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SCIENCE FOR SOCIETY Combining millions of satellite-derived images of land surface temperature (LST)
with dynamic urban area estimates, we demonstrate that the urban influence on continental- to regional-
scale warming has become more detectable over time, especially for rapidly urbanizing regions and coun-
tries in Asia. However, themain cause of global warming is still not urbanization, contributing to only around
2% of the land warming during the study period. We also estimate these large-scale urban warming signals
under all shared socioeconomic pathways (SSPs) used to project global and regional climate change.
Based on these results, we argue that, in line with other forms of land use/land cover change, urbanization
should be explicitly included in future climate change assessments across scales. These patterns, also
seen for air temperature, reframe our understanding of urbanization in the climate system from only a
local-scale phenomenon to one with non-negligible regional- and even continental-scale impacts.
SUMMARY
Urbanization is usually ignored when estimating past changes in large-scale climate and for future climate
projections since cities historically covered a small fraction of the Earth’s surface. Here, by combining global
land surface temperature observationswith historical estimates of urban area, we demonstrate that the urban
contribution to continental- to regional-scale warming has become non-negligible, especially for rapidly ur-
banizing regions and countries in Asia. Consequently, expected urban expansion over the next century sug-
gests further increased urban influence on large-scale surface climate in the future (approximately 0.16 K for
North America and Europe for high-emission scenario in 2100). Based on these results, also seen for air tem-
perature, we argue that, in line with other forms of land use/land cover change, urbanization should be explic-
itly included in climate change assessments. This requires incorporation of dynamic urban extent and
biophysics in current-generation Earth system models to quantify potential urban feedback on the climate
system across scales.
INTRODUCTION

Changes in land use/land cover (LULC) modulate the Earth’s

climate through both biophysical and biogeochemical path-

ways.1,2 These impacts, although highly uncertain, are large

enough to be explicitly considered in future climate projections.3

This was done initially for the Coupled Model Intercomparison

Project Phase 5 (CMIP5) and is being expanded upon in Coupled

Model Intercomparison Project Phase 6 (CMIP6) with the incor-

poration of more accurate transient LULC data.3 However, ur-

banization, one of the most visible anthropogenic modifications

of the terrestrial surface, is usually not accounted for when

examining global climate.4 The effect of urban areas on climate

at these large scales is omitted or coarsely represented because
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they traditionally covered a tiny fraction of the Earth’s surface.

For observational estimates of historical climate change, this in-

volves setting up and selecting weather stations located away

from cities and adjusting for possible urban contamination of

the climatological record.5–7 For models, this omission is built-

in due to the lack of detailed urban representation in most Earth

system models (ESMs).4,8

At the local scale, however, the physical process of urbaniza-

tion—the replacement of natural land cover with built-up

structures—can significantly modify surface climate through

biophysical pathways.9 These pathways include changes

in surface reflectivity or albedo (a), reduction in evapotranspira-

tion, changes in momentum and other energy fluxes, etc.9,10

Many studies have examined these local-scale impacts of
ª 2024 Battelle Memorial Institute. Published by Elsevier Inc. 1
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

mailto:tc.chakraborty@pnnl.gov
https://doi.org/10.1016/j.oneear.2024.05.005
http://creativecommons.org/licenses/by-nc-nd/4.0/


ll
OPEN ACCESS Article

Please cite this article in press as: Chakraborty and Qian, Urbanization exacerbates continental- to regional-scale warming, One Earth (2024), https://
doi.org/10.1016/j.oneear.2024.05.005
urbanization, particularly on surface and near-surface tempera-

ture, commonly described by the urban heat island (UHI) ef-

fect.9–15 Previous observational studies have also attempted to

calculate whether urbanization has any measurable impact on

large-scale climatology and climatological trends with mixed re-

sults.5,6,16–21 Recently, several studies overmainlandChina have

shown detectable impact of urbanization on regional and even

national climate,19,22,23 although similar studies are rare over

other regions and countries.

The bulk of the research on possible urban influence (rather,

bias due to urbanization) on large-scale temperature trends

has been undertaken using or complemented by weather station

measurements of 2 m air temperature (AT). Since weather sta-

tions are generally placed away from the urban core to avoid

possible contamination,5,24–26 these in situ AT measurements

are not appropriate for estimating the impact of urbanization

and its spatial heterogeneity on large-scale climate. Further-

more, there are major sampling biases in AT measurements,

with dearth of observations in many rapidly urbanizing countries

and other inhomogeneities over long periods.5,7,24,26 Of note, the

urban-rural classification of stations is difficult if regions are

rapidly developing over the study period. While regional climate

models can be used to detect the impact of urban development

and expansion on the broader climate,27,28 these urban models

have large uncertainties and are expensive to run at the global

scale.29

The availability ofmore than two decades of spatially complete

satellite observations of emitted infrared radiation provides an

opportunity to address some of these homogeneity issues and

detect the urban signal on terrestrial climate using a different

but complementary measure of temperature—the LST. Urban

climate studies in the remote sensing literature have often

used LSTs, but with a focus on the UHI effect, also called the sur-

face UHI when quantified using LSTs.11,13–15 Thus, most of the

LST-based studies on urban climate, whether over single or mul-

tiple cities,30 focus on this local impact of urbanization on warm-

ing, usually as the difference in LST of the urban area and its

neighboring rural reference area.31

Here, we use these same satellite observations to ask a

different but fundamental question about the role of urbanization

on our planet—do cities and their changes, including lateral

growth, have a detectable influence on large-scale climate?

We demonstrate that urban influence on continental- to

regional-scale LSTs (and also for AT based on a global AT data-

set that accounts for urban areas) is non-negligible in recent de-

cades, partly due to rapid urban expansion, as seen for multiple

estimates of historical urban land cover, particularly over Asia.

Moreover, expected future urbanization for different SSPs sug-

gest further increases in this urban contribution to larger scale

surface climate signals.

RESULTS

Historical urban expansion
Between 1992 and 2019, global urban area increased by approx-

imately 226% (from 0.256% to 0.577%) based on the European

Space Agency’s Climate Change Initiative (ESA CCI) land cover

data (0.13% of the global terrestrial surface per decade) (Fig-

ures 1 and S1). Put another way, 448,113.6 km2 of urban land
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was added globally between 1992 and 2019 (178,630.6 km2

per decade). At the continental scale, the highest percentage in-

creases were in Asia (312%) and Africa (251%), with the lowest

changes in Oceania and other islands (approximately 155%).

At country scale, there are large variations, with the Netherlands

in Europe and Aruba in the Caribbean showing a more than

1,500% increase and nations like Iceland and Greenland

showing practically no change (Figure 1A). For countries with

populations exceeding 200 million (China, India, United States,

Indonesia, Brazil, and Pakistan), the percentage changes in ur-

ban area are 413%, 366%, 181%, 179%, 205%, and 864%,

respectively (108,446.3, 21,284.1, 64,831.5, 7,341.8, 13,663.3,

and 4,228 km2, respectively, of new urban land added between

1992 and 2019). Among the 20 countries with the most urban

area, China and the United States show the largest decadal ur-

ban area growth (43,517.8 and 25,088.4 km2 per decade,

respectively), while Japan, Germany, and Ukraine show the

strongest decadal urban growth as a percentage of the national

land area (1.36%, 1.4%, and 1.14% per decade, respectively)

(Figures 1C and 1E). Similarly, major urban expansion is also

seen between 2003 and 2019 (Figures S1, and S2), the main

time period of the LST analysis below. Note that we use the

2003 and 2019 period for this analysis since the most robust

LST estimates are available for this period from the moderate

resolution imaging spectroradiometer (MODIS) sensor onboard

the Aqua satellite.32 We also use a different satellite-derived

LST estimate (from Landsat33; see discussion and experimental

procedures) with greater uncertainty to confirm the consistency

of these urban warming signals for the entire 1992 to 2019

period, as well as its subperiods.

