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Abstract
We use eddy-covariance measurements over a semi-natural grassland in the central Indo-
Gangetic Basin to investigate biases in energy fluxes simulated by the Noah land-surface
model for twomonsoon onset periods: onewith rain (2016) and one completely dry (2017). In
the preliminary run with default parameters, the offline Noah LSM overestimates the midday
(1000–1400 local time) sensible heat flux (H ) by 279% (in 2016) and 108% (in 2017) and
underestimates the midday latent heat flux (LE) by 56% (in 2016) and 67% (in 2017). These
discrepancies in simulated energy fluxes propagate to and are amplified in coupled Weather
Research and Forecasting model simulations, as seen from the High Asia Reanalysis dataset.
One-dimensional Noah simulations with modified site-specific vegetation parameters not
only improve the partitioning of the energy fluxes (Bowen ratio of 0.9 in modified run versus
3.1 in the default run), but also reduce the overestimation of themodel-simulated soil and skin
temperature. Thus, use of ambient site parameters in future studies is warranted to reduce
uncertainties in short-term and long-term simulations over this region. Finally, we examine
how biases in the model simulations can be attributed to lack of closure in the measured
surface energy budget. The bias is smallest when the sensible heat flux post-closure method
is used (5.2W m−2 for H and 16W m−2 for LE in 2016; 0.17W m−2 for H and 2.8W m−2

for LE in 2017), showing the importance of taking into account the surface energy imbalance
at eddy-covariance sites when evaluating land-surface models.

Keywords Eddy covariance · Energy balance closure · Land-surface model · Model
evaluation · Surface energy balance
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1 Introduction

The Earth is a complex system and its principal components, the atmosphere, the ocean,
and the land, interact with each other on a wide range of spatial and temporal scales (Suni
et al. 2015). The impact of land–atmosphere interactions on climatic variability has received
much attention in recent years (Seneviratne and Stöckli 2008). The land surface represents
the lower boundary for the atmosphere and interacts with it through the exchange of energy,
water, and a variety of chemical species (Entekhabi et al. 1999). Solar radiation warms the
Earth’s surface, and the total available energy is primarily partitioned into sensible heat flux
(henceforth, H ), latent heat flux (henceforth, LE), and ground heat flux (henceforth, Gs),
collectively representing the surface energy balance (Trenberth et al. 2009). Studies have
shown that the heterogeneity of the Earth’s land surface makes the feedbacks between land
use and the energy fluxes dynamic in space and time (Giorgi and Avissar 1997; Pielke 2001;
Suni et al. 2015). Thus, forecasting both climate andweather requires the proper incorporation
of these feedbacks into model formulations.

An increasing body of evidence demonstrates that land-surface models (LSMs) show
large uncertainties when simulating the partitioning of available energy into the energy fluxes
(Abramowitz et al. 2007; Jiménez et al. 2011; Haughton et al. 2016; Ukkola et al. 2016).
Of particular note is the recent Protocol for the Analysis of Land Surface models (PALS)
Land sUrface Model Benchmarking Evaluation pRoject (PLUMBER) on the evaluation of
13 LSMs, which revealed that all LSMs were outperformed by simple, regression-based
empirical models (Haughton et al. 2016). Another recent study found that LSMs system-
atically underestimate LE during drought conditions (Ukkola et al. 2016). In addition to
the modelling uncertainties, the measured surface energy balance is almost never closed,
with the sum of observed H , LE and Gs consistently showing a lower magnitude than the
observed net radiation (Rnet) at the hourly and half-hourly time scale and at the majority
of measurement sites (Baldocchi et al. 2001; Wilson et al. 2002; Foken et al. 2010). This
imbalance is either due to errors in measurement or a result of invalid assumptions (Twine
et al. 2000). The measurement errors stem from instrumental limitations and difference in
footprint of the sensors. For instance, while the footprint of measurement of the energy fluxes
is variable, that of the net radiometer is much smaller and remains constant throughout the
observation period. Similarly, the ground heat flux has a small footprint and is affected by the
local heterogeneity in soil conditions. However, these measurements errors are usually small
and not enough to explain the residual of the surface energy budget (Foken 2008). Another
reason for the imbalance is the lack of detection of energy storage by the eddy-covariance
method. The air and vegetation store and release energy, which may account for part of
the energy imbalance. Leuning et al. (2012) showed that the high imbalance in the daytime
energy balance is due to a lack of consideration of the energy storage terms, and the closure
fraction is significantly reduced when daily averages are used instead of 30-min averages.
During stable conditions or due to strong advection, the assumption of fully turbulent trans-
port is not valid (Oncley et al. 2007), which could cause part of the energy imbalance. Lastly,
mesoscale circulations caused by landscape heterogeneity can lead to the underestimation of
the energy fluxes, which implies that a single eddy-covariance tower and 30-min averaging
periods are not enough to fully measure the fluxes (Stoy et al. 2013). Given the different
possible reasons for this energy balance non-closure, the residual of the energy imbalance
is attributed to either H , or LE , or both using different methods, commonly termed as post-
closure methods (see Sect. 2.6) (Twine et al. 2000). This dual-uncertainty in measurements
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and model simulations further complicates the process of understanding land–atmosphere
interactions.

Since the surface fluxes represent the lower boundary conditions in global-circulation as
well as regional-weather models (Pitman 2003), better representation of surface-energy-flux
partitioning is essential to improve numerical weather prediction (NWP) and understand
the significance of land–atmosphere interactions on changes in weather and climate. It is
also becoming evident that slight variations in land–atmosphere interactions at the local
scale can have important regional effects (Pitman 2003). Thus, before relying on regional
weather models as accurate prognostic tools, it is imperative that the uncertainty in par-
titioning the surface fluxes simulated in LSMs be reduced, as also suggested by Davin
et al. (2016). It is difficult to evaluate LSMs at larger scales due to the lack of accurate,
large-scale spatial data; there are also disparities between grid-averaged model results and
point-scale observations. However, testing one-dimensional (1D) or point models at the local
scale using networks of observing stations can minimize this scale mismatch and allow
us to test the accuracy of representing physical and biological processes in these mod-
els.

The Indo-Gangetic Basin, situated in the northern part of India, is one of themost populous
river basins in the world (Sharma et al. 2010). A major portion of the economy of this region
is driven by agriculture, which is particularly vulnerable to monsoonal rainfall variability
(Siderius et al. 2014). The exchange of sensible heat from the warm land surface during
pre-monsoon period (March to June) creates a low pressure region over the Indo-Gangetic
Basin, inducing the flow of moist air from the Indian Ocean (Yamashima et al. 2015). As
such, land–atmosphere interactions have a significant impact on the strength and variability of
the South-Asian monsoon. A modelling study found that there is a strong coupling between
large-scale monsoonal rainfall with soil moisture through H (Unnikrishnan et al. 2017).
Another study linked the post-1950s weakening in the South-Asian monsoon circulation to
reduced evapotranspiration driven by large-scale deforestation in India (Paul et al. 2016).
Both of these studies used the Weather Research and Forecasting (WRF) model, which has
been shown to have a dry bias over the Indo-Gangetic Basin (Tang et al. 2016). Several
studies related to the Global Land-Atmosphere Coupling Experiment (GLACE) using 12
general circulation models (GCMs) found that during the boreal summer, North India is
one of the global hotspots for land–atmosphere coupling (Koster et al. 2004, 2006; Guo
et al. 2006). The land–atmosphere coupling in this region also has local-scale implications.
For instance, after the monsoon onset, the ratio of H to LE (the Bowen ratio, β) affects
the variability in cloud formation (Chakraborty et al. 2015). Another study suggested that
the difference in LE between urban and rural locations may strongly modulate the inter-
seasonality of the urban heat island of cities in this region (Chakraborty et al. 2017). Knowing
how these interactions affect the Indo-Gangetic Basin at different scales, as well as deciding
on appropriate mitigation measures for possible future scenarios, require better predictive
capacity of climate and weather models. Therefore, it is important to quantify how well
LSMs simulate the energy fluxes, since their accuracy will strongly influence the uncertainty
in coupled model simulations over this region.

