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Projected widening of sociodemographic heat
disparities in the United States by end of century

Graphical abstract

Heat stress exposure will increase sharply across the U.S. by 2100

From 2020 to 2100, the median Heat Index is projected to rise by 6.1°F (3.4°C) in the “middle of the
road” scenario (SSP2-RCP4.5), where the number of at-risk U.S. counties increases to 66%.
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In brief

We utilize Earth systems models and five
future climate warming scenarios to
evaluate heat stress in US counties from
present day until 2100. We uncover
significant disparities in future heat
exposure, especially affecting the elderly
and people of color, predominantly in the
Southern US. Disparities for non-Hispanic
Black populations are projected to widen
as global temperatures rise. These results
underscore the necessity of integrating
sociodemographic factors in climate
adaptation strategies to address
heightened vulnerability and at-risk
populations.
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SCIENCE FOR SOCIETY Extreme heat is the deadliest weather hazard in the United States (US), driving hos-
pital visits, straining power grids, and endangering outdoor workers. However, the burden is not shared
equally: race and ethnicity, age, income, and where you live shape who faces the greatest risk. Many com-
munities still lack clear, forward-looking guidance on where temperatures and heat stress will surge and
which residents will be hardest hit. Our study projects future heat exposure for every US county through
2100. We find that exposure rises everywhere, but gaps widen, especially in the South and among older
adults and Black communities. State and local leaders, health departments, and utilities can use these results
to target protections, such as cooling centers, home cooling assistance, shade and street trees, and worker
safeguards, where they are needed most, guiding fair and effective adaptation plans.

SUMMARY

As global temperatures rise, heat-related hazards will escalate, unevenly affecting different regions and
socioeconomic groups across the United States. However, we lack robust projections of who will face how
much heat in the future, a gap that risks misdirecting adaptation resources and deepening avoidable and ineq-
uitable health impacts. Here, we combine multi-model ensemble of climate projections from the Coupled
Model Intercomparison Project Phase 6 (CMIP6) with sociodemographic estimates to examine county-level
exposure to moist heat stress from the present day to 2100. Our results show scenario-dependent widening
of heat exposure by sociodemographic and geographic characteristics, with non-Hispanic Black populations,
older adults, and heat-prone Southern counties experiencing the greatest increases. Across intermediate,
high, and very high emission scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5), absolute “Extreme Caution+” dis-
parities expand, with the largest gaps in 2100 between non-Hispanic Black and non-Hispanic White popula-
tions. By resolving exposure by group, location, and scenario, these results can better inform adaptation plan-
ning that reflects differential risk and allows for prioritizing resources for the most affected communities.

INTRODUCTION on human health due to increased heat exposure. For instance,

the contiguous United States (US) observed an increase in heat-
Global warming increases heat stress, which poses profound related mortality attributed to anthropogenic climate change,
threats to human health and society,“5 particularly during sum-  with approximately 12,000 premature deaths occurring annually
mer months.®’ Recent decades have seen detrimental impacts ~ during the 2010s.°° Increases in extreme heat stress and
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resulting heat-related deaths will be greater in higher-emission
future scenarios,'® which, in addition to direct mortality and
morbidity impacts of heat, will lead to a loss of agricultural pro-
ductivity'" and workplace efficiency'?'® as well as increases in
household energy consumption due to greater air-conditioning
demand.'*

There is strong evidence that such heat hazards and exposure
are unevenly distributed across regions and socioeconomic
groups within the US."® Neighborhoods with low-income and
less-educated residents within a US county are exposed to
significantly hotter temperatures than those with high-income
and more-educated residents.'® These differences in heat expo-
sure have contributed to disproportionate health burdens,
particularly in historically redlined areas'’ and contemporary
disadvantaged communities. People of color and those living
below the poverty line experience higher heat exposure and
potentially more heat-related health risks than non-Hispanic
White populations in wealthier areas throughout these cit-
ies.'®?? Significant racial disparities in urban heat exposure
persist in 71% of US counties even when adjusting for income. '®