Urban signal on temperature trends across scales
To isolate the urban temperature or warming signal, we first

calculate continental-to regional-scale annual LST values for

two scenarios, one including the yearly urban pixels and one

without. The trends (regressed against the year) of the difference

between these two scenarios (DLSTu) give the urban contribu-

tions to the overall trends. An illustrative schematic of this

approach for the highly urbanized Shanghai metropolitan region

is shown in Figure 2 and the time series for overall LST and the

urban LST signal for all continents and the world are in Figure S3.

Between 2003 and 2019, there was a decadal, statistically signif-

icant increase in daytime (0.4 ± 0.12 K per decade at approxi-

mately 1:30 p.m. local time) (Figure 3A) and nighttime (0.48 ±

0.11 K per decade at approximately 1:30 a.m. local time) (Fig-

ure 3D) LST from Aqua satellite observations for global land.

The continental-scale LST trends during daytime were generally

not significant (pR 0.05), except for Asia and Europe. For night-

time, only North America showed non-significant increasing

trends (Figure 3D). Europe shows the strongest daytime LST

trends, which may partly be due to strong solar brightening dur-

ing this period.34 These trends are almost identical when we

examine the Terra satellite observations from 2001 to 2019

(Figure S4).

Unlike the relatively (statistically) weak continental-scale

trends in overall daytime LST, the urban LST signal is statistically

significant for almost all cases, with the strongest trends seen for

North America during daytime (0.01 K per decade) (Figure 3B)

and for Asia at night (0.013 K per decade) (Figure 3E). The global



Figure 1. Long-term changes in urban area at multiple scales

(A) shows a global map of country-wise percentage increase in urban area between 1992 and 2019.

(B and C) show decadal rate of change in percent of urban area at continental scale and for the 20 most urbanized countries (in 2019), respectively.

(D) illustrates urban extent (red pixels) in 1992 and 2019 for a few select cities. Water pixels are in black.

(E) Similar to (C), but for growth in urban area per decade. The error bars in (B), (C), and (E) give standard errors of the slopes of the linear least-squares re-

gressions. All changes are statistically significant (p < 0.0001).

ll
OPEN ACCESSArticle

Please cite this article in press as: Chakraborty and Qian, Urbanization exacerbates continental- to regional-scale warming, One Earth (2024), https://
doi.org/10.1016/j.oneear.2024.05.005
urban LST signal is 0.005 K per decade during daytime and 0.006

K per decade at night. Dividing the urban signal by the overall

trends gives the fractional urban contribution to the trend. The

global fractional urban contributions are small though non-negli-

gible for both day (0.013 or 1.3%) and night (0.011 or 1.1%).

Across continents, the urban contribution is largest for North

America during daytime (0.037 or 3.7%). Moreover, barring

Russia, Asia shows large urban contributions at around 0.08 dur-

ing daytime and 0.05 at night.

Among the 20 largest countries, China and Japan tend to show

large urban fractional contributions (can exceed approximately

0.25 during daytime for both), although this depends strongly

on the time of day (Figures S5 and S6). We also calculate the ur-

ban warming signals for the Yangtze River Basin (YRB), Yangtze

River Delta (YRD), and Indo-Gangetic Basin (IGB), three heavily

populated and rapidly urbanizing regions in Asia, which is the

fastest urbanizing continent (Figure 1B). The YRB region covers

most of southeastern China and is home tomore than 480million

people or one-third of China’s population (Figure 4A). Between
1992 and 2019, the urban percentage in YRB rose from 0.33%

to 1.57%. The YRD region, which is adjacent to the YRB and en-

compasses Shanghai and several other rapidly growing cities,

has a population of around 175 million, with the urban percent-

age increasing from 1.44% in 1992 to 8.35% in 2019, making it

one of the most urbanized regions in the country.35 Finally, the

IGB region, which covers part of Pakistan, most of North India,

and Bangladesh, has a population exceeding 750 million, with

the urban percentage increasing from 0.28% in 1992 to 1.4%

in 2019. Two of these regions, the YRB and YRD, show large

fractional urban contributions to LST, particularly during the day-

time. For YRB, the daytime fractional contribution crosses 0.39

and it is approximately 0.19 and approximately �0.02 for the

YRD and IGB, respectively. Interestingly, the daytime urban

LST signal in the YRD is much higher at approximately 0.12 K

per decade (versus 0.04 K per decade for the YRB), but the urban

fractional contribution is lower than that in the YRB (approxi-

mately 0.19) because of the larger overall rate of change in day-

time LST in the delta (Figure 4B). Note that the daytime urban
One Earth 7, 1–15, August 16, 2024 3



Figure 2. Schematic of methodological

approach

An overview of the approach used to estimate ur-

ban warming signals from regional to continental

scales in the present study illustrated over the

Shanghai metropolitan region in China. The urban

LST signal for each year is given by the difference in

regionally averaged LST for all land pixels and all

but urban land pixels. Trend analysis based on all

the annual signals provide bulk estimates of urban

contribution to large-scale warming. See experi-

mental procedures for more details.
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LST signal is negative for the IGB and positive for YRB. This is in

line with the sign of the daytime surface UHI in these regions

(positive over most cities in the YRB, and slightly negative over

parts of the IGB11,36) and relates to land cover transitions during

the urbanization process (also see example for Africa below).

Urban temperature signals and increased urbanization
The urban LST signals can be expressed as strong functions of

urban percentage at various scales (Figures 4E–4G and 5). The

sensitivities of the linear relationships are generally positive,

i.e., the urban LST signal increases as more land becomes ur-

banized, whichmakes conceptual sense. However, there are ex-

ceptions to this rule. For instance, among the continents, Africa

shows a negative sensitivity (�0.016 ± 0.001 K per urban%) dur-

ing daytime (Figure 5A), which mirrors the small (sometimes

negative) surface UHI magnitudes in drier climate.10–12 This is

due to differences in land cover transitions associated with ur-

banization in dry climate (versus wet climate), with urban areas

cooling more efficiently than arid landscapes.10 The strongest

sensitivities are for North America for both day (0.087K per urban

%) and night (0.062 K per urban %). Since these sensitivities are

indirect functions of the time period considered and the land

cover dataset, we test various combinations of these two factors

and find generally consistent results (Figures 5C and 5D; see

experimental procedures). We should note here that the urban

LST signal is the overall result of not just urban expansion

(although we plot the LST signal against urban percentage),

but also changes in other urban surface and atmospheric prop-

erties within the historical urban extents (for instance, densifica-

tion, greening, and air pollution), which we collectively refer to as

‘‘urbanization’’ for simplicity. However, to avoid confusion with

population-based definitions of urbanization,37 in the future, we

should use more clarifying terminology (say, ‘‘urban evolution’’)

to refer to this combination of changes in urban extent and

properties.