In the present study, eddy-covariance measurements during the warmest part of the mon-
soon onset period of two consecutive years (2016 and 2017), spanning around 12 days (each),
in central Indo-Gangetic Basin (see Fig. 1) are used to evaluate the Noah LSM (Mitchell et al.
2005). This LSM is used as the default land-surface module for a host of WRFmodel studies
performed in India (Mohan and Bhati 2011; Panda and Sharan 2012; Samala et al. 2013;
Vishnu and Francis 2014). However, there is a dearth of validation studies on Noah LSM for
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Fig. 1 Map of study area with position of the eddy covariance flux tower, with relative position of the study
area within India in the inset. Image Courtesy: Google

Indian conditions. Previous studies on evaluating Noah LSM in India have missed important
variables that influence the surface energy balance, such as skin temperature and Rnet, in
their analysis (Bhattacharya and Mandal 2015) or have not evaluated the model using direct
measurements of LE (Patil et al. 2014). Moreover, they have not investigated the influence
of measurement uncertainties on such model evaluations.

The major research questions addressed are:

1. What is the magnitude of the current biases in Noah simulations over the central Indo-
Gangetic Basin?

2. How do site-specific parameters improve model simulations?
3. To what extent do post-closure methods alter model and observation comparisons?

Significant biases are seen in themodelled partitioning of energyfluxes over this region during
the study periods represented in the Global Land Data Assimilation System (GLDAS)/Noah
dataset (Rodell et al. 2004) (Fig. S1). To investigate whether this is a problem of scale,
simulations are performed for the site using a 1D version of the model. Better representation
of vegetation and land-surface propertieswere incorporated into theNoahLSMtoquantify the
effect of site-specific parameters on surface energy partitioning. Comparison of the observed
partitioning with the results of a coupled run confirms that the biases in the Noah LSM, run
with default parametrization, is actually magnified in coupled model runs over this region.
Finally, the effect of three commonly used post-closure methods to partition the residual
energy on model evaluation is investigated.

Site description and instrumentation, model run details, and data processing are described
in Sect. 2, observations are shown in Sect. 3.1, the improvements in model simulations using
site-specific land surface and vegetation parameters are discussed in Sect. 3.2.1, comparisons
with coupled model results are presented in Sect. 3.2.2, and the impact of post-closure
methods are considered in detail in Sect. 3.2.3. Finally, the limitations and future scope are
discussed in Sects. 3.3 and 3.4, respectively.
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2 Methodology

2.1 Site Description

All in situ observations are made from a 10-m tall tower in the centre of a semi-natural grass-
land (refer to Fig. 1) located in the western portion of the Indian Institute of Technology,
Kanpur (IITK) campus (26◦30′32.72′′N, 80◦13′25.72′′E). The grassland has an average alti-
tude of 132mabove sea level and an area of roughly 500m×500m(25ha). Thismeasurement
site is a part of the Indo-UK Interaction of Convective Organisation with Monsoon Precip-
itation, Atmosphere, Surface & Sea (INCOMPASS) project’s flux-tower network (Turner
et al. 2015). The fetch around the tower is representative of the non-agricultural grasslands
in the Indo-Gangetic Basin and is dominated by wild elephant grasses (variants of Pennise-
tum purpureum and Phragmites-Saccharum-Imperata), plus other less common grasses and
some shrubs, with canopy height varying from 0.2 m during the dry season to approximately
2.8 m during late monsoon. During the two study periods, the canopy height varied from
0.25 to 0.3 m, while the soil texture in the field is silt loam with about 80% silt, 15% clay,
and 5% fine sand (by weight), while the soil type is Fluvisol (alluvium) with a pH of 8.3,
and has very little organic content, with 0.82% carbon and 0.29% nitrogen by weight. The
groundwater table in Kanpur varies between 10 and 20 m below ground level depending on
season (Prasad et al. 2016), and there is surface-water accumulation from irrigation overflow
during December and July at the field site. Data collection is a challenge during pre-monsoon
period, as intermittent wild fires disrupt continuous measurements (Sahu et al. 2015). For the
present study, data are used from 1–12May for 2016 and from 17–28 April for 2017. A large
fire event occurred at the end of March in 2016 and removed the majority of the biomass
from the field site, though it quickly recovered following the fire.

2.2 In-Situ Measurements

All major components of the surface energy balance, which is given by

Rnet = H + LE + Gs, (1)

are measured at the study site. As mentioned earlier, H is the sensible heat flux, LE is the
latent heat flux, and Gs is the ground heat flux at the surface, and Rnet is the net radiation,
given by

Rnet = L↓ +S↓ −L↑ −S↑ . (2)

Here, L↓ is the downwelling longwave radiation, S↓ is the downwelling shortwave radiation,
L↑ is the upwelling longwave radiation and S↑ is the upwelling shortwave radiation.

The eddy-covariance tower has a Licor 7500 (LI7500) H2O/CO2 open-path gas analyzer
(LI-COR Biosciences, Logan Utah, USA) and a Gill Windmaster sonic anemometer-
thermometer (Gill Instruments Ltd., Lymington, UK) to measure gas concentration and
three-dimensional (3D) wind field at a frequency of 20 Hz. These sensors were mounted 5.28
mabove the ground, and theLI7500 had a northward separation of 0.08m, an eastward separa-
tion of 0.03m, and a vertical separation of 0.27m.Ambient temperature and relative humidity
are measured using a HMP155 temp/RH probe (Vaisala, Vantaa, Finland) mounted at 4.5 m
above the surface. In addition, two HFP01SC heat-flux plates (Hukesflux, Delft, The Nether-
lands), kept 0.03 m below the surface, and a 4-component net radiometer (Hukesflux, Delft,
The Netherlands), mounted 4.7 m above the surface, provide measurements of the available
energy (Rnet −Gs). Two sets of soil moisture/soil temperature measurements are made using
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digital time-domain transmissometry (TDT) sensors (Acclima Inc., Meridian, Idaho, USA).
The TDT sensors are at depths of 0.05 and 0.15 m below ground level and located under-
neath each heat-flux plate. Wind speed and direction are measured at a height of 10 m above
ground level using a Gill Windsonic two-dimensional (2D) anemometer (Gill Instruments
Ltd., Lymington, UK). In addition, a Mobotix S15 camera (Mobotix, Winnweiler, Germany)
is used to obtain photographs of the cloud cover and vegetation cover four times a day. A
tipping bucket rain gauge (Environmental measurements Ltd., Newcastle, UK) is used to
measure precipitation. All data are logged using a Campbell Scientific CR3000 Micrologger
(Campbell Scientific, Logan, UT, USA). Other than the eddy-covariance measurements, all
variables are scanned at 0.1 Hz and logged as 1-minmeans (sums for rainfall). Note that there
were a couple of rainy days during the study period of 2016 and no rain during that of 2017.

