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SCIENCE FOR SOCIETY Disparities in urban heat exposure have been widely studied using satellite-
derived land-surface temperature. Due to observational andmodeling limitations, it is unknown how the dis-
parities seen for land-surface temperature relate to physiologically relevant heat exposure metrics, which
have direct public health implications. Here, we show pervasive income- and race-based inequities in sum-
mertime air temperature and heat stress in US cities, providing national-scale evidence of heat-related ur-
ban environmental disparities. However, the magnitudes of air temperature and heat stress disparities are
weaker than those for land-surface temperature. Thus, policy makers should be careful about relying on
direct estimates from satellites to quantify urban heat exposure, due to their tendency to overestimate
heat stress disparities. More observations and improved urban-scale models can fill this gap and provide
actionable data for planning optimum and equitable urban heat mitigation strategies.
SUMMARY
The combined impact of urbanization-induced warming and drying on large-scale heat stress disparities re-
mains unknown, with multicity studies using satellite-derived land surface temperature as a proxy for these
disparities. Here, using high-resolution urban-resolving numerical model simulations for 2014–2018, we find
pervasive disparities in all-sky average maximum summertime air temperature and moist heat stress metrics
across US cities, with higher outdoor heat stress exposure in poorer and primarily non-white census tracts.
Ninety-four percent of the US urban population (228 million) live in cities where heat stress burdens the poor,
with heat stress inequities between white and non-white populations strongly associated with residential
segregation. Similarly, historically redlined neighborhoods show higher heat stress than their non-redlined
counterparts, demonstrating how historical segregation relates to present-day environmental inequalities.
Our results provide quantitative estimates of physiologically relevant heat stress disparities at the US national
scale and highlight potential biases when using satellites as a proxy for these.
INTRODUCTION

Urbanization is the most concentrated modification of the envi-

ronment and human society through both physical changes

and dynamic social and cultural paradigm shifts.1–3 Currently,

over half of the world’s population resides in cities, which is ex-

pected to increase to around 66% by 2050.4 While global rural-

to-urban population migration gives cities easy access to human

capital,5 the durable nature of urban infrastructure can magnify

inequalities between population groups and lock them in.6 For

instance, urban areas can have large variability in land cover
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and use, frequently reinforced by both historical and prevailing

policies,7 which can result in pervasive disparities in both basic

access to amenities8–10 and exposure to various environmental

stressors.11–13 One such environmental stressor of critical rele-

vance in a rapidly warming world is heat stress. Urban areas

are usually warmer than their surroundings, which, in combina-

tion with rising urban populations and interactions with global

climate change, disproportionately exposes urban residents to

extreme heat14–16 and its health and economic impacts.17,18

With increasing trends in regional heat waves,19 and multiple se-

vere heat waves in 2021 and 2022, there has been a push for
te and The Author(s). Published by Elsevier Inc. All rights reserved.
vecommons.org/licenses/by-nc-nd/4.0/).
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policy makers to implement urban heat response plans.20 As cit-

ies develop these adaptation plans to extreme heat, it is crucial

to understand the equity implications of these investments.

Given large urban heterogeneities, heat exposure is not likely

to be equally distributed within cities. Research suggests a cor-

relation between high temperatures and economically vulnerable

neighborhoods, particularly in the US.13,21–24 One obstacle to

understanding the equity of the distribution of urban heat expo-

sure has been the lack of urban-resolving datasets.25 Human

physiological response to heat—or heat stress—depends on,

among other factors, air temperature (Ta) and relative humidity

(RH).26 Some studies have monitored one or more of these fac-

tors, but only for limited geographic areas for a limited extent of

time.27–29 They are thus unable to uncover systematic inequities

in heat stress.

The standard approach for examining hotspots of heat expo-

sure in multicity studies has been to use satellite-derived land

surface temperature (LST) as a proxy for urban heat.30,31 While

this method has the advantage of allowing high-resolution equity

analysis of the distribution of heat for multiple cities, LST is, at

best, a crude proxy for heat stress. Not only does it ignore hu-

midity, which is generally reduced by urbanization,32,33 it does

not measure ambient Ta. Urban LST is a consolidated two-

dimensional estimate of the radiative skin temperature (Tsk) of

the complex three-dimensional urban fabric34 for clear-sky con-

ditions during the satellite overpass. Thus, both LST and Tsk are

fundamentally different from Ta and heat stress.29,35,36 Numeri-

cal modeling can estimate factors responsible for heat stress

at appropriate spatiotemporal scales within urban environments.

Such modeling can be computationally burdensome, however,

and the studies using this approach have either focused on a

small number of cities37 or used model resolutions that are too

coarse to examine within-city heterogeneity.33,38

Urban environmental disparities depend on how the stressor

and population groups (in terms of race and class) covary. Distri-

butions in environmental stressors depend strongly on the urban

physical environment and its heterogeneity. Built-up density

leads to local warming, while the urban green infrastructure,

such as parks or trees, cools the surroundings.39,40 Vegetation

also increases RH, however, which tends to increase heat stress,

all else remaining equal.28 For the most part, the directions of

these physical associations are consistent across cities. A

greater source of variability is how populations are distributed.41

The demographic distribution of urban populations depends on

various factors, from rules and regulations to presence or

absence of certain features and services to wider social and cul-

tural narratives.42,43 TheUnited States is a particularly interesting

case due to well-documented patterns of urban population dis-

tributions and racial segregation seen in past and present cit-

ies.9,44–46 With limited exceptions, US cities have often been

characterized by the movement of richer and whiter populations

to suburban areas, known as urban flight or white flight, with the

urban core frequently populated by poorer and primarily non-

white residents.46,47 This present structure of US cities has

frequently been linked to historic racism, including practices

like ‘‘redlining.’’45,48

Due to the lack of heat stress estimates at fine scales,

several recent studies have used satellite-derived LST to

demonstrate pervasive disparities in potential heat exposure in
US cities,13,24,49–52 with poorer and primarily non-white neigh-

borhoods showing higher LST values. The implications of using

LST instead of Ta or more comprehensive physiologically met-

rics for urban heat exposure disparities have been discussed

only in passing.24,53 Since the impacts of urbanization on LST,

Tsk, Ta, and RH can differ widely in magnitude,36 it is critical to

examine whether heat stress disparities are pervasive in the

US, both to better understand potential risks to disadvantaged

populations and for informing equitable urban design and policy.

Our results show income- and race-based disparities in heat

stress to be pervasive within US cities, with roughly 94% of the

US urban population (228 million people) living in cities where

moist outdoor heat stress would burden the poor. Heat stress in-

equities between white and non-white urban populations are

strongly associated with residential segregation, which is pre-

sent to some extent in all 481 cities. Finally, historically redlined

neighborhoods show the highest heat exposure (compared with

other neighborhood grades) regardless of themetric of exposure

used. Drawing from these results, we discuss how the magni-

tude of these disparities varies for physiologically relevant met-

rics of heat stress versus commonly used satellite-derived prox-

ies of heat exposure.