Although LST observations are limited to the satellite age,

these strong sensitivities can give us potential contributions to

the temperature signal over global land for pre-industrial period
4 One Earth 7, 1–15, August 16, 2024
and future projections. For North America

for instance, this contribution was practi-

cally zero in 1880 (0.008% urban) and

can rise to 0.17 K (during daytime; 0.12

K at night) in 2100 for SSP5 (1.9% urban)

(Figure 6). Globally, the contribution can

rise to around 0.05 K for SSP5 (for both
daytime and nighttime). This estimate may be on the lower

end, since higher urban percentages are predicted for future

scenarios in another dataset (Figure S7), with the global urban

LST contribution rising to 0.12 K for daytime (0.11 K for night-

time). With the mean global warming expected to be around

4.2 K (50% probability; note that this is for AT) compared with

pre-industrial levels by 2100 corresponding with SSP5,38 the ur-

ban contribution to warming during daytime over land as a per-

centage of global warming may be between approximately

1.2% (Figure 6) to approximately 2.9% (Figure S7), which is small

yet non-negligible and ignores potential feedback (both positive

and negative) due to the purely data-driven method used in the

present study. This percentage is generally similar across sce-

narios (e.g., 1.4%–2.5% for SSP2), but would also be a strong

function of the emission pathway associated with the SSP

scenario.

DISCUSSION

To minimize bias due to urbanization, in situ AT observations are

frequently made away from urban cores, with many weather sta-

tions located at nearby airports.14,26 As such, these measure-

ments cannot capture the heterogeneity of the urban environ-

ment,5,24 and thus its contribution to large-scale climate. In

contrast, in some regions, such as in China,7 urban (or urban

adjacent) AT measurements may be more common than mea-

surements in rural areas, leading to a different sampling bias.

When using in situ measurements, determining the extent of ur-

banization’s contribution to observed climate trends depends

on how an urban weather station is defined.21,26 Here, we take

advantage of global spatially continuous observations of LST

from the same sensor to isolate this signal in combination with

dynamic land cover data. By essentially being a population-level

sampling of almost all pixels over land, this method eliminates

the biases due to the irregular placement of weather stations

and the varied definitions of urban weather stations. Although

LST and AT are physically distinct variables, particularly relevant

for urban surfaces,13 they are generally coupled at annual scales



Figure 3. Continental-scale trends in LST and urban contributions to them

(A) Decadal rates of change in continental-scale and global daytime (approximately 1:30 p.m. local time) LST with urban pixels included based on satellite

observations from 2003 to 2019.

(B) Isolates the contribution from only urban pixels (trends in the LST difference between scenario including the urban pixels and scenario without).

(D and E) Similar to (A) and (B), but for nighttime (approximately 1:30 a.m. local time).

(C and F) Trends in the urban signal as a fraction of overall continental-scale trends in LST. The error bars give standard errors of the slopes of the linear least-

squares regressions and the number of * below each bar gives level of statistical significance of the correlations (***p < 0.0001; **p < 0.001; *p < 0.01; n.s.,

p R 0.05).
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and for large regions. For instance, land AT has increased 0.30 K

per decade between 2003 and 201939 compared with the 0.40 K

per decade (for daytime; 0.48 K at night) seen here for LST (Fig-

ure 3A). This is also seen from the similar sensitivities to urban

percentage in maximum and minimum AT (compared with day-

time and nighttime LST) computed using a recent gridded data-

set that accounts for urban areas (0.35 K and 0.43 K increases

per urban percentage for maximum AT and daytime LST,

respectively, for global land) (Figures 5A and S8A). However,

LST provides stronger lower boundary constraints to the atmo-

spheric column than AT by modulating the surface energy

budget and boundary layer meteorology, making it important

for climate-related feedback,40 which was the primary goal

behind isolating these urban signals in the present study.

Our satellite-derived estimates capture well established AT

trends, including the stronger nighttime warming for global

land surfaces.41,42 Exact comparisons with estimates of decadal

trends in the urban warming signals from most previous studies

are difficult due to the AT sampling bias, different time periods

used, and different objectives (examining bias due to urbaniza-

tion rather than actual urban impact on larger scale AT). Howev-

er, our trends in urban LST signals are similar to published values

for AT over China (0.03 and 0.05 K per decade during day and

night, respectively, vs. 0.05 K per decade in Zhou et al.18) and

the United States (0.022 and 0.015 K per decade during day

and night, respectively, vs. 0.027 K per decade in Kalnay and

Cai16) using the observation minus reanalysis method. Many of
these weather station-based estimates of urban bias to climato-

logical trends focused on the twentieth century. From 1992 to

2019, global urban area grew from 0.26% to 0.6%, which is

more than the growth for the 100 years before that. As such,

even if urban contribution to the climate signal was negligible

back in the 2000s, this is becoming less true as the world

urbanizes.

The urban LST signals calculated from isolating urban pixels

may be conservative, since urbanization can influence neigh-

boring non-urban pixels.36 Similarly, the urban AT signals (Fig-

ure S8) may be conservative since advection can carry the urban

influence downwind of the urban core.43 The clear urban signal

on continental-scale LST is also confirmed when we use two

other annually varying land cover datasets and from Landsat-

based LST estimates from 1992 (Figures 5C and 5D). Therefore,

we are confident in the role of urbanization on continental-scale

LSTs from these results. Of note, our estimates are several times

higher than a recent study on the urban impact on global LSTs

using a space-for-time approach.44 For instance, for the SSP5

scenario at the end of the century, the urban daytime contribu-

tion to LSTs over Europe is around 0.16 K in the present study

(Figure 6) (over 0.30 K from Figure S7) versus only 0.04 K in

Zhou et al.44 However, Zhou et al.44 extrapolated from only three

years (2014–2016) of MODIS Aqua observations instead of using

the full time series of observations—with multiple estimates of

historical land cover change and future projections of urbaniza-

tion—as done here. As more years of various observations,
One Earth 7, 1–15, August 16, 2024 5



Figure 4. Urban temperature signal for three regions of interest

(A) The extent of the regions of interest—the YRB, the YRD, and the IGB.

(B) Decadal rates of change in regional daytime (approximately 1:30 p.m. local time) and nighttime (approximately 1:30 a.m. local time) LST with urban pixels

included based on satellite observations from 2003 to 2019.

(C) Isolates the contribution from only the urban pixels.

(D) Trends in the urban signal as a fraction of the overall regional-scale trends. The error bars in (B) and (C) give the standard errors of the slopes of the linear least-

squares regressions and the number of * below each bar gives the level of statistical significance of the correlations (***p < 0.0001; **p < 0.001; *p < 0.01; n.s. for

p R 0.05).

(E–G) Associations between the yearly (2003–2019) urban signal on daytime and nighttime LST and the corresponding urban percentage for the YRB, YRD, and

IGB, respectively. The lines of best fit, including the standard errors of the slopes, and the coefficients of determination are noted for these cases.
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Figure 5. Associations between the urban temperature signal and urban percentage

(A) Associations between the yearly (2003–2019) urban signal on daytime (approximately 1:30 p.m. local time) LST and corresponding urban percentage for

continental and global scales.

(B) Similar to (A), but for nighttime (approximately 1:30 a.m. local time). The lines of best fit, including standard errors of the slopes, and coefficients of deter-

mination are noted for all cases.