To understand how temperature and moist heat stress might
evolve, Earth system models (ESMs) are widely used to project
future changes in the climate and atmospheric system based
on physical processes.?**** These models are commonly run un-
der alternative shared socioeconomic pathways (SSPs) that are
associated with different emission trajectories and, therefore,
warming futures (such as different representative concentration
pathways [RCPs]). When ESM outputs for projected temperature
and relative humidity are combined with fine-scale SSP projec-
tions of sociodemographic features, they can, in principle, be
used to assess who will be exposed to dangerous heat, where,
and under which future scenarios. Existing studies have taken
important steps in this direction, typically relying on downscaled
climate data and overall population projections,®® often focusing
on specific geographic or sociodemographic units.?®® For
example, Dahl et al.”® (also see Jones et al.?® for similar method-
ology) used downscaled climate models to estimate future US
National Weather Service (NWS)-defined heat index (HI) exceed-
ances relative to a 1971-2000 baseline. However, most studies
do not evaluate projected impacts on multiple demographic
groups simultaneously and at a spatially explicit, national scale.
As aresult, we still lack scenario-specific, county-scale evidence
on whether heat-exposure disparities will widen or narrow
for which groups and in which regions.*® Understanding who
is affected by global warming and what drives exposure dis-
parities is therefore critical for crafting just and effective policy
responses.®’

Here, we address the limited evidence on how future climate
warming will differentially increase moist heat stress across US
demographic groups. We couple downscaled Coupled Model
Intercomparison Project Phase 6 (CMIP6) ESM projections
(2020-2100) for five SSP-RCP scenarios with socio-demo-
graphic projections for 3,108 contiguous US counties to esti-
mate population-weighted HI exposure during summer months
(June, July, and August) when heat-related risks are highest
and to track how changing racial/ethnic and age structures
alter future exposure under intermediate, high, and very high
emission-socioeconomic pathways. This integrated climate-
socioeconomic approach shows that exposure disparities
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widen over time, with non-Hispanic Black populations, older
adults, and counties in the Southern US experiencing the
largest increases in “Extreme Caution+” days. These results
demonstrate that climate projections and demographic
change jointly shape future heat inequities and underscore
the need for adaptation strategies that explicitly prioritize so-
cially vulnerable populations and the regions where they are
concentrated.

RESULTS

Rising summer moist heat stress through 2100

To assess how warming and humidity jointly amplify future heat
hazards, we first examined county-level summer (June, July, and
August) HI projections under five SSP-RCP scenarios for 2020—
2100. In doing so, we quantify both the magnitude and spatial
distribution of future moist heat stress. Summer months are
associated with higher heat-related hazards, with an even
greater likelihood of heat disorders under high-emission future
scenarios (Table S4).

As shown in Figure 1C, when comparing projected increases
in median HI for summer months across counties under the
SSP2-RCP4.5 scenario, which combines a “middle-of-the-
road” socioeconomic pathway with moderate population growth
and intermediate economic development aligned with countries’
current climate pledges,® the median HI is projected to rise by
6.1°F (3.4°C) between 2020 and 2100. By 2100, under high-
emission scenarios (SSP5-RCP8.5), driven by continued fossil-
fuel reliance, the summer median increase in HI may reach as
high as 15.0°F (8.3°C). These numbers are significantly higher
than projected near-surface air temperatures between 4.2°F
(2.3°C) and 9.5°F (5.3°C) for the same time period, mainly due
to projected changes in relative humidity and the high sensitivity
of Hl to air temperature under high humidity (changes in relative
humidity at the county level are detailed in Figure S4).°° The
combined impact of near-surface air temperature and humidity
results in a public health risk that potentially surpasses the risk
assumed when only considering the projected increase in
near-surface air temperature.

When HlI, rather than solely projected near-surface air temper-
ature alone, is used, hazards rise more sharply with the inclusion
of both temperature and humidity (see methods) (Figure S2).
Increases in HI exceed those in near-surface air temperature,
especially under higher-emission future scenarios, such as
SSP3-RCP7.0 and SSP5-RCP8.5 (see county average increase
in Figure 1C and county-specific percentile change in
Figure S3). This pattern is most pronounced in the southern and
eastern regions of the US (Figures 1A and 1B). The increases in
near-surface air temperature and HI show different spatial pat-
terns. Consistent with prior studies,® higher latitudes experience
a greater increase in near-surface air temperature; however, HI
increases are significantly higher in lower latitudes, especially in
southeastern coastal areas (Figure 1D). Humidity levels play a
critical role in heat perception in these areas, leading to an average
increase in HI of over 3°F (1.7°C) at latitude 30° N by 2100 under
the SSP2-RCP4.5 scenario. Under the high-emission scenario
(SSP5-RCP8.5), changes in HlI at this latitude may exceed the in-
crease in near-surface air temperature by as much as 10°F
(5.6°C). These findings suggest that residents in the South will
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Figure 1. Projected average heat index under five coupled SSP-RCP scenarios from 2020 to 2100

(A) Per-decade changes in near-surface air temperature at the county level.
(B) Per-decade changes in heat index (HI) at the county level.