RESULTS

Methods summary
We use urban-resolving numerical model simulations to examine

disparities in average summer maximum Tsk, Ta, and moist heat

stress metrics within US cities for all-sky conditions (with and

without clouds). Our offline approach, which uses a land-surface

model with urban canopy representation forced by downscaled

atmospheric forcing, allows us to overcome computational limi-

tations and estimate heat stress at a 1 km scale over the conti-

nental United States (CONUS). We consider two operational

metrics of moist heat stress under shaded conditions, the heat

index (HI), used by the USNational Weather Service, and the Hu-

midex, used by the Meteorological Service of Canada, both rep-

resenting the human physiological response to combinations of

Ta and RH. Combining these results with US census tract demo-

graphic data, we calculate disparities in heat stress by race and

income group for all 481 urbanized areas within the CONUS,

home to around 240 million people. To evaluate potential histor-

ical drivers of these disparities, we also overlay these data with

maps for 171 cities with available spatial data for historically

redlined neighborhoods (Figure 1A). Overall, unlike multiple

previous estimates of potential disparities of heat exposure

across cities and redlining grades that have used satellite-

derived LST,13,23,24,50–52 we primarily focus on equivalent dispar-

ities in outdoor moist heat stress, which have greater relevance

for human thermal discomfort. See the experimental procedures

for more details.

Intra-urban variability in heat exposure
We examined census-tract level distributions of variables rele-

vant to heat exposure across 481 urbanized areas (cities hence-

forth; Figure 1A) in the CONUS for northern hemisphere summer

(June-July-August) 2014 to 2018. These variables include LST

derived from the moderate resolution imaging spectroradiome-

ter (MODIS) sensor on board NASA’s Aqua satellite after
One Earth 6, 738–750, June 16, 2023 739



Figure 1. Study overview and intra-urban variability of heat exposure metrics

(A) The 481 urbanized areas and 171 redlined cities considered here.

(B) Study design, including data sources, variables of interest, and polygons used to disaggregate the data (using Chicago as an example). Here, the background

colors in the census tract polygons box represent the spatial variability of average maximum summer air temperature. More information about the HOLC (Home

Owners’ Loan Corporation) polygons shown on the right can be found in the experimental procedures.

(C) Distributions of the CV of satellite-derived mean summer daytime LST and the average summer maximum of modeled Tsk, Ta, RH, HI, and Humidex across

census tracts of the 481 urbanized areas. Median area-weighted SD and CV, as well as the three cities with the highest CV, are annotated for each variable.
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pixel-level quality control (limiting LST uncertainty to less than

3�C; see experimental procedures) and modeled variables like

Tsk, 2-m Ta, HI, and Humidex (Figure 1B).

The composite median of the standard deviation (s) of the

modeled variables across these 481 cities varies from 2.95�C
for Tsk to 0.92�C for Ta to 0.87 for Humidex (Figure 1C). Since

these variables have different means (m) and units, we also

checked the coefficient of variation (CV = s
m
), which is unitless

and scale independent. Higher CV is seen for Tsk (0.079) and

LST (0.05) than for Ta and HI (z0.03 for each). Among the 481

cities, the CV is higher for Tsk (LST) than for HI and Humidex

inz96% (91%) of cases. A city-scale example is shown for Chi-

cago (Figures 1B and S1), whichwas the center of thewell-docu-

mented 1995 heat wave.54 Temperatures peak at the urban cen-

ter compared with the cooler rural outskirts, with Tsk and LST

showing higher intra-urban variability than Ta. In fact, Ta shows

a slight decrease near the lakeshore, which is expected, due to

the impact of lake breeze during daytime.55 In parallel, the RH
740 One Earth 6, 738–750, June 16, 2023
is lower in the warmer parts of the city, generally increasing

toward the suburbs (Figure S1D). Although lower RH partially

offsets the effect of higher Ta on heat stress, overall heat stress

(HI and Humidex) remains higher in the urban core (Figures S1E

and S1F).

Income inequality and heat-related disparities
To examine income-based disparities in heat exposure, we first

calculated the statistical associations between census-tract-

level median per capita income and the different heat exposure

metrics for each of the 481 cities (comprising 54,684 census

tracts). Here, linear models were first used to examine these as-

sociations for their easier interpretability and in line with previous

studies on environmental disparities.50,53,56 The correlations

were negative in almost all cases (90.6% for LST and z92%

for Tsk and Ta), i.e., poorer urban residents live in hotter areas

(Figures 2A–2C). Wealthier populations live in more humid neigh-

borhoods than poorer populations, with RH positively correlated



Figure 2. Disparities in heat exposure metrics by income

(A) Distributions of slopes of satellite-derived mean summer daytime LST and the average summer maximum of modeled Tsk, Ta, RH, HI, and Humidex with

income across the 481 cities (median slope for each variable is annotated).

(B–E) The spatial distributions of the slopes of the linear regressions between income and (B) Tsk, (C) Ta, (D) HI, and (E) Humidex. Circles with black outlines

represent statistically significant correlations (p < 0.01).
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with income in 91.9% of cases, with 54.5% of these positively

correlated cases being statistically significant (p < 0.01). Higher

temperature is more important than lower humidity for heat

stress in poorer neighborhoods, with negative correlations of

income with HI and Humidex in z93% of cases (Figures 2A,

2D, and 2E). Linear regressions estimate median changes

in heat exposure per $10,000 greater income of �0.91�C,
�2.12�C, �0.59�C, 1.52%, �0.56�C, and �0.55 for LST, Tsk,

Ta, RH, HI, and Humidex, respectively. In z91% (�77%) of
these cites, HI and Humidex are less sensitive to income

than Tsk (LST). This analysis shows pervasive income-based dis-

parities in heat exposure and heat stress metrics in most US

cities.

We also examined associations between income inequality

and distributional inequity in outdoor HI across cities. Unitless

metrics of income inequality (Gini coefficient) and HI inequity

(modified environmental concentration index) were used for

this purpose to allow easy comparison between cities. Overall,
One Earth 6, 738–750, June 16, 2023 741



Figure 3. City typologies demonstrating in-

come and heat stress inequalities

Four-quadrant plot of heat stress (HI) concentra-

tion index (based on income) and Gini coefficient

for the 481 cities considered here. The quadrant

threshold for income inequality is the mean Gini

coefficient of the sample (0.18), and the quadrant

threshold for heat stress distributional inequity is 0.

The line of best fit between city-level heat stress

concentration index and Gini coefficient and the

associated linear regression equation, coefficient

of determination (r2), p value, and sample size

(n) are noted.
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a moderate negative correlation (r2 = 0.15) is seen between the

Gini coefficient and the environmental concentration index for

HI, i.e., cities with higher income inequalities are associated

with higher disparities in HI. We consequently placed the 481 cit-

ies into one of four typologies representing combinations of in-

come inequality and distributional inequity in outdoor HI (Fig-

ure 3). The largest percentage of these cities (46%; 221 of 481)

fall into the bottom right quadrant (quadrant 4), with higher-

than-average income inequality and HI burdening the poor.