(C and D) Sensitivities (slopes; standard errors of slopes given by the error bars) from different data sources and time periods, including the MODIS Aqua

(AQUA_ESA) and Terra (TERRA_ESA) estimates, Aqua estimates using theMODIS and global artificial impervious area (GAIA) land cover datasets (AQUA_MODIS

and AQUA_GAIA, respectively), and from Landsat for two different periods (2003–2019 for Landsat_ESA and 1992–2019 for Landsat_ESA_1992).
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including satellite data, are collected, future studies can further

test the robustness of these trends using longer time periods

and multiple data sources.

ESMs, our best tools for understanding the natural world at the

process level, are currently ill-equipped to isolate urban contri-
butions to climate change, with the few global models incorpo-

rating urban land cover doing so in simplistic manners.45–47 For

instance, the Community Land Model, used in several large-

scale urban studies,10,48,49 has fixed urban extent and thus

cannot isolate the important impacts of urban change and
One Earth 7, 1–15, August 16, 2024 7



Figure 6. Urban temperature signal and urban percentages for SSPs

Urban percentage for different SSPs for the continents and the world based on 1-km global projections. In each case, the horizontal black and blue dashed lines

represent estimated urban percentage for 1880 and 2019, respectively. The squares and diamonds (tick labels on the right-hand y axis), colored based on SSP

scenarios, represent total daytime and nighttime urban LST signals for 2100.
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expansion on regional climate (Figures 5 and 7). Moreover, other

radiative constraints relevant to urbanization are also poorly

represented, static, or both in commonly used numerical

models.4,50 In contrast, satellite observations suggest other clear

continental-scale changes associated with urbanization (Fig-

ure 7). This includes increasing trends in the urban aerosol

(except for Europe) and roughness (except for Africa) signals

and decreasing trends in both the urban vegetation and a signal

(except for South America). All of these ancillary changes over

time are included and contribute to the urban LST signal, since

it is from observations over global urban land over time. Based

on permutation importance scores from fifty iterations of random

Forest models (see experimental procedures), we find that, for

daytime, the urban vegetation signal is most important for pre-

dicting the urban LST signal, while roughness is the most impor-

tant at night (Figure S9). These changes can further influence

regional and maybe even global climate through adjustments

in the radiative budget, as well as through non-radiative

feedback.51 Of these, a modification through LULC change

(LULCC) has been increasingly considered in global climate as-
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sessments.52 Based on the sensitivities of the urban a signal to

urbanization (Figure 7B), the urban-induced change in global a

since pre-industrial period is �0.00012, roughly one-tenth of

the 0.00106 found for all LULCC.53 Extrapolating these historical

sensitivities for future scenarios will probably lead to overestima-

tions of the urban contribution to LST and AT as a management

strategies become more common in cities.

ESMsare nowused not just for simulating global future climate,

but also to test regional mitigation and adaptation scenarios.54

For instance, the YRB, YRD, and IGB are expected to continue

to urbanize in the future, with the YRB reaching 2.91% urban per-

centage in 2100 for SSP5, the YRD reaching 12.03%, and the IGB

reaching 1.65%. At these scales, urbanization can have even

greater contributions, with the fractional urban contribution to

daytime LST reaching 0.31, with the potential for almost 0.4 K

regional warming in 2100 for SSP5, using the YRD region as an

example (Figure 4). That the sensitivities of the urban LST signal

to urban percentage vary (and are sometimes opposite in sign)

across these regions (Figures 4E–4G) illustrates the complexity

of the urban influence on regional climate. Thus, we need to



Figure 7. Associations between other surface and atmospheric urban signals and urban percentage

(A) Associations between the yearly (2003–2019) urban signal on the EVI and the corresponding urban percentage for continental and global scales.

(B–D) Similar to (A), but for surface albedo (a), a proxy for surface roughness (ra), and AOD, respectively. The lines of best fit, including the standard errors of the

slopes, and the coefficients of determination are noted for all cases. The EVI, a, and AOD signals are multiplied by 100 to limit the number of decimal points in the

equations.
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improve urban representation in ESMs to more accurately simu-

late regional climate.22,55 Similar model improvements to incor-

porate land cover changes and land management practices are

also being undertaken.56 We currently have more than enough

evidence to move past the debate on whether urbanization is
the reason for globalwarming trends. Thewarming has happened

regardless of urbanization due to other anthropogenic changes

to the Earth system,57 with urbanization slightly adding to that

warming. Apart from the urban-induced modifications shown in

Figure 7, urbanization can also lead to complex regional feedback
One Earth 7, 1–15, August 16, 2024 9
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on clouds and boundary layer,29,58,59 which are difficult to assess

at larger scales without accurately representing urban areas and

their long-term dynamics in models. Although our statistical bulk

sensitivities (Figure 5) are a compositive proxy for all these feed-

back for the recent past, we cannot say how themagnitude of the

feedbackwill change in a warmer andwetter world60 without pro-

cess-based implementations. Importantly, in addition to overall

urban expansion, there are multiple competing factors that

need to be incorporated in dynamic urban representations in

next-generation ESMs—from unique densification rates in cities

that vary by region to changes in greening and a management

strategies.14,51 With the majority of the global population ex-

pected to live in cities in the future,37 our results support the

importance of explicitly treating urbanization (or preferably, ‘‘ur-

ban evolution’’) as another LULCC to capture a critical compo-

nent of the Anthropocene.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources and materials should be

directed to and will be fulfilled by the lead contact, TC Chakraborty (tc.

chakraborty@pnnl.gov).

Materials availability

Materials generated in this study have been deposited on Zenodo: https://doi.

org/10.5281/zenodo.11167731.

Data and code availability

The datasets generated for this study are all publicly archived on Zenodo:

https://doi.org/10.5281/zenodo.11167731.

Country-wise urban area for different periods

The availability of long-term satellite observations enables spatially continuous

estimates of urban area and its dynamic shifts at a global scale by leveraging

the unique spectral signature of these surfaces.19 This is generally more accu-

rate than classifying urban and rural weather stations using either administra-

tive boundaries, which do not necessarily correlate with physical urbanization

or population thresholds,37 which are poor proxies for the physical impacts of

urbanization on local climate.5,17

For historical trends, we use the ESA CCI land cover data, which is available

yearly from 1992 to 2020 at approximately 300 m resolution.61 The area of the

urban class for each country and each year, as recognized by the World Bank

(Figure 1A), is calculated from this dataset on the Google Earth Engine cloud

computing platform.62 For the continental-scale analyses, we do not sepa-

rately include the results for Oceania and other islands in the main discussion,

but those countries are accounted for in the global estimates.

To estimate pre-industrial urban area, we process the urban pixels in the

recent anthropogenic estimates of the History Database of the Global Environ-

ment (HYDE version 3.2) for 1850.63 This dataset is available at a 50 by 50 spatial
resolution from 10,000 Before Common Era to 2015 Common Era. Finally,

for future projections of urban land, we use the recently developed approxi-

mately 1-km dataset of future urbanization for all five SSPs, as defined by

the CMIP6.64 SSP1 is the ‘‘sustainability’’ scenario, SSP2 is the ‘‘middle-

of-the-road’’ scenario, SSP3 is the ‘‘regional rivalry’’ scenario, SSP4 is the

‘‘inequality’’ scenario, and SSP5 is the ‘‘high-emission’’ scenario.

