI, a quantitative index 
that measures key dimensions of human development, was used to 
describe socioeconomic development of global cities. We extracted 
the average HDI and GDP per capita from 2000 and 2015 for each city. 
We also calculated the compound annual growth rate of GDP per capita 
(GRGDP) for each city to measure the rate of economic development. The 
population density in urban areas and its compound annual growth rate 
(GRPOP) were derived from gridded global population density dataset 
with a 1-km spatial resolution produced by the WorldPop group49.

The projected population density and GDP data were derived 
from gridded datasets for the population and economy under Shared 
Socioeconomic Pathways34. Based on the Population–Development–
Environment (PDE) model and the Cobb–Douglas production model 
with localized population and economic parameters, the dataset pro-
vides gridded SSP population and economic data from 2020–2100 
under five Shared Socioeconomic Pathways (SSPs)50. We calculated 
the rate of population density (GRPOP) and average GDP per capita 
(GRGDP) from 2020 to 2040 for each city to predict the indirect effects 
of urbanization.

Digital elevation and landcover
The digital elevation data used for rural pixel screening were derived 
from the Global 30-m Digital Elevation Model (GLO-30) from Coper-
nicus51. The digital elevation data were resampled to a 500-m resolu-
tion. The 500-m landcover data were acquired from the MCD12Q1 v.6.1 
product, which is derived using supervised classification of MODIS 
Terra and Aqua reflectance data52. We used the landcover types defined 
by the International Geosphere–Biosphere Programme (IGBP) classifi-
cation schemes. When calculating the vegetation growth variation in 
rural areas, we excluded the pixels identified as non-vegetational cover 
or human managed types (that is, croplands, urban and built-up areas, 
croplands/natural vegetation mosaics, snow and ice, and barren) and 
the pixels that experienced landcover changes from 2001 to 2018. Only 
the natural vegetation pixels without major landcover type changes 
were used in the analysis.

Separating the direct and indirect impacts
Schematic diagrams of this framework are shown in Fig. 2 and Sup-
plementary Fig. 2. The VI of a pixel is determined by the vegetation 
coverage and the greenness of the vegetated surface. Following the 
conceptual framework proposed by ref. 22, we assumed that the VI of 
an urban pixel decreases linearly with increasing urban intensity (β, 
represented by the proportion of impervious surfaces within a VI pixel):

VI = VIv × (1 − β) + VInv × β (1)

where VIv is the value of VI if the pixel was completely filled by vegetated 
surfaces with the current growth condition (β = 0), and VInv is the mini-
mum VI at the pixels completely filled by built-up surfaces (β = 1). The 
VI here can be either the EVI or other vegetation-related variables, 
such as gross primary productivity (GPP) or net primary productivity 
(NPP). For the EVI, the value of EVInv was set as 0.05 according to previ-
ous studies, by assuming that an EVI lower than 0.05 generally has no 
vegetation activity22,24. At the reference time t0, VIv can be obtained by:

VIv (t0) =
VI (t0) − VInv × β (t0)

1 − β (t0)
(2)
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where β(t0) is the fraction of impervious surface of the pixel at the 
reference time t0.

Without considering the effects of increasing urbanization, the 
temporal variation in VI (VI′(t1)) is affected only by background bio-
geochemical drivers:

VI′ (t1) = γ × VIv (t0) × (1 − β (t0)) + VInv × β (t0) (3)

where γ is the relative magnitude of VI variation driven only by macro-
climate change. However, urbanization leads to landcover transfor-
mation from vegetated surfaces to impervious surfaces, manifested 
as increased β and decreased vegetation coverage. The hypothetical 
VI at t1 (VIh(t1)) that considers both urbanization-induced vegetation 
loss and vegetation growth changes driven by macroclimate change 
can be obtained as follows:

VIh (t1) = γ × VIv (t0) × (1 − β (t1)) + VInv × β (t1) (4)

where β(t1) is the fraction of the impervious surface of the pixel at  
time t1. The direct impact of urbanization on VI was then calculated by 
the difference between VIh(t1) and VIγ(t1):

Idirect = − (β (t1) − β (t0)) × (γ × VIv (t0) − VInv) (5)

The relative magnitude of the direct effect of urbanization on VI 
is as follows:

ωd =
Idirect
VI′ (t1)

× 100% (6)

However, the actual VI at t1 is usually different from that at VIh(t1) 
because of changes in urbanization-driven vegetation growth. The 
difference between the observed VI and the hypothetical VI was then 
considered the indirect impact of urbanization on the VI:

Iindirect = VI (t1) − VIh (t1) (7)

The magnitude of vegetation growth variation driven by indirect 
urbanization effects (ωi) is the quotient of the indirect impact over 
VIh(t1):

ωi =
Iindirect
VIh (t1)

× 100% (8)

The offsetting coefficients of indirect impacts to direct impacts 
are defined as follows:

η = Iindirect
|Idirect|

× 100% (9)

To eliminate the effects of interannual fluctuations and distur-
bances from extreme events, we used the temporal trends of ωd and ωi 
from 2000 to 2019 in the main text.