(C) Increases in heat-related indicators (near-surface air temperature vs. Hl). The solid lines represent median values across various Earth system models (see
supplemental methods for more details on the number of models), and the shaded areas represent values for the interquartile range.
(D) Changes in HI by latitude between 2020 and 2100. The solid line represents the median, while the shaded areas represent the interquartile range.

not only face heightened risks of heat exposure by 2100, as indi-
cated by high absolute HI values, but also will experience a more
rapid increase in HI by 2050 and 2100.

Prior research shows that 21st-century warming will increase
the frequency and intensity of extreme heat events and alter
the spatial pattern of daily minimum and maximum tempera-
tures, both of which heighten heat-related health risks.?**%3
Since not all ESMs report daily maximum and minimum temper-
atures, we focus here on climate-induced disparities in summer
mean HI; however, Figures S24 and S25 show that HI estimated
from available daily average maximum temperatures reveals
spatial patterns similar to those presented here for the monthly
means, indicating that our main conclusions are robust to tem-
poral resolution.

Spatial heterogeneity of impacts

To locate where these rising hazards concentrate, we classify
counties into heat risk categories according to the NWS and
assess how many people in counties move into higher-risk
bins across scenarios. We group HI values using NWS thresh-
olds categorized according to the social and health risks associ-
ated with “dangerous heat disorders with prolonged exposure
and/or physical activity in the heat” (Table 1). While the recently
developed national NWS HeatRisk was defined based on
various considerations such as frequency, duration, and demo-
graphic characters,® in this article, when we refer to “risk,” we
are talking about the impacts of demographic groups exposed
to outdoor heat hazards while assuming that vulnerability does
not change substantially.
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Table 1. Heat index and its relevance to public health risk

Classification ~ Heat index Effect on the human body
Caution 80°F-90°F fatigue possible with
(26.7°C-32.2°C)  prolonged exposure
and/or physical activity
Extreme 90°F-103°F heat stroke, heat cramps,
Caution (82.2°C-39.4°C)  or heat exhaustion possible
with prolonged exposure
and/or physical activity
Danger 103°F-124°F heat cramps or heat exhaustion
(89.4°C-51.1°C) likely, and heat stroke possible
with prolonged exposure and/or
physical activity
Extreme 125°F (51.6°C) heat stroke highly likely
Danger or higher

Source: US National Weather Service.

Across various future scenarios, projections indicate a sub-
stantial increase in the number of US counties facing high heat
risks by mid-century and the end of the century. As shown in
Figure 2A (with numeric details in Table S5), in the low-emissions
scenario, following the sustainable development pathway
(SSP1-RCP2.6), approximately half of US counties (50.6%) are
projected to face higher risks by mid-century (2050, average
across 2045-2050). This percentage rises slightly higher to
51.1% by 2100 (average across 2095-2100) compared to
approximately 40% of counties at risk during the baseline period
(2020, average across 2015-2020).

Under the middle-of-the-road/intermediate greenhouse gas
(GHG) emissions scenario (SSP2-RCP4.5), the number of at-
risk counties increases from ~40% to ~66% from the baseline
period to the end of the century. By mid-century, this scenario
will result in 417 counties (13.4% of total counties), home to an
estimated population of around 43 million, moving from the
“Safe” to “Caution” category. An additional 592 counties, where
approximately 78 million people reside, will move from the
“Caution” to “Extreme Caution” category by the end of the
century.

The risk of prolonged heat exposure is even more pronounced
in the high-emission scenario (SSP5-RCP8.5). Only 8% of
the counties will stay in the “Safe” heat risk category by
the 2100s, and one out of five counties in the US will be in the
“Danger” category. This scenario will pose risks to 480 counties
(14.9% of the total population) that will shift from the “Safe” to
“Caution” category by the middle of this century, and 96.5%
of these counties will be further placed in an “Extreme Caution”
category by the end of this century (Table S6). These counties
are mainly located in lowa, Kentucky, and Indiana. In addition,
614 counties, mainly located in southeastern coastal states,
where ~191 million people will reside by the end of this century,
will face risks associated with the “Danger” category. Notably,
all of these counties were initially identified as being at risk of
“Caution” or “Extreme Caution” during the baseline period.