Both the HYDE dataset and the future projections are calibrated against the

ESA CCI data for present conditions according to the original methodolo-

gies,63,64 lending consistency when combining them for the study. However,

the baseline year used to calibrate the future projections in Chen et al.64

against the ESA CCI data was 2015. Since that study, dynamic land cover

data for 2016, 2017, 2019, and 2020 have become available. We found that

the 2020 projections for even SSP1 from Chen et al.64 were lower than the

direct 2020 estimates from ESA CCI, especially over Asia and Europe (Fig-

ure S10A). So, we adjust the 2020 value for all SSP scenarios to be identical

to the 2020 values at the continental and global scales. This adjustment
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does not change our results much (increasing the daytime urban LST signal

in 2100 for SSP5 scenario over Asia from 0.034 K to 0.039 K, for example),

but does demonstrate the difficulty of projecting urban growth, especially

over rapidly urbanizing regions.

Urban temperature signals at continental scales

We generate annual composites of LST from approximately 13,000 daily

global MODIS observations.32 The Aqua and Terra satellites, which carry the

MODIS sensors, cross the equator at four times, at approximately 10:30

a.m. and approximately 10:30 p.m. local time (for Terra) and approximately

1:30 a.m. and approximately 1:30 p.m. local time (for Aqua). The overpass

times are relatively stable for a pixel over the year, making it simple to generate

composites correspondingwith the overpass times. Complete global observa-

tions from these sensors are available starting from 2001 for Terra and 2003 for

Aqua at approximately a 1-km resolution. The same MODIS sensors have

continuously monitored the Earth throughout this period, unlike ground-based

weather stations, for which sensor changes are common. Based on the qual-

ity-control flags in the derived product, we mask out pixels if the uncertainty is

greater than 3 K before compositing.

The urban temperature signal (DLSTu) is calculated as the difference be-

tween spatially averaged (by country, continent, region, or all terrestrial sur-

faces) LST for all land pixels (LSTall) and the average LST for all but urban

land pixels (LSTall-u) (Figures 2 and S3). Thus:

DLSTu = LSTall � LSTall� u: (Equation 1)

The water pixels are masked out in both cases. These masks are generated

from the ESA CCI land cover data for the corresponding years (2003–2019 for

Aqua and 2001–2019 for Terra). We do not include 2020 in this analysis, since

that was not a typical year, with major lockdowns due to COVID-19 impacting

urban climate signals.65 The spatial averaging is done after re-gridding the

MODIS composites to approximately a 300-m resolution, same as the ESA

CCI data. Note that the overall LST trends result (Figure S3) from several

competing factors, including changes in biophysical surface properties, inter-

decadal to multi-decadal variability, long-term trends in solar brightening and

dimming driven by cloud cover, aerosols, and other atmospheric constituents,

and so on.34,66,67 As an example, China and India, which have experienced sig-

nificant urbanization and, thus, strong urban LST signals, show statistically insig-

nificant or even negative changes in overall LST (Figures S5, and S6; also see

Figure 4 for three rapidly urbanizing regions overlaying these countries). Part

of this could be related to greening trends over these two countries during this

period,68 which is a negative feedback to surface warming. Similarly, large solar

brightening trends have been seen over Europe,34,69 which would explain the

relatively large magnitudes of LST trends over this region (Figures 3A, 3D, and

S3). In the present study, we do not focus on the contributors to these overall

trends and, through Equation 1, remove the impact of these other factors to

isolate the bulk urban signal. We also do not focus on local-scale urban climate

signals, such as the UHI, which has been studied extensively in the past using

satellite-derived or modeled surface temperature.9–13,70 Observational studies

also commonly account for elevation differences between urban and rural areas

before isolating local urban climate signals. Although this is simple to incorporate

into our workflow, we do not do this here for two reasons. First, because

removing pixels using elevation thresholds is not consistent with our objective

of estimating the urban signals averaged over all land surfaces. Second, the im-

pacts of elevation should be minimal over time, and would generally cancel out

when estimating the signals as functions of urbanization.

Overall, here we consider urbanization from a broader context, which in-

cludes both biophysical changes in surface properties (such as more built-

up structures and replacement of vegetation),10,12 but also their associated

effects on atmospheric forcing (such as through aerosol loading71; see next

subsection). The default daytime and nighttime warming estimates presented

here refer to the LST corresponding to the Aqua overpass. LST from other sat-

ellites (Terra and Landsat), as well as AT, are also considered (and explicitly

mentioned) for specific discussions.

Continental urban signals for other factors

In addition to LSTs, we also estimate the urban signal for other surface and at-

mospheric variables that are known to be modulated by urbanization.9,10,51

mailto:tc.chakraborty@pnnl.gov
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This includes proxies for surface vegetation and aerodynamic roughness, sur-

face reflectivity of solar radiation, and air pollution. Note that, similar to the ur-

ban LST signal, these trends account for absolute changes in the variables due

to regional factors not directly related to urbanization (including air pollution

cleaning efforts, and large-scale deforestation/afforestation).

The enhanced vegetation index (EVI), a proxy for live vegetation on the sur-

face, is used to estimate the urban signal on continental-scale vegetation. The

EVI is used instead of the commonly used normalized difference vegetation in-

dex (NDVI), since the NDVI can get saturated over dense vegetation, such as

over the tropics.72 Similar to the LST, annual composites are created from

2003 to 2019 based on the cloud-screened 16-day MODIS-derived vegetation

indices available at approximately 250-m resolution.73 As expected, the con-

tinental-scale urban EVI signal decreaseswith continued urbanization, with the

smallest decrease seen over Africa and the largest over South America

(Figure 7A).

Aerodynamics roughness (ra) is generally difficult to measure over heteroge-

neous terrain, particularly cities. Here, we approximate it as the standard de-

viation of the global ALOS World 3D - 30m (AW3D30) digital surface model.74

This approximation has been used in past studies13,75 andworks reasonably at

coarser scales. For instance, the urban ra signal increases with urbanization in

Africa and decreases everywhere else (Figure 7C). This is what one would

expect; arid landscapes tend to be aerodynamically smoother than cities,

while vegetation landscapes, more common over the other continents, are

aerodynamically rougher.10,66 Unfortunately, the AW3D30 data are not avail-

able yearly, which prevents detection of change in urban ra over time.

The total reflectivity or albedo (a) at the surface can be separated into the

black-sky albedo (BSA), or the reflectivity of the direct beam radiation, and

the white-sky albedo (WSA), the reflectivity of diffuse radiation. Annual

(2003–2019) composites of WSA and BSA are generated from theMODIS daily

albedo product available at approximately 500-m resolution using the best-

quality pixels using the quality-control flags.76 Finally, these two composites

are combined with annual pixel-wise estimates of diffuse fraction of sunlight

(kd) to get the total a:

a = WSA kd +BSAð1 � kdÞ: (Equation 2)

There are large biases in kd in most long-term reanalysis and satellite-

derived products compared with observations.69 So we instead extract kd
from the bias-adjusted RADiation dataset, which is generated using a super-

vised learning algorithm using a global observation network.77 In all cases

other than in South America, the urban a signal is negative, or urban areas

are darker than natural surfaces.