These cities, including some of the largest and most populated

ones (New York, Los Angeles, Chicago, Philadelphia, etc.),

have the potential to compound existing inequalities through un-

equal exposure to environmental stressors. The second largest

typology of cities is those in the bottom left quadrant (quadrant

3), with relativity lower income inequality compared with the

mean of the sample and HI still burdening the poor. Combined,

these two quadrants cover almost 89% (427) of the cities

and close to 94% (228 million) of the US urban population.

The two upper quadrants (quadrants 1 and 2), where HI

burdens the rich comprise only 43 cities and around 6% of

the population (Figure 2). The highest Gini coefficient is seen

for Indio in California (0.33), followed by Los Angeles (0.32) and

New York (0.31), while the lowest Gini is for Cartersville, Georgia

(0.07). The highest concentration index for HI is for McAllen,

Texas (0.11), with the lowest being for State College, Philadel-

phia (�0.22).

Residential segregation and heat-related disparities
Correlating heat exposure metrics with race showed similar

widespread disparities. Inz90.5% of cases (91.9% for LST; Fig-

ure S2B), HI and Humidex (Figures 4B and 4D) are negatively

associated with the percentage of white population of the census

tracts. In contrast, in z87.5% of the cities, census tracts with

higher percentage black populations have higher Tsk, Ta, HI,
742 One Earth 6, 738–750, June 16, 2023
and Humidex than those with lower per-

centage black populations (Figures 4A,

S2C, 4C, and S2E). The median sensitivity

of Tsk and LST to higher percentage white

population is �0.13�C and �0.06�C,
respectively, which decreases to approxi-

mately�0.04�C for Ta and HI and approx-

imately �0.03 for Humidex. The median

census-tract-scale Tsk (LST) is greater by

0.15�C (0.07�C) per percentage higher

black population, but only about 0.04�C

greater for Ta and HI. All races other thanwhite show positive cor-

relations with LST, Tsk, Ta, HI, and Humidex (Figure S3).

We examined associations between present-day housing

segregation and heat stress inequities by calculating a dissimi-

larity index between white and non-white populations for

each city and the corresponding concentration index based

on proportion of white residents. We see a strong correlation

(r2 = 0.47) between residential segregation and race-based out-

door HI inequities (Figure 5). Placing cities into typologies as

done earlier for income-based inequities, the largest percentage

of these cities (44%; 213 of 481) fall into the bottom left quadrant

(quadrant 3), with lower-than-average residential segregation

and HI burdening non-white residents. The second largest group

is in quadrant 4 (212 of 481 or 44%), with HI burdening non-

white residents and residential segregation being higher than

the average. Overall, around 83% (57.8 million) of non-white

US urban residents live in cities where HI burdens non-white

populations.

Although traditionally one of the more common metrics of

segregation,57 a limitation of the dissimilarity index is that it is

insensitive to the redistribution of minority populations among

the census tracts that are above or below the reference distribu-

tion of the city.58 Thus, the magnitude of segregation as

measured by the dissimilarity index would change only when

the minority populations (whether white or non-white) were

moved from census tracts that have an overrepresentation of

that minority (compared with the city average) to those that

have an underrepresentation of that minority group. So, we

considered two other metrics of segregation to confirm our re-

sults. One common way to measure segregation that avoids

the limitation of the dissimilarity index is to use a Gini coefficient,

as for income in the previous sub-section, but replacing income

with proportion of white residents when computing the Lorenz

and concentration curve (see experimental procedures). Another



Figure 4. Disparities in heat exposure metrics by race

(A and C) The spatial distributions of the slopes of the linear regressions between the proportion of black population in a census tract and the average summer

maximum of modeled Tsk and HI, respectively for the 481 cities.

(B and D) Similar to (A) and (C), but for the proportion of white population. Circles with black outlines represent statistically significant correlations (p < 0.01).

ll
OPEN ACCESSArticle
index that has recently become popular in the study of racial

segregation59 is Thiel’s entropy index,60 which measures the

extent to which groups (in this case, white and non-white popu-

lations) are evenly distributed among sub-units of aggregation (in

this case, census tracts). The Gini coefficient and Theil’s entropy

index, like the dissimilarity index, also vary between 0 and 1, but

are sensitive to any redistribution of population groups. Even

though there are some differences in the degree of associations

(in terms of r2 and slope) using these alternative measures of

segregation (Figure S4), we can see that cities with higher resi-

dential segregation tend to show higher heat stress inequities

in the United States.

Historical redlining and heat-related disparities
As also seen above, current heat exposure disparities depend on

neighborhood-scale characteristics and urban population distri-

butions.24,50,53 In the United States, poorer and predominantly

non-white neighborhoods tend to have less vegetation

cover,51,53,61 which influences local-scale temperatures.39,40

Populations in and around US cities are distributed such that

poorer populations generally live in urban centers.47 Wealthier,

white populations tend to be in the suburbs,9,44 where there is

more space for non-built-up land cover, including vegetation

(i.e., building density is higher in poorer neighborhoods62).

Historical policies have impacts on contemporary environ-

mental conditions.7 For instance, the practice of redlining in
the 1930s by the US federal government’s Home Owners’

Loan Corporation (HOLC) graded neighborhoods based on suit-

ability of real estate investments. This security rating was largely

based on the racial makeup of the neighborhood, with limited ac-

cess to mortgage lending for poorer and minority populations,

and has been shown to be associated with contemporary envi-

ronmental conditions, although there are exceptions to this gen-

eral tendency.7,12,13,45,63,64

To examine the associations between redlining and these dis-

parities, we calculated anomalies for different metrics of heat

exposure during the study period (Equation 4 in experimental

procedures) for cities (n = 171) with all four security ratings. A to-

tal of 8,512 neighborhoods were considered in this analysis. The

A- or ‘‘best’’-rated neighborhoods have negative anomalies (less

heat exposure than the area-wide mean) for all variables, and the

D-rated or ‘‘hazardous’’ redlined neighborhoods show positive

anomalies (Figures 6 and S6). Among the modeled variables,

the difference in median anomalies (M) between the A- and the

D-rated neighborhoods is higher for Tsk and LST than for Ta,

HI, and Humidex. It is evident that historically redlined neighbor-

hoods show higher heat exposure than their non-redlined coun-

terparts. However, a broader question is how redlining is associ-

ated with the heat exposure disparities of the city as a whole,

given the presence of segregation in US cities even before the

practice.46 To address this question, we re-examined associa-

tions between heat exposure and income after isolating all the
One Earth 6, 738–750, June 16, 2023 743



Figure 5. City typologies for residential

segregation and heat stress inequalities

Four-quadrant plot of heat stress (HI) concentra-

tion index (based on proportion of white residents)

and dissimilarity index for the 481 cities considered

here. The quadrant threshold for residential

segregation is the mean dissimilarity index of the

sample (0.33), and the quadrant threshold for heat

stress distributional inequity is 0. The line of best fit

between city-level heat stress concentration index

and dissimilarity index and the associated linear

regression equation, coefficient of determination

(r2), p value, and sample size (n) are noted.
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cities (urbanized areas) that overlapped with any redlined neigh-

borhood. Of the 481 cities, 143 overlapped with the HOLC poly-

gons, while the other 338 did not. These 143 cities form a smaller

subset than the total number of cities (171) used in the previous

analysis, since some of these urbanized areas cover multiple

neighborhood groups.