2.3 Data Processing

For 2016, H and LE were computed with a missing sample allowance of 10% using the
EddyPRO software after removing spikes and implausible values from the raw time series
(Vickers and Mahrt 1997; Mauder et al. 2013). The sonic anemometer data were corrected
using 2D coordinate rotation (Wilczak et al. 2001) and angle-of-attack correction (Nakai
and Shimoyama 2012). Block averaging was used to compute the fluxes, followed by high-
(Moncrieff et al. 1997) and low-frequency spectral attenuation correction (Moncrieff et al.
2004). H was corrected for the influence of water vapour (Schotanus et al. 1983; Liu et al.
2001), while LE was corrected for air density variations (Webb et al. 1980). Statistical
outliers were removed for both H and LE (Papale et al. 2006). In addition, absolute limits
for allmeasured variableswere defined tominimize instrumental errors and datawere ignored
when the signal strength of the LI7500 was below 80%. The CarboEurope flagging scheme
described inMauder and Foken (2011)was used to determine the best quality surface-energy-
flux data. Finally, a fully-spatial analytical footprint analysis was performed at the 30-min
time scale to assess the representativeness of the measured fluxes (Neftel et al. 2008).

Due to data logger errors, raw data were not available for 2017, and gap-filled data were
used for the analyses (Reichstein et al. 2005). Because of the lack of high-frequency data, a
similar footprint analysis could not be performed for the second year.

Since ground heat flux is not measured at the surface, the heat stored above the heat flux
plate was calculated using a numerical calorimetric approach (Liebethal et al. 2005), where
the soil heat storage, Ss, is given by

Ss = �Ts
�t

(ρsCs + qvρwCw)�z. (3)

Here, �Ts is the change in soil temperature in K (at 0.05 m) over a time interval �t (30 min
in this case), ρs is the bulk density of the dry soil in kg m−3, Cs is the specific heat capacity
of the dry soil in J kg−1 K−1, qv is the measured volumetric moisture content at 0.05 m in
m3 m−3, ρw is the density of water in kg m−3, Cw is the specific heat capacity of water in
J kg−1 K−1, and �z is the depth over which the heat storage is calculated (0.03 m in this
case).

The bulk dry density of the soil is 1525 kg m−3 based on field measurements, specific heat
capacity of dry soil is assumed to be 840 J kg−1 K−1 since it has very little organic content
(Hanks and Ashcroft 1980), and that of water is 4184 J kg−1 K−1.
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The soil heat flux Gs is given by

Gs = G + Ss, (4)

where G is the measured ground heat flux.

2.4 Noah LSMDescription

Originating from the Oregan State University (OSU) LSM, the Noah LSM has undergone a
host of improvements and additions since being used by National Centers for Environmental
Prediction (NCEP) in their general circulation model. The basic surface energy balance
equation in the model is (1). The Rnet values are calculated for each timestep from the forcing
values of S↓ and L↓, pre-defined albedo values, and L↑ derived from skin temperature (Tskin),
calculated using a simple linearized formulation (Mahrt and Ek 1984). The available energy
is then partitioned into H and LE ; H is determined by the bulk transfer formulation (Garratt
1993), Gs is estimated using Fourier’s law, and LE is obtained using the Penman-derived
potential evaporation formulation (Mahrt and Ek 1984). In the current version, the model has
one canopy layer and four soil layers (Ek et al. 2003). More details about the model can be
found in Chen et al. (2001).

For the 1Dmodel evaluation, the latest version (3.4.1) of the uncoupledNoahLSMwas run
offline from 28 April to 12 May for 2016 and from 17 to 28 April for 2017. The model takes
air temperature, humidity, wind speed, wind direction, surface pressure, precipitation, S↓,
and L↓ as forcing variables. All data were available every 30 min, and the model output was
also available at 30-min intervals. Four soil layers of 0.1 m, 0.1 m, 0.3 m, and 0.6mwere used
for the simulations. Assuming that the 0.05 m TDT measurements for the first 0.1-m layer
and the 0.15-m TDT measurements are for the second 0.1-m layer, the model was initialized
using soil temperature and soil moisture measurements for those layers (henceforth, Ts1, Ts2,
qv1, and qv2), while linear extrapolation was used for the third and fourth layers. Though
soil temperature and soil moisture may not linearly change with depth, since the extrapolated
values are very close to the field values, the initial conditions have very little effect on the
simulated Ts1, Ts2, qv1, and qv2 after a couple of timesteps. Since the LE data were missing
for the first couple of days of the model run period in 2016, the data until 1 May 2016 were
not used in the evaluation. Tskin used to initialize the model was derived from L↑ following
the Stefan-Boltzmann law, assuming a constant emissivity of 0.95 (Niemelä et al. 2001).

The first run (henceforth, NoahEX1) was made with the default parameters, with silt loam
as the soil parameter and grassland as the vegetation parameter. Both of these choices were
based on site conditions. Since NoahEX1 simulations showed large deviations from obser-
vations, to investigate the contributing factors two more runs were performed (henceforth,
NoahEX2 and NoahEX3).

For NoahEX2, the offline Noah model was constrained with observed values of radiative
properties (albedo and emissivity) over the site. The default value of albedo was changed
from 0.19 to 0.23 (lookup table: grassland) to themeanmeasuredmidday albedo value (0.165
for 2016 and 0.138 for 2017). Similarly, the surface emissivity was changed from 0.92 to
0.96 (lookup table: grassland) to 0.95 (value used to derive the skin temperature from L↑).

Since vegetation plays a major role in the moisture flux through transpiration, a third
model run (NoahEX3) was performed after changing the vegetation properties. By default,
the model has a very low vegetation cover for this period, with the fraction varying from 0.17
to 0.27 from April to May. Though only qualitative estimates were available for vegetation
cover, the terrain photographs show that the vegetation covered more than half the field. So,
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the vegetation cover was changed from 0.5 to 0.6 for this run. The leaf area index (LAI) for
grassland in themodel varies from 0.52 to 2.10 by default. Since the grassland site is primarily
covered by grass of 0.25 to 0.30 m height during the study periods, the LAI for this site may
be different. An LAI-2000 plant canopy analyzer (LI-COR Biosciences, Logan Utah, USA)
was used to measure the LAI around the eddy-covariance site during this period in 2017. The
LAI was 3.91 for short grasses and 3.53 for very short grasses. Since the site was dominated
by a combination of these during the study periods, for NoahEX3, the LAI parameter was
constrained to 3.73–3.75 for 2016 and to 3.7 for 2017, which should be reasonably close to
the field values.

2.5 Criteria for Model Evaluation

To evaluate the model, three statistical parameters were used: the coefficient of determination
(r2), the root-mean-square error (RMSE), and the mean bias deviation (MBD).