Finally, we generate annual composites of aerosol optical depth (AOD), a

measure of the bulk radiative properties of the aerosols in an atmospheric col-

umn, from the approximately 1-km daily MODIS product derived from mea-

surements from Terra and Aqua using pixels with the higher quality-control

flags.78 As expected, in all continents, the urban AOD signal is positive, or ur-

ban areas raise the continental-scale averages by having heavier aerosol

loading. The strongest signals are seen over North America (Figure 7D). Since

the urban signal for EVI, a, and AOD can reach the fourth or fifth decimal pla-

ces, we multiply these by 100 in Figure 7.
Trend and sensitivity analyses

To calculate the long-term trends, the overall country-wise averages (LSTall,

and similarly EVIall, ra,all, aall, and AODall) as well as the urban signals (DLSTu,

DEVIu, Dra, u, Dau, and DAODu) are regressed against the year using ordinary

least squares (OLS). Dividing the urban signals by the overall trends (say

DLSTu/LSTall) provides a preliminary estimate for the urban contribution to

the trends during the chosen time period. We stress that these trends, and

thus these contributions, are reflective of the changes during that period and

can be somewhat unstable, especially when the overall changes are close to

zero. So, we also calculate the sensitivities of these urban signals to the urban

percentages calculated from the ESA CCI data, which removes the explicit

dependence on time. Similar sensitivities can also be estimated for specific

seasons. For instance, see Figure S11 for estimates for summer day and night.

These are derived from images for June, July, and August for the northern

hemisphere and December, January, and February for the southern hemi-

sphere. However, it should be noted that different climate zones have different
cloud cover percentages with distinct seasonality,79 whichwouldmake it more

uncertain to establish stable trends for smaller subsets of the year.

When calculating these sensitivities, since both x and y variables have er-

rors, we use the reduced major axis regression,80 instead of OLS regression.

The slope of this regression can be combined with the calculated urban frac-

tions (fb) for the past and the future to estimate the corresponding urban sig-

nals for different periods. Below is an example for the total LST change due

to urbanization between 1850 (pre-industrial) and 2100 for the SSP5 scenario

(DLST2100,SSP5–1850):

DLSTu;2100� 1850 =
DLSTu;std

fb;std
ðfu;2100;SSP5 � fu;1850Þ: (Equation 3)

Here,
DLSTu;std

fb;std
is the slope of the reduced major axis regression based on the

standard deviations (std) of the two variables between 2003 and 2019,

fb,2100,SSP5 is the urban fraction based on the adjusted future projections of ur-

banization and fb,1850 is the urban fraction for 1850 from the HYDE dataset.

Regional trends for rapidly urbanizing regions

Our method (Equation 1) is a function of both the overall regional trend and the

regional trend without considering the urban pixels. As such, unique regional

urban LST signals would emerge that would have distinct degrees of relevance

to human impacts depending on regional population density. For instance,

removing the Sahara Desert alters the sensitivity of the urban LST signal

over Africa to changes in urbanization, while still maintaining the same direc-

tion of the urban contribution (Figure S12). We also illustrate the urban contri-

bution to LST trends for three rapidly urbanizing and densely populated re-

gions in Asia—the YRB, the YRD, and the IGB.

Distinction of our approach from traditional methods

In the satellite remote-sensing literature, urban impacts on warming are almost

always quantified at the local scale,11,15,30 usually by subtracting the mean ur-

ban LST from the LST of a neighboring region, also called the rural reference.31

This is because, at larger scales, urban and non-urban regions are unevenly

distributed and can be in very different climate zones. For instance, there is

a concentration of urban areas in coastal environments,81 which have unique

climatic patterns and interactions with urbanization.82 By using a rural refer-

ence close to, and generally surrounding, the urban area, the sampling bias

of urban areas in larger regions can be eliminated. However, our goal here is

not to examine this local-scale urban signal, also called the surface UHI, which

has been extensively studied in the past.15,30,50 Instead, we wanted to esti-

mate if the urban impact on temperature can be detected at larger scales

(regional to continental) regardless of the distribution of urban areas in those

regions. This is important both for understanding whether urbanization can

have a detectible impact on large-scale climatological signals17,20,21 and for

supporting the need for explicit representation of urban areas in Earth system

and climate models.49,55

To illustrate, we compare our approach to a traditional buffer-based

method, often used to estimate the surface UHI intensity. We first vectorize

contiguous groups of urban pixels in the 2019 estimate of the ESACCI dataset.

This generates 846,742 urban clusters globally. To ensure a clean urban signal

at the MODIS LST scale, we only consider the clusters that are larger than

1 km2, which leaves 83,102 clusters. Then, we use an interactive approach

to create buffered regions around each urban cluster, such that the buffer is

roughly equal in area to the urban cluster it surrounds. The surface UHI is

then calculated as the difference in average LST of the urban clusters and

the average LST of the non-urban and non-water pixels within the rural refer-

ences (buffers) of those clusters. Similar normalized buffer approaches are

common in the literature.31,65 As one might expect, the local urban LST signal,

or the surface UHI, shows much higher values for all continents than the urban

LST signal at the continental/global scale (Figure S13).

Contributions of factors to urban temperature signal

Although not the primary focus of the study, we also examine the associations

between the country-scale urban LST signal and the corresponding signals for

major surface and atmospheric factors as a sanity check. To do this, we first

calculate all the trends in the urban signals between 2003 and 2019 and treat

the trend for each country as a sample. To capture both linear and non-linear
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interactions, we use RF regression, which is a non-parametric machine

learning technique that uses ensembles of weak learners (decision trees)

and is less sensitive to outliers than parametric models.83 Similar methods

have been used in previous studies on local warming due to urbanization.13,65

The RF models represent the trend in DLSTu (DLSTu,t) as generic functions of

the corresponding trends in DEVIu, Dra, u, Dau, and DAODu. Thus:

DLSTu;t = fðDEVIu;t;Dra;u;t;Dau;t;DAODu;t Þ . (Equation 4)

To examine consistency of the results, the RF models are run using all sam-

ples (countries) a total of 50 times using default hyperparameters and out-of-

bag (OOB) score estimation turned on using the scikit-learn Python package.

Normally, machine learning models require separate training and validation

data with different random splits to reduce dependence on the choice of the

training subset. However, with bootstrapping turned on, RF models internally

choose a random subset of the dataset for each iteration. The OOB validation

gives us the accuracy of the model for the subset of data not used for training

for each of those iterations. Finally, we calculate permutation importance

scores for each feature, which give us the relative importance of a feature in

the model by randomly shuffling them and estimating changes in the model

score. Overall, the average OOB validation r2 from all 50 runs is around 0.40

during daytime and 0.11 at night. This suggests that we are still missing

some key features, particularly at night, which makes sense when contextual-

ized within the existing literature.9 Many of these additional features cannot be

derived at these scales using satellites. Moreover, while the RFmodels give us

associations as learned from the distribution in the training data, they cannot

establish causality. For instance, several of these variables (such as EVI and

a) are correlated.65 This reinforces the need for process-based models that

can represent urban-scale interactions and their changes over time and thus

allowmore targeted modeling experiments for future scenarios of urbanization

and their possible larger scale feedback. According to the permutation scores,

during daytime, DEVIu, t is the most important variable, while Dra, u becomes

more important at night, which is generally consistent with a previous urban-

scale estimate.13
Verifying results across regions, periods, and datasets

In the present study, we use countries as the common geographic units of

calculation since many of these results are nationally relevant and these esti-

mates can be easily aggregated to the continental scale. The methods of the

present study can be used for any region, as seen from the regional analysis

earlier. To illustrate the presence of similar larger scale trends for more

climate-relevant regions of interest, we recalculate the sensitivities of the ur-

ban LST signal from the MODIS Aqua observations using the Köppen-Geiger

climate zones84—namely tropical, arid, temperate, boreal, and polar—as the

geographic units of calculation. As expected, consistent urban warming sig-

nals linearly associated with urbanization are seen in all cases other than for

Arid climate zone during daytime (Figure S14). The urban cooling signal is

consistent with the generally negative daytime surface UHI in arid areas10,11

and also with the results seen for Africa (Figure 5A).