Although income-based disparities in heat exposure metrics

are seen for both groups (Figure S7), the cities that did not over-

lap with the HOLC polygons have a lower median correlation co-

efficient (r = 0.39 versus 0.43 for Humidex). While this result sug-

gests that cities with previously redlined neighborhoods show a

higher likelihood of present-day heat stress disparities than cities

with no such redlining data (98% versus 91%), we should be

careful about the interpretation of these results to claim that red-

lining was the cause behind these differences. This is because

this analysis cannot be a true counterfactual scenario of no red-

lining, both because the redlining data may not be comprehen-

sive and because redlining policies may have shaped urban

development elsewhere in the country.45

DISCUSSION

It is important to stress that all models have limitations, with

especially large uncertainties when simulating urban-scale pro-

cesses and variables. For instance, in our original model outputs,

the mean bias error of urbanized area average Ta compared with

an independent dataset was 5.74�C, which was reduced to

1.93�C after bias correcting the dataset using a network of

ground-based weather stations. In this article, we focus on the

results after bias correction due to the higher accuracy, but

more details about the bias-correction process, model evalua-

tion, and model uncertainties are given in the experimental

procedures and Note S1. The results of the study should be

interpreted keeping these uncertainties in mind. Overall, our
744 One Earth 6, 738–750, June 16, 2023
high-resolution CONUS-wide modeling

demonstrates pervasive disparities in

average summertime maximum Ta and

heat stress in US cities both before (not

shown) and after bias correction. These

results have important implications for ur-

ban heat exposure and corresponding

public health consequences on vulner-

able populations. For instance, using

heat exposure anomalies for each census

tract relative to its city, a white urban resi-
dent in the United States is exposed to an average Ta anomaly of

�0.22�C, while a black person is exposed to 0.28�C. Similarly,

the HI anomalies deviate slightly less between white (�0.21�C)
and black (0.28�C) residents. For anomalies in Humidex, the de-

viation betweenwhite and black residents is slightly lower (�0.20

and 0.26, respectively) than for Ta and HI. In comparison, if sat-

ellite-derived LST were used to calculate these disparities, the

anomalies would be much higher (�0.47�C and 0.73�C for the

average white and black resident, respectively).

Across cities, HI inequities are associated moderately with in-

come inequality (Gini coefficient; Figure 3) and strongly with

race-based residential segregation (dissimilarity index, Gini co-

efficient for race, and Theil’s entropy index; Figures 5 and S4).

Similarly, historical residential segregation (redlining) still dem-

onstrates a noticeable association with heat-related exposure

in present-day cities regardless of the metric used. These asso-

ciations are seen both from anomalies in heat exposure metrics

across redlining grades and when comparing cities with and

without any redlined neighborhood (Figures 6, S6, and S7). It is

important to stress here that the marginal benefit of a unit reduc-

tion in summer daytime heat exposure is lower than the marginal

adverse health impacts of a unit heat exposure increase due to

the nonlinear impacts of temperature on health.24 As such, the

assumptions of linearity made between heat exposure metrics

and socioeconomic characteristics would underestimate the

actual health impacts, especially at finer spatiotemporal scales.

This risk is further compounded by higher vulnerability in poorer

populations, who frequently lack the resources (such as house-

hold air conditioning) to cope during extreme heat events.54

Satellite-derived LST has been widely used as a proxy for ur-

ban heat exposure and its potential disparities due to the lack of

in situ Ta and RH observations at the same scale.29,36 Here, we

show that, for cities in the United States, these disparities are

pervasive regardless of the metric used. However, this finding



Figure 6. Temperature anomalies by HOLC security rating

The distributions of anomalies in average summer maximum of modeled (A) Tsk, (B) Ta, (C) HI, and (D) Humidex across 171 redlined cities. The numbers at the

bottom give median anomalies for each group. Here, A is ‘‘best’’ HOLC security rating, B is ‘‘still desirable,’’ C is ‘‘definitely declining,’’ and D is ‘‘hazardous.’’

ll
OPEN ACCESSArticle
is true only for the direction of the disparities (i.e., heat stress is

higher in census tracts with poorer and non-white populations),

but not for the magnitude. The differences in the magnitudes

are seen for disparities both by income and race and given by

the weaker sensitivities for Ta, HI, and Humidex to socioeco-

nomic variables than for Tsk (Figures 3 and 4). Similarly, anoma-

lies for LST are generally more extreme for all population groups

than for Ta, HI, or Humidex, suggesting that satellites overesti-

mate disparities in heat exposure. This overestimation of dispar-

ities when using LST instead of Ta is both suggested by

comparing the simulated variables and the satellite observations

(Figure 2A) and seen when examining disparities in average

maximum summertime Ta using a newly developed gridded

near-surface Ta dataset (Figure S8), with the added caveat that

this dataset is based on a statistical model,65 not a process-

based model as implemented here. Finally, solar insolation and

wind speed, which we do not focus on, can provide a more com-

plete picture of human physiological response to heat,15,29,66 but

are rarely measured within cities and difficult to model at appro-

priate scales to emulate human environmental exposure. As

such, we suggest cautionwhen relying on satellite-derived quan-

titative estimates alone for heat-related policy making and urban

planning and call for more in situ observations25,35 and further ur-

ban model development to accurately quantify these environ-

mental disparities.