The RMSE variable, which is a measure of the difference between the observed and
predicted values, is given by

RMSE =
√(∑n

i=1(P − O)2

n

)
, (5)

where O is the observed value, P is the predicted value, and n is the number of data points.
Since RMSE values do not show whether the model overestimates or underestimates the

observed values, theMBD variable was also determined, given by

MBD =
∑n

i=1(P − O)

n
. (6)

Thus, a positive bias represents an overprediction by the model, while a negative bias
represents an underprediction. All the data points available were used to evaluate Rnet, S↑,
L↑, Ts1, Ts2, qv1, qv2, Tskin, and Gs. To assess the energy fluxes, only the data for which
70% contribution of energy fluxes is from within the field site were considered for model
evaluation for 2016. By doing so, the assumptions of a 1Dmodel are satisfied.Moreover, only
the highest quality of energy flux data (quality flag 0) based on the CarboEurope flagging
system (Mauder and Foken 2011) were used for the evaluation. Since the dataset for 2017
did not include the raw data, there were not as many high quality data points and no footprint
coverage. Thus, for 2017, the energy flux data with quality flags of 0 and 1 were used for
the evaluation. It should be noted that the 2017 data were mainly used to verify whether the
results we obtained for 2016 were consistent across two consecutive monsoon onset periods.

2.6 Post-closure Methods

Where to assign the measured residual energy due to the non-closure is an important open
question (Foken 2008). One approach, known as the β post-closure approach, is to force
closure by using the measured β (Twine et al. 2000). This assumes that the ratio of H and
LE is the same for the missing flux as the ratio detected by the eddy-covariance system
(Ruppert et al. 2006). However, this assumption may not be true. The contribution of large
eddies that cannot be detected for shorter averaging periods may be dominated by LE or H .
Another approach, called the LE post-closure approach, is to attribute the missing energy to
LE (Falge et al. 2005). A previous study showed that by increasing the averaging period from
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Fig. 2 Time series of observed surface energy budget terms during the a 2016 and b 2017 study periods. The
dates are in the format, mm-dd

30 min to 24 h to five days, the residual completely disappeared (Mauder and Foken 2006).
Moreover, the study found that the residual was primarily caused by the H measurement.
This predominance of H in the energy balance residual has also been found in a recent study
for six land-use types (Charuchittipan et al. 2014). Based on this, a third approach, known
as the H post-closure approach, assigns the missing energy to H (Ingwersen et al. 2011).

A part of the difference between model simulations and observations may be due to the
degree of closure achieved at the study site and the post-closuremethod employed (Ingwersen
et al. 2015).We use all three approaches to investigate the impact of the post-closure approach
on the model evaluation.

3 Results and Discussion

3.1 Observed Surface Energy Budget

Figure 2 shows the time series of observed Rnet, H , LE , and G during the study periods
in 2016 (Fig. 2a) and 2017 (Fig. 2b). Here, upwelling H and LE , and downwelling Rnet

are considered positive, while downwelling H and LE , and upwelling Rnet are considered

123

Author's personal copy



T. Chakraborty et al.

R
net

- G
s
 (W m-2)

-100

0

100

200

300

400

500

600

700

H
 +

 L
E

 (
W

 m
-2

)

y= 0.79*x+3.9; r2= 0.96 (n=574)

Day
Night

(a)

R
net

- G
s
 (W m-2)

-100

0

100

200

300

400

500

600

700

H
 +

 L
E

 (
W

 m
-2

)

y= 0.77*x+15; r2= 0.97 (n=533)

(b)

R
net

- G
s
 (W m-2)

0

50

100

150

200

H
 +

 L
E

 (
W

 m
-2

)

y= 0.85*x-6.5; r2= 0.92 (n=12)

(c)

-100 0 100 200 300 400 500 600 700 -100 0 100 200 300 400 500 600 700

0 50 100 150 200 0 50 100 150 200

R
net

- G
s
 (W m-2)

0

50

100

150

200

H
 +

 L
E

 (
W

 m
-2

)

y= 0.92*x-7.5; r2= 0.92 (n=11)

(d)

Fig. 3 Available energy (Rnet −Gs) versus sum of energy fluxes (H + LE) using 30-min averages for a 2016
and b 2017 and daily averages for c 2016 and d 2017. The black dotted lines represent the reference lines with
slopes of unity and n is the sample size

negative; G is positive when directed away from the surface (into the soil). All the times
mentioned in the figures or text are local. Both years show similar patterns, with LE higher
than H for the entire period. In 2016, the turbulent energy fluxes show comparable values on
3, 4, and 5May. There has not been a lot of work on the partitioning of the energy fluxes over
India during the monsoon onset period. A previous study over a suburban eddy-covariance
station in Lucknow, situated in the northern part of the Indo-Gangetic Basin, found that
maximum daytime LE (142 ± 84 W m−2) was slightly higher than H (130 ± 82 W m−2)
during pre-monsoon (Venkata Ramana et al. 2004), but did not look at the energy balance
closure (EBC) due to unavailability of Rnet and G measurements. Another study used the
β energy balance method over an irrigated ecosystem in Eastern India and found that the
magnitude of LE was three to four times that of H during pre-monsoon (Kar and Kumar
2007).

For the next part of the study, Gs was calculated after accounting for the storage term, Ss.
For 2016, during midday, mean Ss is −14.2 W m−2, which is about 22% of the magnitude
of the measured G (midday mean of 63.6 W m−2). For midnight (2200 to 0200), mean Ss
is 4.8 W m−2, approximately 36% of the magnitude of the measured G for the same time
period (−13.4 W m−2). For 2017, the mean midday and midnight Ss are −7.8 W m−2 and
2.8 W m−2, respectively. For this period, the storage accounts for 16% of the measured G
during midday and 43% ofG during midnight. Figure 3a, b show the regressions between the
available energy and the sum of the turbulent fluxes (H+LE) using 30-min averaged data for
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Fig. 4 Diurnal variation of measured H , LE , Rnet , Gs, and residual energy flux for a 2016 and b 2017. The
fraction of measured fluxes from field site is also shown for 2016. The solid lines represent the mean values,
while the shaded areas represent the standard deviations

both years. The values during the day are in yellow, while those during the night are in violet.
The slope of linear regression is 0.79 for 2016 and 0.77 for 2017, while the determination
coefficient r2 is 0.96 for 2016 and 0.97 for 2017. When the regressions are performed using
daily averaged data instead (refer to Fig. 3c, d), the slope of the linear regression increases
to 0.85 for 2016 and 0.92 for 2017. This is due to the impact of the storage terms on the
surface EBC. During the day, there is a large energy imbalance since part of the residual
energy is stored in the vegetation, the soil (which is taken into account here), and the canopy
air underneath the sensors. During the night, this energy is released, leading to a H + LE
greater than the available energy, as indicated by the violet points in Fig. 3a, b.