One limitation of the present study is the relatively short time series for the

MODIS observations, which is why there is a disconnection between the anal-

ysis of urban expansion for 1992 to 2019, and for the rest of the analysis (2003–

2019). Note that this latter period also shows rapid urbanization (Figure S2).

Estimates of LST from the Landsat satellites, with native resolution of approx-

imately 60 m for Landsat 7 to approximately 120 m for Landsat 5 (approxi-

mately 100 m for Landsat 8), can be an alternative here due to the longer

time series.33 We calculate similar urban LST signals from the Landsat collec-

tion 2 product using the ESA CCI dataset for both the 2003–2019 period

(Landsat_ESA in Figures 5C and 5D) and for the entire ESA CCI archive

(1992–2019; Landsat_ESA_1992 in Figures 5C and 5D). Pixel-level quality con-

trol flags are used before generating annual means. Landsat 5 data are used

for 1992–2011 (1,402,063 images used), Landsat 7 for 2013 and 2014

(218,227 images used), and Landsat 8 from 2015 onwards (928,993 images

used). The sensitivities are consistent for both time periods when compared

with the MODIS-derived daytime estimates from Terra (closest overpass

time to Landsat) globally and across continents (Figures 5C and 5D). Since

the timing and rate of urbanization varies across continents, we also check

whether the urban LST signals are consistently seen for different subsets of
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this 1992–2019 period. We do so by calculating trends for all consecutives

17-year periods, which equals the length of the time series used for the

MODIS Aqua analysis in the main text, from the Landsat estimates. Consistent

positive LST signals are found for all continents other than Africa for all the sub-

periods (Figure S15). Of note, North America shows stronger sensitivity of the

urban LST signal to urban percentage in second one-half of the subperiods

while the opposite is true for South America. For Africa, the negative sensitiv-

ities tend to get less negative in more recent subperiods, suggesting changes

in the urbanization regime in Africa in more recent years. However, we should

note that the Landsat measurements have several limitations for the purposes

of this study. These limitations include very few nighttime overpasses,

thus only allowing daytime estimates, a 16-day return period (vs. daily for

MODIS), making the data more susceptible to cloud contamination when esti-

mating annual means, changes in sensors during the study period, unequal

coverage across continents, and a lack of standardization for prescribing sur-

face emissivity, particularly an issue over urban areas.50

A second source of uncertainty is the choice of urban dataset, both for his-

torical land cover and for future projections. We use the ESA CCI data as the

default land cover in our analysis due its consistency with the historical HYDE

data as well as the future projections from Chen et al.,64 overall ability to pick

up urban growth over time,85 and similar resolution to the MODIS LST data. To

confirm the presence and magnitude of this urban LST signal’s sensitivity to

urbanization, we consider two additional annual land cover datasets, namely

the MODIS land cover version 6, available at 500-m resolution from 2001 to

present,85 and the global artificial impervious area dataset,86 available at

30-m resolution from 1985 to 2018. Using the Aqua estimates (approximately

1:30 a.m. and approximately 1:30 p.m. local time) as the standard for compar-

ison, we similarly calculate the urban LST signal (Equation 1) after regridding

the LST data to the native resolution of the land cover dataset. The other data-

sets also show similar sign of the sensitivity (except for Europe at nighttime)

and generally similar rank of sensitivities across continents. However, we do

note much higher sensitivities from the MODIS data. This is because the

MODIS land cover dataset barely shows any long-term changes in urban

area compared with other datasets (Figure S1) (also see Huang et al.85), thus

increasing the sensitivity of the urban LST signal to unit changes in urban per-

centage. Similarly, for future urbanization, using a different projection,87 we

find much larger urban contribution to continental and global land LST (Fig-

ure S7). As an illustration, the daytime urban LST signal over Asia at the end

of the century for SSP5 scenario is 0.039 K based on Chen et al.64 and over

three times that (0.136 K) based on Gao and O’Neill.87 The projections from

Gao and O’Neill87 suggest much more urbanization in the future (e.g., 2–2.5

times the estimates from Chen et al.64 at the end of the century). This is due

to different assumptions about the SSP scenarios used when generating the

datasets, consideration of different number of sub-regions (32 in Chen

et al.64 versus 375 in Gao and O’Neill87), and differences in how the datasets

are calibrated. This leads to some interesting regional differences, with the

Chen et al.64 dataset not showing much divergence for the different SSP sce-

narios over Asia compared with the projections from Gao and O’Neill.87 In

summary, although different historical estimates and future projections of ur-

banization would lead to different magnitudes of the urban warming signal,

the signal itself is consistent across datasets.

Satellite observations have missing data due to cloud contamination,

shadows, and other atmospheric interferences. To test how these missing

pixels affect our results, we recalculate the sensitivities of urban LST signal

to urban percentage using a recently released approximately 1-km seamless

daily LST product generated using MODIS Terra and Aqua observations and

a comprehensive gap-filling procedure.88 These sensitivities (Figure S16) are

practically identical to those seen in Figure 3 based on the 2003–2019 period.

Thus, the missing data have very little effect on long-term changes in the urban

LST, and thus estimates of future urban contribution to continental-scale LST

change. Regardless of the gap-filling method used, the LST data are valid for

clear-sky conditions, while weather stations can measure ambient AT even

when there are clouds. However, it is difficult to justify that there is no urban

contribution to continental-scale temperature for all-sky conditions when the

clear-sky signals are so clear.

Finally, LST is not AT and the two can be poorly coupled spatially within and

across urban areas.13 However, this coupling is expected to be stronger at the

annual scale and especially when looking at larger regions. To confirm, we



ll
OPEN ACCESSArticle

Please cite this article in press as: Chakraborty and Qian, Urbanization exacerbates continental- to regional-scale warming, One Earth (2024), https://
doi.org/10.1016/j.oneear.2024.05.005
calculate sensitivities in maximum and minimum annual average urban AT

signal based on a recent daily 1-km dataset.89 Overall, clear urban AT signals

are seen with similar ranking of magnitudes across continents for both daytime

and nighttime (Figure S8). The sensitivities for AT tend to be lower than that for

LST, although the degree of uncoupling varies by continent (Figures 3A, 3B,

S8A, and S8B). While we do not examine this here, we would expect the de-

gree of decoupling to also vary by season. We stress here that these clear ur-

ban AT signals should be contextualized against the existing studies that

commonly use weather station data16–18,22 and is important for understanding

regional heat exposure beyond the urban boundary. In contrast, the somewhat

stronger urban LST signals are more relevant for climate-related feedback due

to the lower boundary constraints provided by LST on near-surface and atmo-

spheric processes.
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Fig. S1. Timeseries of urban percentage from multiple datasets. Long-term trends in urban 

percentage for the continents and the world in the land cover datasets considered in the present 

study.   