While it is evident from these model simulations that outdoor

moist heat stress disparities are pervasive across US cities, a

broader question is how to protect vulnerable populations from
these environmental heat extremes. In the environmental equity

literature, heat exposure disparities have been frequently stud-

ied in conjunction with distributional inequities in green

space.12,51 This makes sense, since urban vegetation reduces

local temperature through evaporative cooling and trees also

reduce sun exposure through shading.40,67 With the intent of

reducing heat stress disparities, however, a few things need to

be considered. First, poor and densely populated urban cores

have limited space for planting trees, constraining potential for

vegetation-mediated cooling.62,68 Second, many quantitative

estimates of the cooling potential of vegetation over large spatial

extents come from satellite-derived LST.39,68 Satellites provide

only the radiative temperature of the top of the canopy, and

the impact of vegetation on Ta and heat stress can be quite

different.28,36 Third, and probably most important, it is unknown

how feasible urban greening is to address heat-related inequities

over longer time frames. In the United States, green neighbor-

hoods tend to hold a real estate premium, and ‘‘green gentrifica-

tion’’ may price out poorer populations over time.69 As such, par-

allel regulations may be needed to ensure that the intended

beneficiaries of heat stress mitigation strategies in disadvan-

taged neighborhoods can continue to live there.23,70 Moreover,

we need to better understand behavioral response to neighbor-

hood-scale heat mitigation strategies beyond urban greening,

such as white roofs, green roofs, reflective pavements,

etc. These strategies may show different marginal willingness

to pay than that for neighborhood green spaces, and can

often be more effective at heat mitigation.71,72 Since the
One Earth 6, 738–750, June 16, 2023 745
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consequences of heat extremes go beyond health, with adverse

outcomes for labor productivity and economic growth,18,73 there

is a critical need to develop policy tools to equitably address ur-

ban heat stress aswe prepare for future heat extremes on amore

urbanized planet.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be

directed to and will be fulfilled by the lead contact, TC Chakraborty

(tc.chakraborty@pnnl.gov).

Materials availability

Materials generated in this study have been deposited in Mendeley Data:

https://www.doi.org/10.17632/jgv5hmzc44.1.

Data and code availability

All data and code required to generate the census tract and HOLC polygon

level heat stress indices, as well as the urban-scale segregation indices,

have been deposited in Mendeley Data: https://www.doi.org/10.17632/

jgv5hmzc44.1.

Regions of interest

Two sets of regions of interest were used in the present study (Figures 1A and

1B). First, we extracted all census tracts overlapping (not necessarily fully con-

tained in) the US Census Bureau’s urbanized areas dataset.74 This included

497 polygons with populations exceeding 50,000. Of these, 481 are within

the CONUS region, the extent of the modeled dataset described in the next

sub-section. The final 54,684 overlapping census tracts were grouped by ur-

banized area (n = 481). Socioeconomic information like race, income, and pop-

ulation were extracted from the 5-year 2017 American Community Survey.75

The race categories are consistent with the classification used by the US

Census Bureau. Our analysis covered census tracts that house around 240

million people, over 70% of the total US population.

The second set of regions comprised neighborhood polygons (example

for Chicago in Figure 1B) corresponding to security ratings given by the US

federal government’s HOLC in the 1930s and digitized by the University of

Richmond’s Digital Scholarship Lab.48 This practice, called redlining, graded

neighborhoods based on suitability of real estate investments. This security

rating was largely based on the racial makeup of the neighborhood, with

limited access to mortgage lending for poorer and minority populations, and

has had consequences for disparities in heat exposure and access to green

spaces in present-day cities.12,13 Of the 196 cities included in the dataset,

we used only the 171 that have all four grades of neighborhood rating: A being

‘‘best,’’ B being ‘‘still desirable,’’ C being ‘‘definitely declining,’’ and D being

‘‘hazardous.’’

Model simulations and bias correction

The High-Resolution Land Data Assimilation System (HRLDAS)76 is an offline

(one-way coupled) system used to estimate near-surface meteorology. It

allows for use of historical observed meteorology, in this case the National

Land Data Assimilation System Phase-2 (NLDAS-2),77 and high-resolution

land-cover data (the National Land Cover Database here, https://www.usgs.

gov/centers/eros/science/national-land-cover-database) to drive the land-

surface model components within the Weather Research and Forecasting

(WRF) atmospheric model78 in a one-dimensional column mode neglecting

lateral advection and solving the full three-dimensional atmospheric time-

stepping equations. The low computational cost and strong constraints of us-

ing observed meteorology in an offline system make HRLDAS useful for many

applications needing gridded surface meteorological data, including examina-

tion of urban heat islands.79More details are provided in the community repos-

itory for access and contributions (https://github.com/NCAR/hrldas). Here, we

use the state-of-the-science Noah-MP80 land-surface model and a single-

layer urban canopy model81 to simulate near-surface (2 m) Ta and specific hu-

midity (q2) using a 1 km horizontal resolution grid and an hourly timestep over

CONUS. The urban canopy model divides the urban geometry into three sur-

face types, namely, roof, wall, and road, and simulates the exchange of energy
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and momentum between the urban surface and the atmosphere. It also pa-

rameterizes the influence of urban canyons, including building shadows and

reflected radiation on surface climate. Urban land-cover type and urban frac-

tion are modified annually in the model between 2014 and 2018 using linear

trends estimated from the National Land Cover Database82 for the years

2011, 2016, and 2019.

The original model simulations show overestimations in urbanized area

average Ta comparedwith estimates from theDaymet version 4 dataset83 (Fig-

ureS5A).While someoverestimation is expected, sinceDaymet doesnot accu-

rately represent urbanmicroclimates due to thedearth of assimilated urban ob-

servations,84 a mean bias error (MBE) of 5.74�C is still unreasonably high. So,

we performed a bias correction exercise to the raw maximum and minimum

daily Ta independently using all available station data that pass quality control

checks in the Global Historical Climatology Network Daily (GHCNd),85 the

Meteorological Assimilation Data Ingest System (MADIS, https://madis.noaa.

gov), and monthly maximum/minimum value checks within our workflow.

The GHCNd dataset contains maximum and minimum Ta. We used the sur-

face Mesonet station data within MADIS and computed the daily maximum Ta

and minimum Ta directly from their native high temporal resolution observa-

tions. Then, for each day and grid point with a station, we found up to 20 valid

stations within 500 km of that grid point and estimated the temperature bias for

the simplified land-cover type (non-urban or urban). Valid station observations

were adjusted to the grid box elevation using the mean lapse rate of all station-

grid combinations and the specific station-grid point elevation difference. Use

of the mean lapse rate reduces noise in the estimated lapse rate due to mea-

surement uncertainty. We then estimated the temperature bias using a 3 3 3

grid box (9 km2) average of the raw HRLDAS output and the distance weighted

temperature average of all valid stations with the same land-cover classifica-

tion (non-urban or urban) as the target grid point. Urban and non-urban bias

estimates were then weighted by urban fraction for each grid cell and added

to the raw maximum and minimum Ta values. We did not bias correct q2

due to the dearth of available q2 measurements. Overall, after bias correction,

the dataset performed much better compared with the Daymet estimates, in

terms of capturing both variability and magnitude (Figure S5B). The small pos-

itive MBE was expected, since our dataset explicitly resolved the urban signal,

since it is estimated by the single-layer urban canopy model, unlike Daymet.

The direction of the within-city variability in Daymet is captured by the model

in 76% of cases, which rises to almost 80% after bias correction. So while

there are observational deficiencies that prevented an apples-to-apples com-

parison at these scales over cities, we are relatively confident about the direc-

tion of the within-city variability in our dataset, which is strongly associated

with the likelihood of urban heat stress disparities.

Estimating outdoor moist heat stress

We processed data for 5 years (2014–2018) of Northern Hemisphere summer

months (June, July, and August) to represent present-day all-sky conditions.