Figure 4a is themean diurnal cycle plot of observed H and LE ,Gs, Rnet, the energy imbal-
ance, and the footprint of measurements for 2016. The bounded lines represent the standard
deviation from the measured mean, hourly values. The mean Rnet reaches a maximum value
of 586 ± 128 W m−2 around local noon (1200). LE dominates during this period, with a
maximum value of 286 ± 72 W m−2 at 1300. At the same time, H has a value of 120 ± 38
W m−2, making the β at this time approximately 0.42. The average GS from the two soil
flux plates at 1300 is 88 ± 24 W m−2, with values for 2017 very similar to 2016. The mean
Rnet peaks at noon, with a value of 638 ± 64 W m−2, while LE peaks at 1300 (323 ± 55
W m−2), and β is 0.43. GS at 1300 is 63 ± 4 W m−2.
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Figure 4a also shows the energy imbalance (Rnet − Gs − H − LE) at the measurement
site for 2016. As also indicated by Fig. 3a, the energy imbalance is maximum during the
day, especially around noon, with a maximum value of 114 ± 122 W m−2 at noon. The
energy imbalance is negative during night-time, i.e., the extra energy stored during the day
is released, causing the turbulent fluxes (H + LE) to be higher than the available energy.
Overall, the mean residual during the 2016 study period is 29 ± 60 W m−2. For 2017, the
residual flux is 136 ± 47 W m−2 at noon and has an overall mean of 19 W m−2. It should be
noted that the variability in the fluxes is much lower in 2017 compared to the previous year.
This is because of the lack of cloudy and rainy days during this study period.

The diurnal variation of the footprint of energy flux measurements for 2016, as calculated
using the fully-spatial footprint analysis is also shown in Fig. 4a. On average, over 90% of
the turbulent fluxes originate from within the field during the day. At night, there is more
contribution from outside the field. The minimum flux contribution from within the field site
is seen at 0500 local time (65.5 ± 24.4%). Owing to a lack of raw data, a similar footprint
could not be calculated for 2017.

3.2 Site-Specific Parameters and Post-closure Approaches to Improve Simulated
Energy Partitioning

The offline Noah LSM was run over the observation site for both years, and to account for
the energy imbalance in flux tower observations, the model was evaluated after correcting
the observations using three commonly used post-closure approaches.

The mean value of β from 1000 to 1400 is determined for each day of the study period for
the initial observation, the model runs, and after forcing closure of the surface energy balance
using only quality-assured data. Figure 5 shows the box plot of the midday β for the study
periods for each case (Fig. 5a for 2016 and Fig. 5b for 2017). The observations show a mean
midday β of 0.41 in 2016 and 0.52 in 2017. NoahEX1 and NoahEX2 yield β values of over
3 for both years, while NoahEX3 simulations of β are closer to the observations. Finally,
the post-closure approaches also result in high variability of energy flux partitioning (from
0.26 for the LE post-closure method to around 1 for the H post-closure method for 2016
and from 0.39 to 0.85 for 2017). This is partly because of the high residual energy during the
midday. It should be noted that the H closure produces the closest value to the final model
run (NoahEX3) for both years. The variability in β is much higher for 2016, especially
with NoahEX1 and NoahEX2. This is because the model responds strongly to the forced
precipitation, which is not a factor in 2017. The following subsections discuss the details
of the evaluation results, the possible reasons for the improvements, and its implications for
land-surface modelling in the Indo-Gangetic Basin.

3.2.1 Offline Noah LSM Runs

The diurnal variation of themodelled and observed components of the surface energy balance
are shown inFig. 6. For H and LE , each subsequent run reduces the discrepancies between the
simulations and the observations, which is also seen in the time series of the quality-assured
observed data and simulated values (refer to Fig. S1 and S2). ForGs, NoahEX1 andNoahEX2
simulations show higher diurnal variability, which is fixed in the NoahEX3 simulation. Not
much difference is seen in Rnet for the different Noah runs, and the values are close to
observations in all cases. The simulations capture the time of the peak H quitewell, though for
LE andGs, the diurnal peak in the simulations is slightly before the peak in observations. The
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Fig. 5 Box and whisker plots of midday (1000–1400) β from initial observations, uncoupled Noah runs, and
observations after forcing EBC for the study periods in a 2016 and b 2017. The horizontal line indicates a β

of 1 and μ represents the mean β for each category. The vertical boxes span the interquartile range (25th–75th
percentile) with the dot showing the median value, and the whiskers extending to the maximum and minimum
observations. The sample size is 94 for 2016 and 93 for 2017

NoahEX3 simulations underestimate the daytime Gs compared to NoahEX1 and NoahEX2
simulations, while improving the night-time simulations.

The scatter plots of the measured and simulated surface energy balance components are
shown in Fig. 7. NoahEX3 simulations are closest to the observations, as also seen from the
time series (refer to Fig. S1 and S2). For H , the slope of the regression improves from 2
in the NoahEX1 simulation to 1.6 in NoahEX3 for 2016 and from 1.7 to 1.2 for 2017. For
LE , the slope is 0.36 in NoahEX1 and improves to 0.93 in NoahEX3 (improvement from
0.31 to 1 for 2017). For Gs, it changes from 1.1 to 0.65 in the final model run for 2016
and from 2 to 1.3 in 2017. For Rnet, all the model runs perform quite well, though there is
an improvement of the slope of the regression from 0.92 to 0.99 for 2016 and from 0.88 to
0.99 for 2017. It should be noted that Fig. 7c, d indicate that the Noah LSM model does
not provide negative LE . However, our observations show cases of negative LE at our site,
probably due to condensation during dew-fall.

Table 1 shows the evaluation of Rnet, S↑,L↑, Ts1, Ts2, qv1, qv2, Tskin, H , LE , and Gs

for all the offline Noah model runs for 2016, while Table 1 shows the corresponding results
for 2017. The mean of the simulated values for each model run is also shown. The quality
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Fig. 6 Diurnal variation in offline Noah-simulated a H , c LE , e Gs, and g Rnet for 2016 and b H , d LE ,
f Gs, and h Rnet for 2017 against site observations. The dots and error bars are for the mean and standard
deviation of observations, while the solid lines and shaded areas for the mean and standard deviation of the
simulated data

assurance of the flux data based on footprint coverage, combined with the low canopy height,
removes almost all of the night-time values for 2016. Using night-time data for the validation
of modelled energy fluxes can significantly reduce RMSE andMBD values (since H and LE
are very small in magnitude during the night). This cannot provide a complete picture of the
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Fig. 7 Regressions of offline Noah-simulated a H , c LE , e Gs, and g Rnet for 2016 and b H , d LE , f Gs,
and h Rnet for 2017 against site observations. The black dotted lines are the reference line with slopes of unity
and n is the sample size
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Table 1 Evaluation of offline Noah simulations for 2016