 

Fig. S2. Long-term changes in urban area since 2003. A shows a global map of country-wise 

percentage increase in urban area between 2003 and 2019. B and C show decadal rate of change 

in percent of urban area at the continental scale and for the twenty most urbanized countries (in 

2019), respectively.  D is similar to E, but for growth in urban area per decade. The error bars in 

B, C, and D give the standard errors of the slopes of the linear least-squares regressions. All 

changes are statistically significant (p < 0.0001). 

  



 

 

Fig. S3. Long-term trends in land surface temperature with and without the urban signal for 

MODIS Aqua. Long-term (2003-2019) trends in land surface temperature (LST; red) for the 

continents and the world, as well as the urban LST signal (purple) for each case, corresponding to 

the MODIS Aqua A daytime and B nighttime overpass, respectively. 

  



 

Fig. S4. Continental-scale trends in land surface temperature and urban contributions to 

them from MODIS Terra. A shows decadal rates of change in continental-scale and global 

daytime (~10:30 am local time) land surface temperature (LST) with urban pixels included based 

on MODIS Terra observations from 2001 to 2019. B isolates the contribution from only the 

urban pixels. D and E are similar to A and B, but for nighttime (~10:30 pm local time). C and F 

show the trends in the urban signal as a fraction of the overall continental-scale trends in LST. 

The error bars in A, B, D, and E give the standard errors of the slopes of the linear least-squares 

regressions and the number of * below each bar gives the level of statistical significance of the 

correlations (three * for p<0.0001; two * for p<0.001; one * for p<0.01; ‘n.s.’ for p>=0.05). 

  



 

Fig. S5. Country-scale trends in land surface temperature and urban contributions to them 

from MODIS Aqua. A shows decadal rates of change in country-scale daytime (~1:30 pm local 

time) land surface temperature (LST) with urban pixels included based on satellite observations 

from 2003 to 2019. C isolates the contribution from only the urban pixels. B and D are similar to 

A and C, but for nighttime (~1:30 am local time). Results are shown for the twenty most 

urbanized countries (in 2019). The error bars give the standard errors of the slopes of the linear 

least-squares regressions and the number of * below each bar gives the level of statistical 

significance of the correlations (three * for p<0.0001; two * for p<0.001; one * for p<0.01; ‘n.s.’ 

for p>=0.05). E and F show the trends in the urban signal as a fraction of the overall country-

scale trends in LST during day and night, respectively.  

  



 

Fig. S6. Country-scale trends in land surface temperature and urban contributions to them 

from MODIS Terra. A shows decadal rates of change in country-scale daytime (~10:30 am 

local time) land surface temperature (LST) with urban pixels included based on satellite 

observations from 2003 to 2019. C isolates the contribution from only the urban pixels. B and D 

are similar to A and C, but for nighttime (~10:30 pm local time). Results are shown for the 

twenty most urbanized countries (in 2019). The error bars give the standard errors of the slopes 

of the linear least-squares regressions and the number of * below each bar gives the level of 

statistical significance of the correlations (three * for p<0.0001; two * for p<0.001; one * for 

p<0.01; ‘n.s.’ for p>=0.05). E and F show the trends in the urban signal as a fraction of the 

overall country-scale trends in LST during day and night, respectively. 

 

 

 

 

 

 

 



 

 

 

Fig. S7. Urban temperature signal and urban percentages for shared socioeconomic 

pathways based on Gao and O’Neill’s projections. Urban percentage for different shared 

socioeconomic pathways (SSPs) for the continents and the world based on 1 km global 

projections from Gao and O’Neill (2020). In each case, the horizontal black and blue dashed 

lines represent estimated urban percentage for the years 1880 and 2019, respectively. The 

squares and diamonds (tick labels on the right-hand y axis), colored based on SSP scenarios, 

represent total daytime and nighttime urban land surface temperature (LST) signals for the year 

2100. 

  



 

Fig. S8. Associations between the urban air temperature signal and urban percentage. A 

shows the associations between the yearly (2003-2019) urban signal on maximum air temperature 

(AT) and the corresponding urban percentage for continental and global scales. B is similar to A, 

but for minimum AT. The lines of best fit, including the standard errors of the slopes, and the 

coefficients of determination are noted for all cases.  

  



 

Fig. S9. Ranked variable importance scores for the urban temperature signal. Permutation 

importance scores for the random forest models for A daytime and B nighttime urban land surface 

temperature (LST) signals. The error bars show the standard deviation across the fifty model runs. 

  



 

 

Fig. S10. Comparison between projected urban percentage and observed percentage. 

Comparisons between continental-scale urban percentage projection for the SSP1 scenario from 

A Chen et al. and B Gao & O’Neill and the observed 2020 values from the European Space 

Agency’s Climate Change Initiative (ESA CCI) land cover dataset. Each data point corresponds 

to one continent (not including Seven Seas). The equation for the line of best fit, root-mean squared 

error (RMSE), mean bias error (MBE), and coefficient of determination (r2) are noted. 

  



 

Fig. S11. Associations between the summer temperature signal and urban percentage. A 

shows the associations between the yearly (2003-2019) urban signal on summer daytime (~1:30 

pm local time) land surface temperature (LST) and the corresponding urban percentage for 

continental and global scales. B is similar to A, but for nighttime (~1:30 am local time). The lines 

of best fit, including the standard errors of the slopes, and the coefficients of determination are 

noted for all cases.  

  



 

Fig. S12. Impact of selection of regions on continental scale signal over Africa. A shows the 

associations between the yearly (2003-2019) urban signal on summer daytime (~1:30 pm local 

time) land surface temperature (LST) and the corresponding urban percentage for continental and 

global scales. B is similar to A, but for nighttime (~1:30 am local time). The lines of best fit, 

including the standard errors of the slopes, and the coefficients of determination are noted for all 

cases.  

  



 

 

Fig. S13. Comparisons between local and global urban land surface temperature signals. A 

shows urban signal on daytime (~1:30 pm local time) land surface temperature (LST) for the year 

2019 at the continental/global scale, using the approach of the present study, and at the local scale, 

which is equivalent to surface urban heat island estimates. B is similar to A, but for nighttime 

(~1:30 am local time).  



 

 

Fig. S14. Associations between urban temperature signal and urban percentage by climate 

zone. A shows associations between the yearly (2003-2019) urban signal on daytime (~1:30 pm 

local time) land surface temperature (LST) and corresponding urban percentage for all Köppen-

Geiger climate zones. B is similar to A, but for nighttime (~1:30 am local time). The lines of best 

fit, including standard errors of the slopes, and coefficients of determination are noted for all cases.  



 

 

Fig. S15. Choice of subperiod of analysis and sensitivity of urban temperature signal to 

urban percentage. Sensitivities (slopes; standard errors of slopes given by the error bars) of the 

urban land surface temperature (LST) signal to urbanization for all possible 17-year consecutive 

time period within 1992 and 2019 based on Landsat LST for all continents and the world. 



 

Fig. S16. Associations between the urban temperature signal and urban percentage using 

gap-filled LST. A shows the associations between the yearly (2003-2019) urban signal on midday 

gap-filled land surface temperature (LST) and the corresponding urban percentage for continental 

and global scales. B is similar to A, but for midnight. The lines of best fit, including the standard 

errors of the slopes, and the coefficients of determination are noted for all cases.  
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