The at-risk counties are primarily located in the South census
region or Southern US, encompassing a total of 17 states
stretching from Texas and Oklahoma in the west to Delaware
in the east. The projected HI under different future scenarios
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indicates elevated Hl levels across the Southern US. As shown
in Figure 2B, half of the population in the South will live within
an “Extreme Caution” category by the end of the century under
SSP2-RCP4.5 (see Table S7 for full US Census region defini-
tions). By 2100, under the high-emission future scenario
(SSP5-RCP8.5), the majority of people (97.8%) living in the
Southern US will be classified as living in areas exposed to
“Extreme Caution” and “Danger” heat risk categories. Even
in the Northeast region, which includes nine states and where
future HI is projected to be less severe than at lower latitudes
due to lower relative humidity, 97.75% of the population living
in this region in 2100 will experience HI values within the
“Caution” and “Extreme Caution” risk categories.

Taken together, these results show that heat hazards do not
expand uniformly but concentrate in specific regions, especially
the Southern US, and that the number of people living in higher
NWS risk categories grows across all scenarios. This analysis
shows where future heat will be most consequential and pro-
vides the spatial basis for identifying future vulnerable geogra-
phies and populations.

Racial and ethnic heat-exposure disparities

To test whether the projected rise in moist heat stress will dispro-
portionately affect racial and ethnic groups, we overlay county-
level HI projections with SSP-consistent population projections
for major racial and ethnic groups. We quantify disparities as the
share of each group living in counties exceeding NWS thresholds
for “Caution” and “Extreme Caution.” We denote the two thresh-
olds as “Caution+” and “Extreme Caution+” (HI greater than or
equal to 90°F [32.2°C]). Because “Extreme Caution+” is the level
at which public health warnings, early interventions, and adaptive
actions become crucial, we focus on this threshold in the main text
and report population-weighted HI values alongside categorical
risk exposure to aid interpretation.

Baseline differences

The national population-weighted results indicate that, during
the baseline period, non-Hispanic Black populations experience
an average HI approximately 3°F (1.7°C) higher than non-His-
panic White populations (Table S8). This substantial absolute
disparity between non-Hispanic Black and non-Hispanic White
populations can largely be attributed to geographic distribution,
since 57.6% of non-Hispanic Black individuals reside in the
South, where HlI is already high and remains consistently high
across all SSP-RCP scenarios.

Disparity metrics

We evaluate disparities using two complementary measures.
Absolute disparity measures the difference between a group’s
exposure and the overall population average, which tells us
how many more people, in percentage points, from a given
group are exposed to a specific heat condition. Relative
disparity, on the other hand, compares a group’s exposure as
a ratio of the average, helping us understand how much more
likely a group is to experience extreme heat compared to other
groups. Together, these measures help distinguish between
large population-level differences and more subtle but meaning-
ful inequities that might otherwise be overlooked. To further
explore these patterns, we mapped the percentile distribution
of Hispanic (all races), non-Hispanic Black, and non-Hispanic
White populations in counties experiencing HI above 90°F
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Figure 2. Projected Hl, population, and counties under five future scenarios in the US

(A) Projected median HI under five future scenarios in the US (see supplemental methods for more details).

(B) Percentage of population living in the four US regions by the end of the century that will be located in areas classified as “Safe,” “Caution,” “Extreme Caution,”
and “Danger,” according to the National Weather Service (NWS) HI. Note: “2020” denotes the baseline years we used for comparison (average of 2015-2020);
“2050” denotes the middle of the century (average of 2045-2050); and “2100” denotes the end of the century (average of 2095-2100).

(32.2°C) (“Extreme Caution”) under SSP2-RCP4.5 and SSP5-
RCP8.5 scenarios in Figures S5 and S6. The results indicate
that counties with higher concentrations of Hispanic and non-
Hispanic Black populations are disproportionately exposed to
extreme heat risks (“Extreme Caution+” risk).

Future disparities by scenario

Across SSP-RCP scenarios, we find that the overall absolute
disparity increases toward the end of the century, with more
pronounced increases under higher emission scenarios
(Figure 3B). This upward trend is primarily driven by rising dis-
parities among non-Hispanic Black and Hispanic (all races)
populations, both of which experience above-average heat
exposure (Figure 3A, with details in Figure S7). Under SSP2-
RCP4.5, the proportion of Hispanic populations exposed to
an HI value above “Extreme Caution” remains 6.8 to 8.3%
(mean values) above the national average, reaching 37.2%
vs. 30.2% for the total population by 2100 (Figure S7). Under
SSP3-RCP7.0, the non-Hispanic Black exposure rises from
near parity to greater than 5 percentage points above the
average by 2100, and under SSP5-RCP8.5 it reaches 76.7%
vs. 62.6% (a 14.1-point gap). We also assessed the sensitivity
of this trend to uncertainties in future population projections

and found that the direction of disparity growth remains robust,
even under varying demographic trajectories.