We used daily maximum and minimum Tsk, Ta, and q2 to generate census-

tract-level average summer maximum and minimum through first temporal

(taking average of all daily maxima and minima) and then spatial (taking

average of these temporal averages for all grids overlaying each census tract)

averaging. Average summer minimum RH was estimated from the maximum

Ta andminimum q2 (also see Note S1 for results from upper bound estimates).

In addition to Tsk and Ta, we calculated the average summer maximum of

apparent temperature or HI using US National Weather Service methodol-

ogy.86 The main equation is:

HI = � 42:379+ 2:04901523Ta+10:14333127RH � 0:22475541TaRH

� 6:837833 10� 3Ta2 � 5:4817173 10� 2RH2

+ 1:228743 10� 3Ta2RH+ 8:52823 10� 4TaRH2

� 1:993 10� 6Ta2RH2:

(Equation 1)

In Equation 1, Ta in �F (average maximum values) and RH in % (based on

average minimum values of q2; see Note S1) are used, and adjustments are

made based on different ranges of RH and Ta.86 When the average of HI

and Ta is less than 80�F, the following simple equation (Equation 2) is used:

HI = 0:53 ½Ta + 61 + ½ðTa � 68Þ 3 1:2� + ð0:094RHÞ�: (Equation 2)

mailto:tc.chakraborty@pnnl.gov
https://www.doi.org/10.17632/jgv5hmzc44.1
https://www.doi.org/10.17632/jgv5hmzc44.1
https://www.doi.org/10.17632/jgv5hmzc44.1
https://www.usgs.gov/centers/eros/science/national-land-cover-database
https://www.usgs.gov/centers/eros/science/national-land-cover-database
https://github.com/NCAR/hrldas
https://madis.noaa.gov
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Since the HI formulation above is strongly temperature sensitive,66 we also

calculated a second operational metric used by the Meteorological Service of

Canada, the Humidex. This is given by Equation 3:

Humidex = Ta + 0:55553
�
6:11 3 e

5417:7533

�
1

273:16
� 1

273:15+Td

�
� 10

�
;

(Equation 3)

where Td is the dewpoint temperature calculated from maximum Ta and

minimum RH.

Satellite data

Satellite-derived LST was used as a reference to contextualize the results

within the recent studies that have examined disparities in heat exposure in

US cities.24,50,51,53 We processed daily daytime LST images corresponding

to around 1:30 p.m. local time for summer derived from the MODIS sensor87

on board the Aqua satellite for the years of model simulations considered

(2014–2018). Pixel-level quality control flags were used to choose only data

that have an uncertainty of less than 3�C, which minimizes errors from cloud

interference. Summer daytime composites were generated with all available

data, and spatial means were calculated corresponding to all census tracts

and HOLC neighborhoods. This standard method of spatial aggregation

uses weighted reducers that consider the fractional area of each pixel within

the region as weights before calculating statistical summaries. Note that we

used MODIS-derived LST for reference (Figure S6A) to keep it consistent

with the other analyses on urbanized areas. Hoffman et al.13 used Landsat sat-

ellite-derived LST. For comparison with that study, we also calculated the

HOLC neighborhood-level LST from the Landsat 8 satellite88 for the same

period. The statistical mono-window algorithm89 was used to calculate LST

from top-of-atmosphere thermal radiance measured by Landsat. This algo-

rithm includes surface emissivity prescription based on remotely sensed frac-

tional vegetation estimates and removal of data contaminated by clouds or

cloud shadows using pixel-level quality control flags. Landsat is different

from MODIS Aqua in several ways (Note S1) and shows a greater variability

in LST anomalies (Figure S6B). The higher urban LST signal from Landsat ob-

servations is also seen when comparing against estimates from MODIS Terra,

which has an overpass time similar to that of Landsat.90 All satellite data, as

well as the summertime composites from the model simulations, were pro-

cessed on the Google Earth Engine platform.89

Data processing and analysis

Different variables were used for satellite-derived LST and modeled Tsk

because Tsk is not dependent on a two-dimensional view of a three-dimen-

sional urban surface like LST.34 Note that the MODIS LST is mainly meant to

provide only a reference, since it is commonly used in multicity studies.24,31,50

However, themain variables of interest aremaximum Tsk,Ta, HI, andHumidex,

since they are all constrained by the same process-basedmodeling framework

and the assumptions therein. For our model simulations, Tsk is the area-

weighted radiometric skin temperature of all building walls, roofs, and roads

within the built-up grids. Due to the surface heterogeneity of cities, we suggest

cautionwhen comparing satellite-derived LST andmodeled Tsk over individual

grids. Moreover, LST is only for clear-sky conditions at the satellite overpass

time (not necessarily when LST is highest), while the modeled Tsk is available

for cloudy days and can resolve the daily maxima (Note S1). Despite these dif-

ferences, we would still expect LST and Tsk to show similar overall patterns

within cities using census-tract-wide spatial means due to the strong con-

straints provided by local surface properties on radiative temperature. We

found that the Tsk from our modeling framework generally captured the intra-

urban variability in LST (Figure S9A), with positive correlation coefficients be-

tween the two in all but five of the urbanized areas and coefficients higher

than 0.8 in 65% of cases. However, Tsk generally showed more variability

than LST (see Figure S1 for Chicago example and Figure S8B for summary),

with the slopes of the linear regression being greater than 1 in 88% of cases

and greater than 2 in 28% of cases. This could partially be due to the lack of

an advection scheme in the uncoupled model simulations, which would nor-

mally mediate intra-urban variability, and also due to the differences in the sat-

ellite overpass time and the daily maxima. Note, however, that the model does

receive the spatial variability from the HRLDAS forcing. Moreover, the bias
correction of Ta using observational constraints further improved our esti-

mates. Figures 1A and 1B show overviews of the data sources, variables of in-

terest, and geographic agglomerations used in the present study.

Unless otherwise noted, all analyses, including computations of the standard

deviation (SD) of the variables within cities and the validations above, were done

using census-tract-level information. Since the different variables do not have

the same range, to better compare the intra-urban variability, the CV (= s
m
) was

also calculated. Note that we calculated the CV of all temperature metrics after

first converting the values to K, since it is not appropriate to examine the CV of a

variable expressed in an interval scale like �C. Data for each of the grouped

census tracts corresponding to the 481 urbanized areas were used to check

linear correlations between the variables (LST, Tsk, Ta, RH, HI, and Humidex)

and the socioeconomic estimates, like income and percentage of the census-

tract population of each race. To account for the impact of the different range

of values on the slopes of the linear regressions, we also standardized the vari-

ables (force to range between 0 and 1) for comparison (Figure S10). Unlike the

use of unitless inequality indices to examine urban typologies (see next sub-sec-

tion), this statistical analysis provided the sensitivity of heat exposure to neigh-

borhood socioeconomic characteristics in physically interpretable units.