Variable NoahEX1 NoahEX2 NoahEX3

Statistics

Mean r2 RMSE MBD Mean r2 RMSE MBD Mean r2 RMSE MBD

Rnet (W m−2) 138.1 1.00 29.5 − 20.8 149.2 1.00 12.7 − 9.7 160.9 1.00 8.3 2.1

S↑ (W m−2) 55.5 0.99 21.8 11.8 41.6 0.99 4.6 − 2.14 41.6 0.99 4.6 − 2.14

L↑ (W m−2) 498.0 0.98 10.2 7.6 501.6 0.98 13.9 11.1 489.6 0.97 7.7 − 0.8

Ts1 (K) 306.1 0.86 4.4 4.0 306.3 0.86 4.6 4.2 304.2 0.87 2.3 2.0

Ts2 (K) 304.7 0.79 3.0 3.0 304.9 0.79 3.2 3.2 302.4 0.67 0.9 0.7

qv1 (%) 16.1 0.45 4.8 4.0 16.0 0.44 4.7 3.9 14.3 0.12 3.2 2.2

qv2 (%) 17.5 0.41 2.6 2.3 17.4 0.40 2.6 2.3 14.0 0.03 1.4 − 1.1

Tskin (K) 306.9 0.98 2.1 1.8 307.1 0.98 2.4 2.0 305.2 0.97 1.2 0.1

H (W m−2) 148.4 0.88 134.4 104.3 163.8 0.88 154.4 119.7 106.2 0.89 85.3 62.1

LE (W m−2) 65.2 0.83 117.0 − 89.1 67.2 0.83 114.9 − 87.1 155.3 0.87 47.1 0.98

Gs (W m−2) − 6.9 0.88 19.0 − 5.0 − 7.1 0.88 20.2 − 4.8 − 4.3 0.89 19.0 − 7.6

midday energy flux partitioning and the biases in the model. This issue is prevalent in many
studies, with both daytime and night-time flux data being used for the error calculation (Patil
et al. 2014). Employing this criterion in the 2016 dataset leads to the higher RMSE compared
to previous studies.However, this approach provides better indication of themidday biases for
Noah-simulated heat and moisture fluxes. Moreover, the use of simulated data corresponding
to quality-assured measurements leads to higher mean values for H and LE due to the
predominance of daytime values. In comparison to the 2016 case, the quality control of the
flux data did not involve screening for footprint coverage of the measured fluxes in 2017.
Thus RMSE, MBD values, as well as the mean of the modelled fluxes, are lower in 2017,
even though the peak daytime values are very similar for both the years (refer to Fig. 4).

For the NoahEX1 simulation, the diurnal variation in Rnet is well captured by the model
(r2 = 1) (refer to Fig. 6g, h). This is partly because the Rnet is forced by the measured
S↓ and L↓. However, the model underestimates the Rnet (MBD = − 21Wm−2 for 2016;
− 31Wm−2 for 2017), due to an overestimation of both S↑ (MBD = 12Wm−2 for 2016;
20 W m−2 for 2017) and L ↑ (MBD = 8Wm−2 for 2016; 10 W m−2 for 2017). The model
significantly overpredicts the soil temperature at both depths (MBD = 4 K for Ts1 and 3 K
for Ts2 in 2016; 6 K for Ts1 and 5 K for Ts2 in 2017; p value for two-sample t test between
observed and modelled values < 0.001). Tskin is also overestimated, though to a lesser extent
(RMSE = 2.1 K for 2016; 2.8 K for 2017). The variation in Tskin is better captured by the
model (r2 = 0.98 and 0.96 for 2016 and 2017) compared to that of Ts1 or Ts2. The average
magnitude of the soil moisture is well-predicted by the model (MBD = 4% for qv1 and 2.3%
for qv2 in 2016; 0.3% for qv1 and 3.5% for qv2 in 2017). However, the model cannot capture
the variation of soil moisture well in most cases (r2 = 0.45 for qv1 and 0.41 for qv2 in 2016;
0.17 for qv1 and 0.95 for qv2 in 2017).

The simulated H is significantly higher than the measurements (MBD = 104Wm−2 for
2016; 53 W m−2 for 2017; p value for two-sample t test between observed and modelled
values < 0.001), while LE is significantly lower (MBD = − 89Wm−2 for 2016; −62
W m−2 for 2017; p value for two-sample t test between observed and modelled values <

0.001).Gs shows a very lowMBD (−5W m−2 for 2016;− 0.5Wm−2 for 2017) with amuch
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higher RMSE (19 W m−2 for 2016; 34.5 W m−2 for 2017). This suggests that the diurnal
variation of Gs is much more pronounced in the model, with both positive and negative
deviations from the observed values, as seen in Fig. 6e, f. Overall, the model overestimates
H (by 279% in 2016 and by 108% in 2017) and underestimates LE (by 56% in 2016 and by
67% in 2017). For 2016, the midday β is 3.09; much higher than the observed midday β of
0.41. For 2017, the simulated midday β is 3.23 versus the lower observed β of 0.52.

The evaluation of the NoahEX1-simulated variables confirms that there are still a number
of notable issues with the model. This is in agreement with previous work on offline Noah
model evaluations (Velde et al. 2009; Ingwersen et al. 2011). A study in Nebraska found
that the model performed poorly during wet periods, with an enhanced diurnal range in
soil temperature, overestimation of peak H by 57% and underestimation of LE by 50%
due to the effect of sub-surface water (Radell and Rowe 2008). A study in the Tibetan
plateau compared three default parametrizations in Noah model during a dry week and found
similar results to the results presented here, i.e. the surface partitioning was biased towards
H (MBD = 50Wm−2) (Velde et al. 2009). In another study, simulations with constant
minimum canopy resistance were compared to those with time varying minimum canopy
resistance for a wheat field in Germany (Ingwersen et al. 2011). The study showed that
the biases in the flux simulations depended on the stage of crop growth, with the model
overestimating LE and underestimating H during the fruit-ripening stage and the opposite
happening before the ripening period.

Very few studies have been performed on the evaluation of the offline Noah model in
India. An evaluation study at a semi-arid site in India found an overestimation of soil temper-
ature by Noah during the Indian monsoon, with an underestimation during the pre-monsoon
period (Patil et al. 2011). Another study compared Noah model simulated soil temperature
to observations for dry and wet periods for four semi-arid sites of the LASPEX experiment.
They found a similar overestimation, with RMSE values for the temperature of the top soil
layer ranging between 1.8 and 4.8 K (Waghmare et al. 2012), while RMSE for Rnet varied
between 37 and 77 W m−2. A recent study used 1 year of soil temperature data for two
sub-tropical sites and also found that the soil temperature was consistently overestimated by
the model for the first layer (RMSE = 1.5–2 K) (Bhattacharya and Mandal 2015). All three
studies found that the simulated soil temperature improve for the deeper layers, with RMSE
reducing with depth, which is also seen in the present study. The energy fluxes have not been
evaluated in depth for India. While two of the studies used measured H to evaluate Noah
model, they did not have direct measurements of moisture flux. One study found a significant
overestimation of H for a sub-tropical site, with RMSE > 100 W m−2 for all periods (Patil
et al. 2014). The other study, which was for the semi-arid site, found that Noah-simulated
H was almost double the observed midday values for the wet period, with no observed data
available for the dry period (Patil et al. 2011).