Examining disparities in HI exposure at the lower “Caution+”
threshold (Figures S9-S12) produces the same group ordering:
non-Hispanic Black and Hispanic populations face greater
heat exposure than the average population (Figure S10). Under
the SSP2-RCP4.5 scenario, by 2050, non-Hispanic Black popu-
lations are the most disproportionately affected, with 13% higher
exposure at the “Caution+” risk threshold compared to the
average, followed by Hispanic populations at 5% above the
average. Under the SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-
RCP8.5 scenarios, absolute disparity for non-Hispanic Black
populations increases through mid-century and then declines
toward 2100 as HI levels become universally high. Relative
disparity results show the same pattern: a mid-century peak in
heat-exposure disparities for non-Hispanic Black populations,
followed by a later decline as everyone is exposed.

Absolute vs. relative patterns

As HI exposure becomes widespread, overall relative disparity
declines (Figure 3D), largely due to the near-universal increase
in HI across all populations. However, this trend does not imply
inequity declines, since the absolute number and share of
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Figure 3. Racial/ethnicity disparity in exposure to Hl above “Extreme Caution” threshold under future scenarios

(A) Absolute disparity of racial-ethnicity groups in exposure to HI above “Extreme Caution” threshold (HI >90°F [32.2°C]) under future scenarios.

(B) Overall absolute disparity in exposure to HI above “Extreme Caution” threshold under future scenarios.

(C) Relative disparity of racial-ethnicity groups in exposure to HI above “Extreme Caution” threshold under future scenarios.

(D) Overall relative disparity of racial-ethnicity groups in exposure to Hl above “Extreme Caution” threshold under future scenarios.

Absolute disparity is measured as the difference between a group’s exposure and the overall population average, while relative disparity represents the ratio
of a group’s exposure to the population average. Hispanic, Hispanic (all races); NH-Black, non-Hispanic Black; NH-White, non-Hispanic White; NH-Others, non-
Hispanic other races. Each boxplot shows the interquartile range (IQR) (25th-75th percentile), with the median indicated by a horizontal line. Whiskers extend to
1.5x the IQR, and points beyond the whiskers are plotted as outliers. See supplemental methods for more details on the number of models. The black dashed

lines represent benchmark values for perfect equalization.

non-Hispanic Black and Hispanic residents in high-risk counties
continue to rise. In fact, the group-specific relative disparity for
non-Hispanic Black populations continues to increase
(Figure 3C), especially in higher-emission scenarios. Conversely,
non-Hispanic other races (including Native American, Native
Hawaiian, and Asian populations) consistently have the lowest
exposure to “Extreme Caution+” risk across all SSP-RCP
scenarios.

Spatial concentration within the non-Hispanic Black
population

To examine whether these disparities are being driven by where
non-Hispanic Black populations reside, we compared counties
in the top and bottom quartiles of non-Hispanic Black popula-
tion share (Figure 4 and Table S9). These results show that
an increasing proportion of the non-Hispanic Black popula-
tion, particularly in counties with higher non-Hispanic Black
population shares, is at greater risk across time and under
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more extreme SSP scenarios (e.g., SSP3-RCP7.0 or SSP5-
RCP8.5). In 2020, the proportion of counties exceeding
“Safe” thresholds is relatively low across all SSP scenarios,
with SSP1-RCP2.6 showing that only 13% of the counties
with the highest shares of non-Hispanic Black populations
(i.e., top quartile) reach a level of summer HI exposure levels
where extreme caution is advised. By 2050, the risk increases
significantly, with SSP3-RCP7.0 showing 32% of counties in
the top quartile exceed even more critical heat thresholds
advising extreme caution, indicating severe heat conditions
that pose health risks. This substantial increase suggests an
escalating trend of growing vulnerability to extreme heat by
mid-century. The trend continues starkly into 2100, where the
SSP5-RCP8.5 scenario shows extreme peaks, with up to
78% of counties in the top quartile falling into the “Danger”
category of the HlI, indicating that an overwhelming majority
of the non-Hispanic Black populations in these counties could
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experience severe heat stress, far surpassing other SSP
scenarios in terms of risk and potential health impacts.

These results show that racial and ethnic disparities observed
at baseline persist across thresholds (“Caution+” and “Extreme
Caution+”) widen in absolute terms for non-Hispanic Black
and Hispanic populations, especially under higher-emission
scenarios, and are magnified in counties with high concentra-
tions of these groups.