For the HOLC polygons, grade-level anomalies were calculated from the

average value for the city following Hoffman et al.13 For instance, the Tsk

anomaly for D-rated neighborhoods is given by Equation 4:

DTsk = TskD � Tskav ; (Equation 4)

where TskD is the skin temperature for the D-rated neighborhoods and Tskav
is the average Tsk of all neighborhoods of a city.

Similar anomalies were also calculated for census-tract-level variables

against their corresponding urbanized areas to compare population-weighted

heat exposures. As an example, the Ta anomaly for census tract is given by:

DTa = Tat � Tau; (Equation 5)

where Tat is the air temperature for a census tract and Tau is the average Ta of

the urbanized area. These anomalies are important to account for the large vari-

ability in the background temperatures of cities throughout the United States.

The 1 km resolution of both the simulated variables and the MODIS observa-

tions is finer than �84% of the census tracts used in the study and thus can

resolve the general spatial distribution of the variables within the urbanized

areas. However, this resolution is finer than only �44% of the HOLC-graded

polygons. As such, we suggest caution when examining the anomalies for indi-

vidual neighborhoods, although the comparison of the magnitude of the anom-

alies across variables is still useful since they are all at the same resolution.

Generating city typologies using inequality metrics

In addition to the statistical analyses, we provided unit-free representations of

inequalities in income and distributional inequities in outdoor HI usingmethods

fromwelfare economics.91 These representations were used to bin each of the

481 cities into one of four typologies (Figure 2) representing combinations of

income inequality and HI inequities. City-scale summaries of income inequality

are given by the Gini coefficient (G), formulated as:

G = 1 � 2

Z 1

0

LðXÞdX: (Equation 6)

In Equation 6, the functionLðXÞ represents the Lorenz curve, a graphical relation-
ship between cumulative population and the cumulative incomeby the said pop-

ulation ranked from thepoorest to the richest,92 for the city. The closer the Lorenz

curve is to a 45� line, the more equal is the distribution of income, and the Gini

coefficient (Equation 6) approaches 0. Higher Gini coefficients represent higher

inequality, with an upper bound of 1. Although Gini coefficients are always pos-

itive (i.e., all cities have income inequality), we used the mean Gini coefficient of

the 481 cities as a threshold between lower than and higher thanaverage income

inequality for grouping the cities into the typologies.

For summarizing heat exposure disparities, we used the environmental con-

centration index (CI), given by:

CI = 1 � 2

Z 1

0

HðXÞdX: (Equation 7)
One Earth 6, 738–750, June 16, 2023 747



ll
OPEN ACCESS Article
Similar to the Lorenz curve, the function HðXÞ in Equation 7 represents the

concentration curve, the relationship between cumulative population and dis-

tribution of a variable (in this case, heat exposure metrics) for that population

ranked by income.93 The concentration curve can cross the 45� line, since vari-
ables other than income can have both pro-poor and pro-rich distributions.

Thus, the CI can vary from �1 to 1. Since higher heat stress is an undesirable

outcome, negative CI values indicate pro-rich distributions (primary burden on

the poor) and positive values represent pro-poor distributions (primary burden

on the rich). The CI value of 0 represents completely non-biased distribution

and is the threshold used for separating heat stress distribution inequities

into pro-poor and pro-rich groups (Figure 2).

Racial segregation and heat stress burden

The above analysis addresses income disparities but is silent on race. To

examine racial inequalities, we divided the data for each census tract intowhite

and non-white populations and calculated a dissimilarity index (DI) between

the two groups. DI has been frequently used to examine residential segrega-

tion57 and is a consolidated measure of the fraction of a population (say, for

a census tract) that would need to change their residence to have the same

distribution as the city it belongs to. It is given by:

DI =
1

2

XN
i = 1

wi

W
� nwi

NW
; (Equation 8)

where i is one of the N census tracts within a city, wi and nwi are the white

and non-white populations, respectively, in the ith census tract, andW andNW

are the total white and non-white populations, respectively, for the city. The

DI value from Equation 8 can range from 0 to 1, with 0 representing complete

integration and 1 representing complete segregation. We used the mean

segregation index of the 481 urban areas to divide them into lower than and

high than average groups of residential segregation.

To calculate HI exposure inequities by race, we calculated another CI using

Equation 7, but tracts were now ranked by proportion of white population,

rather than income.94,95 Finally, we calculated two other indices to examine

segregation between white and non-white populations, one by calculating a

Gini coefficient by replacing income with the proportion of white residents

when calculating the Lorenz curve and another—Theil’s entropy index—for

white and non-white populations using the segregation package for the R pro-

gramming language.59 The results are shown in Figure S4.
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Note S1: Difference between satellite-derived land surface temperature and modeled skin 1 

temperature, and a discussion on uncertainties 2 

The different sensitivities of MODIS-derived LST and modeled Tsk seen in the present study 3 

(Figures 2A and S3) require further clarification. The satellite-derived radiative skin temperature, 4 

often called LST, as seen from the view angle and at the resolution of MODIS imagery, largely 5 

comprises of thermal emission from rooftops and taller vertical facades, but rarely road 6 

temperatures1,2. An example of this satellite view’s influence on LST estimates can be seen when 7 

comparing LST anomalies across HOLC grades from MODIS and Landsat (Figure S6). Landsat 8 

8 has a finer resolution (≈100 m) compared to MODIS (≈1000 m) and a narrower field of view, 9 

making it capable of picking up more thermal emissions from roads than MODIS3. Overall, the 10 

LST anomalies are stronger for Landsat (-1.49 ◦C for grade A to 0.69 ◦C for grade D) compared to 11 

that for MODIS (-0.78 C to 0.4 C). These differences are in line with consistently higher 12 

magnitudes of surface urban heat island seen when using Landsat data instead of MODIS4. In 13 

contrast, Tsk represents a more complete radiative skin temperature and the integral of the skin 14 

temperature from the walls, roads, and roofs of the urban canopy represented in the model5. 15 

Moreover, these satellites cannot capture the thermal environment under shade (from buildings or 16 

trees) or for cloudy conditions6. On the other hand, the model provides all-sky estimates that 17 

considers the complete urban fabric. 18 

It is important to note that radiant heat exposure is only one part of the overall physiological 19 

response to heat, and does not tell as much about Ta and RH within urban areas, which are critical 20 

for quantifying moist heat stress7,8. However, the relative importance of humidity for heat stress 21 

(compared to Ta) remains an open question9,10. We use two operational metrics of heat stress, with 22 

HI being more temperature-sensitive than Humidex10. Using Humidex, which is more dependent 23 

on moisture content, shows a further reduction in the sensitivity of heat stress to socioeconomic 24 

variables compared to that in Ta. For instance, the median sensitivity per $10,000 rise in income 25 

is -1.33 for Humidex vs -1.36 ◦C for Ta. Noting the different valid range of values for Ta and 26 