The bias in Rnet for 2016 is reduced from − 21W m−2 in NoahEX1 to − 10W m−2

in NoahEX2 (refer to Table 1). Moreover, the regression is closer to the 1:1 line (refer to
Fig. 7g). This is primarily because the lower albedo increases the Rnet (from an overall mean
of 138–149 W m−2) by reducing S↑ (from 55.5 to 41.6W m−2). However, the increasing
Rnet also increases Tskin (from 306.9 to 307 K), and thus L↑(from 498 to 501Wm−2), Ts1
(from 306.1 to 306.3 K), and Ts2 (from 304.7 to 304.9 K). It also slightly reduces qv1 (from
16.1 to 16.0%) and qv2 (from 17.5 to 17.4%). The increased surface emissivity would reduce
the Rnet and would have opposite effect on Tskin, Ts1, Ts2, qv1, and qv2. However, the effect of
the change in albedo dominates in this case. With the increase in available energy, Tskin, Ts1,
and Ts2, the difference between the forced air temperature and the modelled Tskin increases,
thus increasing the overestimation of H . On the contrary, the bias in LE decreases due to the
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Table 2 Evaluation of offline Noah simulations for 2017

Variable NoahEX1 NoahEX2 NoahEX3

Statistics

Mean r2 RMSE MBD Mean r2 RMSE MBD Mean r2 RMSE MBD

Rnet (W m−2) 129.1 1.00 44.4 − 31.2 146.8 1.00 18.2 − 13.6 161.2 1.00 7.8 0.8

S↑(W m−2) 58.1 0.99 34.1 19.7 36.0 0.99 4.8 − 2.3 36.0 0.99 4.8 − 2.3

L↑ (W m−2) 498.2 0.96 13.8 1.0 504.0 0.96 19.5 15.7 489.3 0.98 7.0 1.0

Ts1 (K) 306.0 0.81 7.0 6.3 306.4 0.81 7.4 6.7 303.9 0.87 4.6 4.2

Ts2 (K) 304.0 0.71 4.8 4.61 304.3 0.71 5.0 4.9 301.7 0.59 2.4 2.3

qv1 (%) 15.5 0.17 0.4 0.3 15.4 0.58 0.3 0.1 14.8 0.97 0.65 − 0.48

qv2 (%) 21.5 0.95 4.0 3.5 21.5 0.95 4.0 3.5 17.4 0.91 1.0 − 0.5

Tskin (K) 307.1 0.96 2.8 2.2 307.5 0.96 3.2 2.6 305.2 0.98 1.2 0.3

H (W m−2) 81.4 0.86 86.4 52.9 98.0 0.86 111.1 68.4 47.0 0.89 40.3 18.4

LE (W m−2) 32.6 0.92 105.8 − 61.6 34.0 0.92 103.6 − 60.1 97.0 0.93 33.3 2.8

Gs (W m−2) − 11.2 0.89 34.5 − 0.5 − 11.7 0.88 37.2 0.0 − 6.9 0.91 13.5 − 4.9

higher LE in this simulation. The patterns seen in the 2017 simulations are similar, albeit
showing different magnitudes of change (Table 2).

The use of site-specific vegetation parameters—in addition to realistic albedo and
emissivity—in NoahEX3 significantly improves the results compared to NoahEX2. LE is
predicted well by the model (RMSE = 47W m−2 andMBD =1 W m−2 in 2016; 33W m−2

and 3 W m−2 in 2017). The overestimation of H is also reduced (MBD = 62W m−2 in
2016; 18 W m−2 in 2017), though RMSE is still high. While Rnet now has a positive bias
(MBD = 2W m−2 in 2016; 0.8 W m−2 in 2017), RMSE and MBD are smaller than that
for NoahEX1 and NoahEX2. The temperature values are also improved, with lower bias
for Ts1 (MBD = 4.2 K in NoahEX2 versus MBD = 2.0 K for NoahEX3 in 2016; 6.7 K
in NoahEX2 versus 4.2 K for NoahEX3 in 2017), Ts2 (MBD = 3.2 K in NoahEX2 versus
MBD = 0.7 K for NoahEX3; 4.9 K in NoahEX2 versus 2.3 K for NoahEX3 in 2017) and
Tskin (MBD = 2.0 K in NoahEX2 versus MBD = 0.1 K for NoahEX3; 2.6 K in NoahEX2
versus 0.3 K for NoahEX3 in 2017), possibly due to higher rates of evaporative cooling. The
small overestimation of Rnet in this run is because of the lower S↑ (MBD = −2.1Wm−2 in
2016; −2.3 W m−2 in 2017) and L↑ (MBD = −0.8W m−2 in 2016; 1.0 W m−2 in 2017).

3.2.2 Propagation of LSM Biases into Coupled Simulations

In addition to the issues with the 1D version of the Noahmodel run with default configuration
for this study (NoahEX1), we also find that the GLDAS dataset, in which the Noah model
is forced at a global scale, shows similar severe underestimation of LE and overestimation
of H during this period (refer to Fig. S1). Running Noah model in an uncoupled mode
cannot accurately predict how these biases will translate to errors in coupled modes. We
expect that while coupled simulations will show the same patterns (overestimation of H and
underestimation of LE when not using site-specific vegetation parameters), running LSMs
in coupled versus uncoupled modes would have an impact on the magnitude of the simulated
fluxes (and thus, the β), as also seen by Nemunaitis-Berry et al. (2017) for Oklahoma City.
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Fig. 8 Time series of daily mean
β from observations, uncoupled
Noah simulations, and coupled
WRF-Noah model simulations
from HAR. For HAR, the solid
lines represent the mean values of
2010–2014, while the shaded
areas represent the standard
deviations. The horizontal line
indicates a β of 1

To confirm this hypothesis, we compare our results with the High Asia Reanalysis (HAR)
dataset (Maussion et al. 2014).

The HAR dataset is based on WRF model runs over Asia at 30 km x 30 km resolution
and uses Noah LSM as its land component. We use the data at the daily scale from 2010
to 2014 for the grid encompassing our study area. Figure 8 shows the daily mean β from
the HAR data, the observed data for the two study periods, and the corresponding NoahEX1
runs for those periods. The NoahEX1 results for only those points that are also present in the
observed dataset after quality control are used to calculate the daily means. As seen earlier
in Fig. 5 for midday, the default uncoupled Noah model version significantly overestimates
the daily mean β, with values ranging from 2 to 4 compared to observed values of less than
0.5. The first study period shows more variability in β due to the model’s high sensitivity to
rain events. The HAR dataset shows even higher values than the uncoupled model output,
with β ranging from 3 to 6. The HAR reanalysis is constrained using the Operational Model
Global Tropospheric Analyses and is not a true regional-scale reanalysis. Thus, forcing the
Noah model using 30-min observed data at the field scale expectedly shows improvement in
the simulation of the energy flux partitioning compared to the WRF-Noah modelled data in
the HAR database. The combined analyses show that the biases in the Noah model extend far
beyond uncoupled simulations and will affect the variables that are derived from the lower
boundary conditions in coupled models.

3.2.3 Impact of Post-closure Approaches

In the first case, we force energy balance closure based on the observed β for every 30-min
interval. Since the 2017 data have many night-time values, which lead to negative β, and
absurd H and LE after forced closure, all the data points with β < 0.8 were removed for
this period. On average, the β closure leads to the increase of the measured H (by 86%
in 2016 and 76% in 2017) and measured LE (by 25% in 2016 and 55% in 2017). For the
second case, the residual is assigned to LE , which increases the mean LE by 48% (in 2016)
and 15% (in 2017) while H obviously remains unchanged. For the third case, the residual is
assigned to H . This increases the mean H by 198% (in 2016) and 65% (in 2017), while LE
obviously remains unchanged. It should be noted that the final mean percentage increases
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Fig. 9 Impact of three post-closure approaches on the evaluation of the Noah-simulated a H and c LE for
2016, and b H and d LE for 2017. The black dotted lines are the reference lines with slopes of unity and n is
the sample size

were calculated using only those times when data were available for both the measured fluxes
and the corrected fluxes after forcing closure.