Separating the effects of macroclimate change
Direct and indirect impacts can be obtained if the effects of macrocli-
mate change on vegetation growth (γ) are known. To acquire γ in urban 
areas, we propose an adjacent substitution method on the basis of two 
assumptions: (1) the magnitude of the effects of large-scale climate 
change on vegetation growth in urban areas is roughly the same as that 
in the rural area around a city (spatial homogeneity of γ) and (2) the 
exurban rural areas are not affected by the indirect effects of urbaniza-
tion (ωrural ≈ 0). Then, we use the median γ of the pixels that satisfy the 
two assumptions as a substitute for that in urban areas.

A flow chart of the process of city screening and adjacent substitu-
tion is shown in Supplementary Fig. 10. We used the urban boundary 

dataset to extract the urban areas and the rural areas around the cities45. 
Global cities (9,227) with areas larger than 10 km2 in 2018 were first 
selected for analysis. To obtain the surrounding rural areas, we created 
two buffers outwards for each city. The buffer distances of the inner and 
outer buffers were determined by the size of the urban area to avoid the 
drawback of adopting a fixed threshold for cities of different sizes24.

Dinner = (√2 − 1) ×√
S
π (10)

Douter = (√10 − 1) ×√
S
π (11)

where S is the size of a city in 2018. The inner buffer is the same as the 
size of the urban area under the assumption of a circular shape of a 
city. The outer area without the inner buffer area is approximately 
eight times the size of the city. We suppose that only the vegetation in 
urban areas and inner buffers would be affected by the indirect effects 
of urbanization. The rural area between the inner buffer line and the 
outer buffer line was used to calculate the effects (γ) of background 
drivers for each city. Areas within inner buffer lines of other cities were 
also excluded to meet the requirements of Assumption 2 if a city’s outer 
buffers contained them.

For the selected nearby rural areas, the pixels with elevations 
greater than 100 m from the mean elevation of the urban area were 
filtered to satisfy Assumption I of the spatial uniformity of climate 
change effects. In addition, only the pixels that were identified as 
natural vegetation in the MODIS landcover map (MCD12Q1) and that 
had not experienced landcover change were used to calculate γ in rural 
areas, considering that croplands are profoundly affected by anthropic 
factors. We then calculated the median γ for the remaining pixels in 
rural areas as the replacement value of γ in urban areas to avoid the 
influence of extreme values. In addition, cities without valid GDP, HDI 
or population density data were also excluded. After city screening, 
4,718 cities were selected in this study. We divided the cities into GS 
cities and GN cities and further grouped them into seven subregions 
according to the World Bank (Supplementary Fig. 1).

Statistical analysis
Statistical analyses and plotting were conducted in MATLAB R2021b. 
To characterize the correlation between different variables, we used 
Pearson’s correlation coefficient. Statistically significant tests are set 
at the 0.01 probability level based on two-sided t-tests.

Estimating future urban vegetation changes
Considering that urbanization is expected to continue in the future, we 
estimated the projected EVI changes from 2020 to 2040 for global cities 
under three SSP–RCP scenarios. According to the previous framework, 
the projected EVI at some time in the future can be obtained using the 
following equation:

VI (t2) = γ′ × VIv(t1) × (1 − β(t2)) × (1 + ω′) + VInv × β (t2) (12)

VIv(t1) is the VI of per unit vegetated area of a pixel in 2020. β(t1) and 
β(t2) are the urbanization intensities in 2020 and 2040, respectively. 
The urbanization intensity in 2040 (β(t2)) can be obtained from the 
aforementioned future urban fraction dataset. γ′ and ω′ represent the 
effects of macroclimate change and the indirect effect of urbanization 
on vegetation growth, respectively.