Humidex, the sensitivity of Humidex to income further reduces versus that of Ta when both 27 

variables are standardized (forced to vary between 0 and 1). The standardized Humidex reduces 28 

by -0.015 for every $10,000 greater income versus a reduction of -0.018 for standardized Ta 29 

(Figure S10A). Similar results are seen for standardized sensitivities by race (Figure S10). Since 30 

the model simulations only include maximum and minimum q2, we calculate the lower bound for 31 



2 
 

maximum HI using maximum Ta and minimum q2 (since RH is generally lowest when Ta peaks 32 

during the diurnal cycle11). We also confirm that disparities in the upper bound (or maximum 33 

possible HI), calculated from maximum Ta and maximum q2, are also pervasive across these cities 34 

and less sensitive to socioeconomic variables than Tsk (Figure S11).  35 

Finally, there are still large uncertainties in urban representations in models, especially at these 36 

scales12. Moreover, since the land-surface model used here was run in uncoupled mode to achieve 37 

high spatial resolution (≈1 km) and long temporal (daily summaries for 30+ years) extent, this 38 

would impact the magnitude of the Tsk, Ta, and heat stress disparities found in the present study. 39 

We minimize potential errors in Ta by bias correcting the simulated Ta using observation fields. 40 

Similar errors due to biases in RH is expected to be minimal since Ta is several times more 41 

important than RH for operational metrics of moist heat stress13. Moreover, the bias correction of 42 

Ta also impacts RH since the model simulates q2, and RH is also a strong function of Ta. More 43 

importantly, both observational and coupled modeling studies confirm urban disparities in moist 44 

heat stress, with disparities being overestimated when using satellite-derived or modeled skin 45 

temperature, albeit these are for individual cities14,15.  46 
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Figure S1. Spatial variability over Chicago. Census-tract level variability in (A) satellite-derived 96 

daytime summer LST and average summer maximum of modeled (B) Tsk, (C) Ta, (D) RH, (E) 97 

HI, and (F) Humidex for the Chicago urbanized area. The same color bar range is used in all cases 98 

for easy comparison. 99 
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102 

 103 

Figure S2. Disparities in heat exposure by race. (A), (C), and (E) show the slopes of the linear 104 

regressions between the proportion of black population in a census-tract and satellite-derived 105 

summer daytime LST, and the average summer maximum of Ta and Humidex, respectively for 106 

the 481 urbanized areas. (B), (D), and (F) are similar, but for the proportion of white population. 107 

Circles with black outlines represent statistically significant correlations (p<0.01). 108 
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110 

 111 

Figure S3. Disparities in heat exposure metrics for all races. Box and whisker plots 112 

summarizing the slopes of the linear regressions between the proportion of population of each race 113 

in a census-tract and (A) satellite-derived daytime summer LST and average summer maximum 114 

of modeled (B) Tsk, (C) Ta, (D) RH, (E) HI, and (F) Humidex for the 481 urbanized areas. The 115 

numbers at the top give median sensitivities of the variable to a percentage change in race of the 116 

population. 117 
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 119 

Figure S4. City typologies for residential segregation and heat stress inequalities using 120 

alternative metrics. (A) Four-quadrant plot of heat stress (HI) concentration index (based on 121 

proportion of white residents) and Gini coefficient (replacing income with proportion of white 122 

residents) for the 481 cities considered here. The quadrant threshold for residential segregation is 123 

the mean Gini coefficent for race of the sample (0.1) and the quadrant threshold for heat stress 124 

distributional inequity is 0. The line of best fit between city-level heat stress concentration index 125 

and Gini coefficient for race and the associated linear regression equation, coefficient of 126 

determination (r2), p-value, and sample size (n) are noted. (B) is similar to (A) but uses Theil’s 127 

entropy index instead of the Gini coefficient for race as the metric for segregation. 128 
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 130 

Figure S5. Impact of bias correction on urban-scale average maximum summer air 131 

temperature. Correlations between the average summer maximum Ta from Daymet and the 132 

corresponding simulated values in the present study (A) before and (B) after bias correction. The 133 

mean bias error (MBE), coefficient of determination (r2), p-value, and sample size (n) are noted. 134 

Each sample corresponds to an urbanized area in the continental US.  135 
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 137 

Figure S6. Land surface temperature anomalies by HOLC security rating for different 138 

satellites. The distributions of anomalies in (A) MODIS-derived and (B) Landsat-derived mean 139 

summer daytime LST across 171 cities. The numbers at the bottom give median anomalies for 140 

each group. 141 

 142 
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 144 

Figure S7. Correlations of heat exposure metrics with income for redlined versus other cities. 145 

(A) shows distributions of correlation coefficients of satellite-derived mean summer daytime LST 146 

and the average summer maximum of modeled Tsk, Ta, RH, HI, and Humidex with income across 147 

the 143 cities that overlap with any HOLC rated neighborhood (median correlation coefficient r 148 

for each variable is annotated). (B) is similar to (A), but for the 338 cities that do not overlap with 149 

any HOLC rated neighborhood.  150 

 151 
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 153 

Figure S8. Distributions and disparities in air temperature based on gridded statistical 154 

dataset. Similar to Figures 3A, 5B, and S3C but based on a gridded 1 km near-surface Ta dataset 155 

using a statistical method constrained by MODIS-derived LST and ground observations16.  156 
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 157 

Figure S9. Model evaluation against satellite observations. (A) shows the correlation 158 

coefficient between census-tract level average summer maximum of modeled Tsk and satellite-159 

derived summer daytime LST for the 481 urbanized areas. (B) is similar, but for the slope of the 160 

linear regressions between the two variables. Circles with black outlines represent statistically 161 

significant correlations (p<0.01).  162 

  163 
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165 

166 

 167 

Figure S10. Standardized sensitivities to income and race. Similar to Figures 3A and S3A-S3G, 168 

but using standardized (range of 0 to 1) values of LST, Tsk, Ta, RH, HI, and Humidex as the 169 
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independent variables. The numbers at the top give the median standardized sensitivities of the 170 

variable to changes in income or percentage population of a particular race.  171 

  172 
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 174 

Figure S11. Examining upper and lower bounds of heat index. (A), (B), and (C) show the 175 

impacts of using average summer maximum specific humidity and 2-m air temperature to calculate 176 

heat index (HI (upper)) (versus average summer minimum specific humidity; HI (lower)) on the 177 

main results of the study.  178 


	ONEEAR802_proof_v6i6.pdf
	Residential segregation and outdoor urban moist heat stress disparities in the United States
	Introduction
	Results
	Methods summary
	Intra-urban variability in heat exposure
	Income inequality and heat-related disparities
	Residential segregation and heat-related disparities
	Historical redlining and heat-related disparities

	Discussion
	Experimental procedures
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Regions of interest
	Model simulations and bias correction
	Estimating outdoor moist heat stress
	Satellite data
	Data processing and analysis
	Generating city typologies using inequality metrics
	Racial segregation and heat stress burden

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References