Figure 9 shows the effect of the post-closure methods applied in the model evaluation.
Decimal points are not shown for RMSE andMBD values in the figure to conserve space. For
H , both the RMSE and MBD decrease irrespective of the approach used. The improvement
is most significant for the H post-closure approach. Since the discrepancy between the
observed and NoahEX3-simulated variables is partly due to overestimation of H , assigning
the entire energy balance residual to H has the greatest impact onmodel evaluation (RMSE =
72Wm−2 and MBD = 5Wm−2 for 2016; 39 W m−2 and − 0.1Wm−2 for 2017). For the
LE post-closure method, there should be no improvement for H , since the H values do not
change. However, since the dataset is modified to remove the unrealistic values, RMSE and
MBD values are slightly different. For the β approach, the improvement inMBD is minimal
for 2016, but more significant for 2017. The highest r2 is also found for the H closure
(r2 = 0.69 for 2016; 0.91 for 2017). For LE , the H post-closure method performs the best
since the LE is not changed and the Noah model captures the magnitude and variation in LE
after using site-specific vegetation parameters (RMSE = 73Wm−2 andMBD = 16Wm−2;
33 W m−2 and 3 W m−2 for 2017).
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3.3 Limitations of the Study

The NoahEX3 simulations may still lead to significant uncertainties. It is evident that the
vegetation parameters have a major impact on the simulated LE . There was no site-specific
measurements of stomatal resistance. Instead, the default values were used. Similarly, the
vegetation cover derived from the MOBOTIX camera are only based on visual inspection.
Higher stomatal resistance and lower vegetation cover would reduce the simulated LE and
improve the correlation between simulated and observed values after post-closure. Since the
LAI variation was constrained in the model runs (being set to 3.73) compared to the measured
range (3.53 to 3.91), a sensitivity study was performed for both years to quantify LAI effect
on the energy flux simulations (refer to Table T1). LE increases and H decreases due to
higher LAI, which is expected. Increasing or decreasing LAI by 0.2 changes the mean H by
less than 1%. The highest change is seen for LE in 2017, with an increase of around 3%
due to an increase in LAI of 0.2. Thus, the uncertainty in specified LAI in the model runs has
minimal impact on the simulated fluxes in this study.

The re-evaluation of the NoahEX3 simulations using three different post-closure
approaches suggests that the approach can have a strong influence on the results of a model
evaluation. While the H method provides the best match with the NoahEX3 simulations, it
is important to note that it is unlikely that the residual energy only consists of sensible heat.
There could be some contribution, though small, from LE (Mauder and Foken 2006). Thus,
the diurnal variation of the heat flux is distorted by the artificial attribution of the residual
energy to H . In summary, there are possibilities of misinterpretation in model evaluation
studies when only one post-closure method is used, as also suggested by Ingwersen et al.
(2015).

Though extending the averaging time for the EddyPRO processing can indicate how the
missing energy is partitioned and improve the energy balance closure, in this study corrections
are already made for the low-frequency co-spectral losses (Moncrieff et al. 2004). Moreover,
a previous modified ogive analysis showed that 30 min is still the optimum averaging time
for measurements over low vegetation (Charuchittipan et al. 2014).

Finally, forcing the energy balance closure at the 30-min time scale is not appropriate,
since a complete energy balance closure ignores heat storage (Leuning et al. 2012). While
Gs is corrected for soil heat storage, heat storage in the biomass is ignored in the present
study. Biomass storage depends strongly on the biomass content of the terrain, and has been
shown to range from −50 to 50 W m−2 for temperate deciduous forests (Gu et al. 2007) and
from −5 to 25 W m−2 for maize crop (Meyers and Hollinger 2004). By forcing the EBC,
some bias is introduced into the model evaluation.

In the present study, we selected two short periods (12 days each) with continuous mete-
orological measurements during two consecutive years. The conditions prevalent during our
study period and the site’s surface properties are representative of the monsoon onset con-
ditions in the Indo-Gangetic Basin. Nonetheless, these results do not necessarily imply that
the Noah model has similar high biases in other period of the year. It is also possible that the
change in phenology affects these biases during the other periods of the year.

3.4 Future Scope

Given the dearth of studies on evaluating LSMs in India, especially those using a complete
suite of observations, it is imperative that large scale experiments be performed usingmultiple
eddy covariance sites to investigate biases in the land-surface modules of global climate
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and regional weather models. These studies will improve understanding of land-atmosphere
interactions in this region and lead to more accurate prediction of local weather and climate.

We show preliminary evidence that coupled simulations using default Noah model is
heavily biased in this study region. The discrepancy in β simulation can affect both short- and
medium-rangeweather forecasting.Moreover, it is important to examinewhether these biases
in modelled β may be contributing to the well-known problems that climate and numerical
weather predictionmodels face when dealingwith the South Asian summermonsoon (Turner
and Annamalai 2012; Saha et al. 2014; Roxy et al. 2015).

Our findings are applicable to all places where seasonality or absolute vegetation prop-
erties are not accurately represented in the model’s default parameterizations. Given the
impact of site-specific parameters on LSM performance, widespread in-situ measurements
are necessary in this region. Many of these parameters, like albedo, vegetation fraction, LAI,
emissivity, etc. can be derived from satellite measurements, though evaluation is necessary
for different scales (Glenn et al. 2008; Li et al. 2015). Other parameters, like surface rough-
ness and stomatal resistance, are more site-specific. The data gathered from these studies can
be used to update the existing lookup tables in the Noah model (and other LSMs) and lead to
future model development more suited to the ambient conditions of the Indo-Gangetic Basin.

4 Conclusions

The present study shows that the Noah LSM performs poorly over a grassland site in central
Indo-Gangetic Basin during the monsoon onset period. Significant differences are found
between observed (midday β of 0.4 for 2016 and 0.5 for 2017) and modelled (midday β of
3.1 for 2016 and 3.2 for 2017) energy fluxes, with H being significantly overestimated and
LE being underestimated. Moreover, Tskin, Ts1 and Ts2 are all overestimated, while Rnet is
underestimated. These biases are amplified in coupled model runs that use the Noah LSM as
a land-surface module.

Running the model with modified land-surface radiative properties slightly improves the
Rnet and LE estimates, but worsens the simulated Ts1, Ts2, and Tskin. The improvement in the
prediction of almost all the variables when using site-specific vegetation parameters implies
that these parameters, as defined in the model’s lookup table, are not representative of the
Indo-Gangetic Basin.

Forcing closure of the measured energy fluxes using three approaches, after accounting
for heat storage in the soil, shows that part of the difference in model simulations and obser-
vations can be explained by the difference in energy balance closure between the model and
observations. Overall, attributing all the residual energy to H shows the greatest improve-
ment.

In summary, significant biases are seen in Noah’s simulated turbulent fluxes at multiple
scales in this region during the monsoon onset period. Since the Noah model is a default
land-surface module in many numerical weather prediction models, these biases can cause
uncertainty in coupled model simulations. Further work is needed to better parametrize
vegetation properties in land-surface models in this region.
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