The effects of macroclimate change on vegetation (γ′) were 
derived from the projected vegetation changes of nine models from the 
six Coupled Model Intercomparison Project (CMIP6) (Supplementary 
Table 1). Six of the earth system models (BCC-CSM2-MR53, CanESM5 
(ref. 54), EC-Earth3-Veg55, EC-Earth3-Veg-LR55, GFDL-ESM4 (ref. 56) 
and IPSL-CM6A-LR57) use dynamic vegetation models. The INM-CM4-8 
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and INM-CM5-0 models have a carbon cycle module with a prescribed 
potential vegetation distribution, and the root-zone soil moisture was 
used to determine the actual vegetation58. The carbon cycle module of 
the MPI-ESM1-2-LR model was also simulated by land use and vegeta-
tion changes59. All nine models provide vegetation change data under 
climate change.

We first used the LAI of each CMIP6 earth system model to calcu-
late the projected EVI changes under different SSPs, using the quad-
ratic relationship between the LAI and EVI from historical datasets. 
We then calculated the multimodal ensemble average EVI of the nine 
earth system models. Considering that the resolution of these models 
(~1°) is much larger than the city scale, we assumed that the influence 
of urbanization is slight and that the vegetation changes are driven 
primarily by background factors. The effect of macroclimate changes 
on vegetation growth (γ′) is approximately the EVI variation of the grid 
where a city is located:

γ′ = EVI (t2)
EVI (t1)

(13)

For the indirect effects of urbanization (ω′), we first used the 
boosted regression tree (BRT) model to address the relationships 
between the indirect effects (ω) and climatic and socioeconomic fac-
tors, including the mean annual temperature (MAT), aridity index (AI), 
the effect of macroclimate change on vegetation growth (γ), urbani-
zation intensity at the reference time (β(t0)), rate of urban expansion 
(Δβ), GDP per capita (GDP), rate of economic development (GRGDP), 
population density (POP) and population growth rate (GRPOP).

ω ∼ MAT + AI + β (t0) +∆β + GDP + GRGDP + POP + GRPOP (14)

The BRT model is a tree-based machine learning model that can 
address complex nonlinear relationships between dependent vari-
ables and predictors35. The BRT model (training correlation = 0.9047, 
cross-validation (CV) correlation = 0.7485) suggests that the nine 
explanatory variables can explain 78.87% of the variance of the indi-
rect effects. The parameters of the BRT model (that is, tree complex-
ity, learning rate and bag fraction) were optimized by improving the 
model’s CV correlation with different combinations of parameters32,60. 
The tree complexity, learning rate and bag fraction were then set as 10, 
0.005 and 0.6, respectively (Supplementary Table 2). The number of 
trees in the BRT model was determined through a CV procedure. We 
then used the projected variables to predict the indirect impact and 
obtain ω′. The direct, indirect and climatic impacts on urban EVI were 
obtained as follows:

I′climatic = (VI (t1) − VInv × β (t2)) × (γ′ − 1) (15)

I′direct = − (β (t2) − β (t1)) × (VIv (t1) − VInv) × γ′ (16)

I′indirect = γ′ × VIv (t1) × (1 − β (t2)) × ω′ (17)

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The datasets in this study are publicly available as follows or can be 
obtained from Google Earth Engine. MODIS vegetation greenness 
data (MOD13A1) and landcover data (MCD13Q1) are available at https://
ladsweb.modaps.eosdis.nasa.gov. GTOPO30 digital elevation model 
data are available at https://earthexplorer.usgs.gov. The GUB dataset 
is available at https://data-starcloud.pcl.ac.cn/resource/14. The GISA 

v.2.0 dataset can be obtained from http://irsip.whu.edu.cn/resources/
resources_en_v2.php. The dataset of global future urban expansion can 
be obtained from the National Tibetan Plateau Data Center (https://
doi.org/10.11888/HumanNat.tpdc.272853). The TerraClimate dataset 
is available from https://www.climatologylab.org/terraclimate.html. 
The GDP and HDI data were obtained from https://datadryad.org/
stash/dataset/doi:10.5061/dryad.dk1j0. The WorldPop gridded popula-
tion density dataset is available at https://hub.worldpop.org/project/
categories?id=18. The gridded datasets for population and economy 
under Shared Socioeconomic Pathways are available from the Sci-
ence Data Bank (https://doi.org/10.57760/sciencedb.01683). The nine 
CMIP6 model outputs can be obtained from the Institute Pierre-Simon 
Laplace server (https://esgf-node.ipsl.upmc.fr/search/cmip6-ipsl/). 
The administration area data used for mapping were obtained from 
https://www.naturalearthdata.com/downloads/50m-cultural-vectors/.