60 80 100 6

Age-related disparities in heat stress exposure

To assess whether population aging will interact with spatially
concentrated heat to create additional health-relevant ineq-
uities, we analyze heat exposure for three age groups—young
(<20 years), adult (20-64 years), and elderly (>65 years)—
across four coupled SSP-RCP scenarios. We explore dispar-
ities in exposure to “Extreme Caution” heat levels, focusing
on changes in absolute and relative disparities over time
(Figure 5, with further details in Figures S13 and S14). Our re-
sults highlight that elderly individuals (age >65) currently expe-
rience lower HI than the average population (Figure 5A). How-
ever, in the future, HI values are projected to rise
approximately 0.2°F (0.1°C) higher than for adults (see
Table S10 for population-weighted HI). While population-
weighted HI exposure does not vary drastically by age group
at the national scale (Table S10), our expanded analysis of sub-
national regions reveals that localized elevation of the exposure
among elderly adults occurs in some regions, particularly in
warmer southern states. Furthermore, the same level of HI
poses greater health risks for the elderly, due to diminished
thermoregulatory capacity and a higher prevalence of chronic
illness.*®*” Figure S15 illustrates age-stratified trends in Hl
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Figure 4. Distribution of summer HI under
various SSP-RCP scenarios for non-His-
panic Black populations in US counties
from 2020 to 2100

Top and bottom quartiles represent the counties
with the highest and lowest proportions of non-
Hispanic Black population out of the county’s total
population, respectively.

exposure over time, showing modest
but persistent increases in exposure for
elderly populations under all scenarios.
Since elderly populations are more
vulnerable to heat-related health risks,
this increase in HI may heighten the
risk of heat-related illnesses and
mortality.®

By the end of the century, counties in
Florida, Texas, and coastal South Car-
olina, where a large proportion of the
elderly populations reside, are expected
to be exposed to “Extreme Caution”
heat risks (Figures S13 and S14). The
elderly population is projected to experi-
ence a slightly higher relative exposure
to heat stress compared to the overall
population under the SSP2-RCP4.5
scenario (~1% above the average; Figure 5C). While this differ-
ence is small in magnitude, it aligns with a broader trend of
increasing heat burden for aging populations, where even modest
increases in exposure could have disproportionate health
impacts. Currently, the young population (<20 years old) experi-
ences slightly higher exposure to HI above “Extreme Caution”
(about 1% above the average), but this disparity decreases across
all scenarios over time (Figure 5D). Similar trends are observed in
HI exposure above the “Caution” threshold, where the elderly
populations are increasingly affected by heat risks (Figures S16-
S19). Age composition by HI category is shown in Figure S20.

Overall, age-related disparities are small at the national scale
but become meaningful in regions where elderly populations
and high HI co-occur.

Quartile

D bottom
D top

Warning Level
Danger

Extreme Caution

DISCUSSION

This study addresses an unresolved question in the heat climate
literature: as US temperatures and humidity increase, will dispar-
ities in heat exposure across sociodemographic groups diminish
because exposure becomes widespread or intensify because
populations already located in hotter, more humid regions expe-
rience the largest additional burdens? Prior studies have been
limited to specific geographies, single population groups, or a
narrow set of scenarios, making it difficult to assess how expo-
sure evolves simultaneously across major racial and ethnic
groups and across all US counties. By combining CMIP6 projec-
tions of temperature and humidity with county-level, SSP-
consistent demographic projections for the contiguous US, we
provide a scenario-resolved, spatially explicit characterization
of who is exposed, where, and under which future pathways.
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Figure 5. Age disparity in exposure to Hl above “Extreme Caution” threshold

(A) Absolute disparity and relative disparity of age groups in exposure to Hl above “Extreme Caution” threshold under future scenarios.

(B) Overall absolute disparity of age groups in exposure to HI above “Extreme Caution” threshold (HI >90°F [32.2°C]) under future scenarios.

(C) Relative disparity of age groups in exposure to HI above “Extreme Caution” threshold under future scenarios.

(D) Overall relative disparity of age groups in exposure to Hl above “Extreme Caution” threshold under future scenarios.

Each boxplot shows the IQR (25th-75th percentile), with the median indicated by a horizontal line. Whiskers extend to 1.5x the IQR, and points beyond the
whiskers are plotted as outliers. See supplemental methods for more details on the number of models. The black dashed lines represent benchmark values for

perfect equalization.

Our findings indicate that Southern US counties, with the
largest percentage of people of color, specifically non-Hispanic
Black communities, will likely encounter the most substantial
HI increases over time and experience the most significant
absolute increases when compared to other demographic
groups, particularly non-Hispanic White populations. In terms
of age, populations over the age of 65 may be disproportion-
ately exposed to increased HI levels when compared to popu-
lations under the age of 65 in every scenario examined. As
the climate continues to warm, which is a trend observed
across all SSP-RCP scenarios, higher temperatures will not
be confined to the summer months but will extend into other
parts of the year.*® This prolonged heat exposure could further
exacerbate health risks, particularly for vulnerable populations,
especially the elderly and people of color who face a higher
likelihood of heat-related illness*® and are already experiencing
sustained high HI levels. These results underscore the need for
understanding differences in underlying sociodemographic
factors when evaluating future heat impacts and temperature
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changes due to climate change. We now discuss three consid-
erations when applying these results to future studies or policy
applications.

The Southern US is most vulnerable to rising heat risks

Our findings consistently demonstrate that HI in the Southern US
remains persistently high across different future scenarios up
until 2100. Although SSPs do not explicitly account for migration
and that racial, ethnic, and age groups may substantially
shift their location from present-day patterns, our results show
that consistent patterns of heat exposure persist across demo-
graphic groups under different SSP scenarios. The counties
with the highest HI increase are collocated with counties with
higher percentages of non-Hispanic Black populations and peo-
ple over the age of 65 across different SSP-RCP scenarios. How-
ever, our results still represent a conservative estimation, since
we use the monthly average HI. Extreme-heat days, which can
exceed several standard deviations above the monthly average
HI, have the potential to pose even greater risks and, thus,
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potential disparities in outcomes, within a few days.?* Addition-
ally, impacts of heat exposure are highly context dependent,
particularly in heterogeneous urban environments, where local
urban design (such as the shade of buildings or trees) or avail-
ability of air conditioning plays a critical role in individuals’
perception of heat stress.???*3°

Our estimation shows geographic overlaps between increases
in HI and vulnerable demographics for both race and age,
particularly in the Southern US, where the majority of the US
non-Hispanic Black population and elderly are located. These
demographic groups are well documented to be more vulnerable
to heat exposure, in part due to compounding factors such as
lower socioeconomic status, which is more prevalent in the
Southern US and has been linked to greater health risks in
previous studies.”*"*> Our disparity analysis reveals that Hl
increases will disproportionately affect non-Hispanic Black pop-
ulations compared to other racial groups. Furthermore, in the
worst-case climate warming scenarios, the gap between Hl in-
creases for non-Hispanic Black populations and non-Hispanic
White populations widens over time. Other racial and ethnic
groups do experience a smaller HI disparity gap compared to
non-Hispanic White populations, and this gap narrows in the
future in every scenario examined. Further analysis of heat
disparity across regions reveals that both absolute and relative
disparities by racial/ethnic group in the South decline toward
the end of the century, as the HI remains uniformly high across
the region. In contrast, the West experiences the most significant
increase in disparity, particularly under the high-emission sce-
nario (SSP5-RCP8.5) (Figures S21-S24).

Regarding age, our study highlights a growing disparity in heat
exposure between individuals aged 65 and older and those
younger than 65, emphasizing the increasing HI and heat expo-
sure among more vulnerable elderly populations. Existing studies
have found that “people aged 65+ have been several times more
likely to die from heat-related cardiovascular disease than the
general population.”*® This finding underscores the critical need
for prioritizing climate adaptation and mitigation strategies for
elderly people, who stand to be at a greater risk of heat-related
health effects due to increased exposure to HI when compared
with their younger, healthier counterparts.>**

Incorporating equity considerations into adaptation

The findings of our study highlight a consistent demographic
disparity in future heat exposure, revealing greater and growing
gaps in exposure for non-Hispanic Black populations and the
elderly, particularly in the Southern US, across all future scenarios,
even with a conservative estimation based on monthly HI. Our an-
alyses did not consider the adoption of additional adaptation
measures, such as air conditioning and aggressive greening,
and assumed no changes in vulnerability (e.g., other underlying
health conditions that may become more chronic under climate
change). These measures, such as air conditioning’® and green
space,’® have been shown to be distributed unequally among
populations both in and outside of urban areas. Implementing
preventive measures to address these heat-exposure and adap-
tively measuring disparities is critical to shape future climate
policies to address what Frosch et al. refer to as the “climate
gap,” in which African American and Latino communities already
face disproportionate health and economic consequences due to

¢? CellPress

climate and environmental hazards.*’ In addition, statistics also
show that labor-intensive outdoor industries—such as construc-
tion, landscaping, and logistics*®“°—are primarily located in the
South,*®*" potentially posing higher health risks to labor forces
and economic loss to society.****

Analysis of mid- and long-term impacts of climate-related
heat exposure on different socioeconomic groups is crucial to
the development of adaptation plans at the local scale. According
to Malloy and Ashcraft,®* since just adaptation planning requires
the inclusion of socially vulnerable populations, knowing where
and whom these populations are is critical to engaging them in
processes that ensure their involvement in planning decisions
that ultimately affect them. The Inflation Reduction Act allocated
substantial funding for environmental and climate justice, posi-
tioning cities and states to support underserved communities.*®
Recent uncertainties in fund distribution highlight the need for
sustained local engagement.