Code availability
The scripts for performing the analysis in Google Earth Engine (https://
earthengine.google.com/), drafting the figures in MATLAB R2021b 
and estimating the projected urban vegetation changes in R v.4.2.2 
are available from https://doi.org/10.5281/zenodo.14630847 (ref. 61).  
The scripts for performing the main analysis in Google Earth 
Engine can also be obtained from https://code.earthengine.google.
com/?accept_repo=users/171830520nju/Urbanization_global.
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Extended Data Fig. 1 | Changes in the fractions of impervious surfaces area (Δβ) and EVI in urban areas during 2000–2019 for global cities. a, c, The spatial pattern 
of Δβ (a) and ΔEVI (c) for global 4718 cities. b, d, Histogram of the probability density of cities with different Δβ (b) and ΔEVI (d). The red line represents the medium Δβ 
and ΔEVI of the cities.
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Extended Data Fig. 2 | Temporal trends of the fraction of impervious surfaces 
(β) and EVI in urban areas for global cities. a,b, The average fraction of 
impervious surfaces (β) for (a) all 4718 cities and (b) seven parts of the world 
during 2000–2020. c, d, Same as a,b but for EVI. EAS: East Asia and the Pacific, 
963 cities; ECS, Europe and Central Asia, 1512 cities; LCN: Latin America and 

Caribbean, 553 cities; MEA: Middle East and North Africa, 142 cities; NAC:  
North America, 1202 cities; SAS: South Asia, 80 cities; SSF: Sub-Saharan Africa, 
266 cities. The shaded ranges in a and c denote the range of 5–95% β or EVI for 
global 4718 cities.

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Nature Sustainability

Article https://doi.org/10.1038/s41893-025-01520-0

Extended Data Fig. 3 | Effects of macroclimate changes on vegetation growth 
across cities worldwide. a, EVI in 2000 for cities worldwide. b, Probability 
density of cities with different EVIs in 2000. c, The extent of vegetation growth 
enhancement driven by macroclimate change (γ) for global cities during  
2000–2019. d, Probability density of cities with different γ. e, Hypothetical  

EVI changes (VI') only driven by macroclimate changes (without considering the 
increased urbanization) for global cities during 2000–2019. f, Probability density 
of cities with different VI'. The red lines are the average values of each variable of 
the cities weighted by the urban area.
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Extended Data Fig. 4 | Direct and indirect impacts of urbanization on 
vegetation greenness from 2000 to 2019. a, Changes of average EVI in urban 
areas (ΔEVI) from 2000 to 2019 for global cities. b, Probability density of cities 
with different ΔEVIs. c,e, Same as a but for the EVI changes induced by the  

(c) direct and (e) indirect impacts of urbanization. d, f, Same as b but for the 
direct impact (d) and indirect (f) impacts on the EVI from 2000 to 2019. The red 
lines are the average values of EVI and the direct and indirect impacts of cities 
weighted by urban areas.
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Extended Data Fig. 5 | The effect of socioeconomic development levels on the 
direct and indirect impacts of urbanization on vegetation greenness. a, The 
relationship between the rate of urban expansion (Δβ) and Human Development 
Index (HDI). The solid lines indicate significant trends, and the shaded areas 
represent 95% confidence intervals. The small dots denote global 4718 cities and 

the big dots denote the average Δβ for cities in each 0.025 HDI bin. Significance 
was determined by two-side Student’s t-test (P = 3.1 × 10−223, n = 4718). b, Same as a 
but for the direct effects on vegetation (ωd) (P = 1.4 × 10−225, n = 4718). c, Same as a 
but for the indirect effects (ωi) (P = 6.9 × 10−14, n = 4718).
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Extended Data Fig. 6 | The projected direct, indirect and climatic impacts on 
vegetation greenness for global cities under the SSP1-RCP2.6 scenario from 
2020 to 2040. a, Estimated impacts of macroclimate changes on the EVI by 
2040 across global cities under SSP1-RCP2.6 scenario. b, Climatic impact on the 
EVI for cities in different regions across the world. EAS: East Asia and the Pacific, 
963 cities; ECS, Europe and Central Asia, 1512 cities; LCN: Latin America and 
Caribbean, 553 cities; MEA: Middle East and North Africa, 142 cities; NAC:  
North America, 1202 cities; SAS: South Asia, 80 cities; SSF: Sub-Saharan Africa, 
266 cities. The white dots represent the average climatic impact on the EVI 

weighted by urban areas for each region. The shaded boxes and vertical lines 
represent the ranges of 25–75% and 10–90%, respectively. c, The probability 
distributions of climatic impacts for the cities in the Global North and Global 
South. The dotted lines are the average climatic impacts weighted by urban 
areas for GN cities and GS cities. The numbers are the proportions of cities with 
positive or negative climatic impacts. d–f, Same as a–c but for projected direct 
impacts of urbanization. g–i, Same as a–c but for projected indirect impacts of 
urbanization.
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Extended Data Fig. 7 | The projected direct, indirect and climatic impacts on 
vegetation greenness for global cities under the SSP2-RCP4.5 scenario from 
2020 to 2040. a, Estimated impacts of macroclimate changes on the EVI by 2040 
across global cities under SSP2-RCP4.5 scenario. b, Climatic impact on the EVI 
for cities in different regions across the world. EAS: East Asia and the Pacific, 
963 cities; ECS, Europe and Central Asia, 1512 cities; LCN: Latin America and 
Caribbean, 553 cities; MEA: Middle East and North Africa, 142 cities; NAC: North 
America, 1202 cities; SAS: South Asia, 80 cities; SSF: Sub-Saharan Africa,  
266 cities. The white dots represent the average climatic impact on the EVI 

weighted by urban areas for each region. The shaded boxes and vertical lines 
represent the ranges of 25–75% and 10–90%, respectively. c, The probability 
distributions of climatic impacts for the cities in the Global North and Global 
South. The dotted lines are the average climatic impacts weighted by urban 
areas for GN cities and GS cities. The numbers are the proportions of cities with 
positive or negative climatic impacts. d–f, Same as a–c but for projected direct 
impacts of urbanization. g–i, Same as a–c but for projected indirect impacts of 
urbanization.

Content courtesy of Springer Nature, terms of use apply. Rights reserved



Nature Sustainability

Article https://doi.org/10.1038/s41893-025-01520-0

Extended Data Fig. 8 | The projected direct, indirect and climatic impacts on 
vegetation greenness for global cities under the SSP5-RCP8.5 scenario from 
2020 to 2040. a, Estimated impacts of macroclimate changes on the EVI by 2040 
across global cities under SSP5-RCP8.5 scenario. b, Climatic impact on the EVI 
for cities in different regions across the world. EAS: East Asia and the Pacific, 
963 cities; ECS, Europe and Central Asia, 1512 cities; LCN: Latin America and 
Caribbean, 553 cities; MEA: Middle East and North Africa, 142 cities; NAC: North 
America, 1202 cities; SAS: South Asia, 80 cities; SSF: Sub-Saharan Africa,  
266 cities. The white dots represent the average climatic impact on the EVI 

weighted by urban areas for each region. The shaded boxes and vertical lines 
represent the ranges of 25–75% and 10–90%, respectively. c, The probability 
distributions of climatic impacts for the cities in the Global North and Global 
South. The dotted lines are the average climatic impacts weighted by urban 
areas for GN cities and GS cities. The numbers are the proportions of cities with 
positive or negative climatic impacts. d–f, Same as a–c but for projected direct 
impacts of urbanization. g–i, Same as a–c but for projected indirect impacts of 
urbanization.
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Extended Data Fig. 9 | The projected offsetting coefficients (η) of indirect 
impacts to direct impacts for global cities under different Shared 
Socioeconomic Pathways from 2020 to 2040. a, Estimated η across global cities 
under SSP1-RCP2.6 scenario. b, The η for cities in different regions across the 
world. EAS: East Asia and the Pacific, 963 cities; ECS, Europe and Central Asia,  
1512 cities; LCN: Latin America and Caribbean, 553 cities; MEA: Middle East and 
North Africa, 142 cities; NAC: North America, 1202 cities; SAS: South Asia,  

80 cities; SSF: Sub-Saharan Africa, 266 cities. The white dots represent the 
average climatic impact on the EVI weighted by urban areas for each region. The 
shaded boxes and vertical lines represent the ranges of 25–75% and 10–90%, 
respectively. c, The probability distribution of η for cities in Global North and 
Global South. The dotted lines are the average η weighted by urban areas for the 
GN cities and GS cities. d–f, Same as a–c but for η under the SSP2-RCP4.5 scenario. 
g–i, Same as a–c but for η under the SSP5-RCP8.5 scenario.
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Extended Data Fig. 10 | Differences in climatic and socioeconomic 
characteristic between Global North cities and Global South cities. The 
distributions of (a) mean annual temperature, (b) mean annual precipitation,  
(c) GDP per capita, (d) compound annual growth rate of GDP per capita,  
(e) population density, and (f) compound annual growth rate of population 

density the cities in the GS (n = 2888) and GN (n = 1830). The black lines 
represent the average value of each variable for the GS cities and GN cities. The 
shaded boxes and the vertical lines represent the ranges of 25–75% and 5–95%, 
respectively.
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