Limitations of seasonal focus and applying ESMs to
understand future heat stress

Our primary analysis focuses on the summer months (June, July,
and August) when heat exposure is most intense and health
risks are typically highest. This seasonal focus is consistent
with prior research, '°~'? which identifies these months as expe-
riencing the greatest increases in temperature extremes and cu-
mulative heat stress, compounded by already elevated baseline
HI values. However, we acknowledge that this approach may un-
derestimate total annual heat exposure, particularly as extreme
heat events are increasingly occurring outside the traditional
summer season. For example, anomalous heatwaves in
September or earlier onset in May have been documented in
recent years, potentially exposing vulnerable populations to sub-
stantial risk. To account for such year-round events, some
studies adopt annualized measures such as person-days of
exposure.'® While our analysis does not capture these off-sea-
son events, we believe the summer-focused approach offers a
robust, policy-relevant baseline for evaluating acute heat risk.

Moreover, our study utilizes county-level averages of HI due to
the coarse resolution (~100 km, see Table S2) of ESM spatial
grids, which are often larger than individual counties. These grids
limit our ability to capture fine-scale spatial variations in heat
stress that would be more relevant for furthering the analysis of
disparities. This limitation is particularly salient in the context of
urbanization, where microclimates within cities can lead to local-
ized areas with significantly higher heat exposure compared to
surrounding rural areas.’®®” ESMs lack the resolution, and
even appropriate urban representations, to capture these urban
heat islands, which potentially leads to an underestimation of
localized heat exposure in urban areas. While mesoscale models
have been recently used to demonstrate pervasive historical and
present-day disparities in moist heat stress within US cities,'”
similar future projections that account for both future urban
growth and resolve the projected evolution of urban neighbor-
hood-scale characteristics are currently unavailable. This will
be an important consideration to more accurately quantifying
potential disparities in human impacts due to future warming
on an increasingly urbanizing planet. Moreover, these estimates
all relate to outdoor hazard and potential exposure, and overall
risk in the present and the future would also depend on the
time spent indoors vs. outdoors among different relevant
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populations and their vulnerabilities.>® Currently, there are sub-
stantial race- and income-based disparities in exposure and
vulnerability, including the nature of workplaces and air-condi-
tioning access, in the US,* which would underestimate the
heat-related risks if only based on estimates of outdoor hazard.

Our analysis only focuses on monthly summertime average HI,
when heat hazards are most intensive and with the largest in-
creases (see Figure S27 for all months). We acknowledge that
this seasonal focus presents certain limitations. While this mea-
sure provides a valuable long-term climatological perspective
on future climate change, extreme heat events have more acute
impacts on human health.® While US counties and regions expe-
riencing the highest heat stress due to these extreme events are
likely to remain consistent, the disparities between populations
living in these areas and others may become more pronounced
when considering sub-daily fluctuations in heat stress and multi-
day sustained exposure to high ambient heat stress. With all
that being said, our results confirm that global mean air tempera-
ture change is non-linearly related to moist heat stress change un-
der warming scenarios, meaning that the same future warming
experienced could trigger larger increases in societal and health
impacts than expected when only using air temperature.®®
Physical model uncertainties
When utilizing future climate projections from ESMs, it is impor-
tant to be cognizant of various sources of uncertainties,
including those in the underlying model (parametric and struc-
tural uncertainties) as well as the scenarios (scenario uncer-
tainty). While measures in standardizing inputs across various
ESMs were taken to enhance the comparability of model out-
puts,®® the differences in outputs are still influenced by para-
metric uncertainty and model structural uncertainty.®’ In our
analyses, we employ an ensemble of model results to consider
the uncertainty range arising from model choice and implemen-
tations, although it does not mitigate the overall uncertainty.
Additionally, the projections of sociodemographic changes
under different SSPs introduce further uncertainty. These
SSPs, widely used in scientific assessments like the IPCC Sixth
Assessment Report, outline five distinct future socioeconomic
scenarios, each paired with a demographic and economic
narrative and relevant assumptions (Table S1). In our study,
we pair each macro-level SSP-RCP scenario used by ESMs
with a set of fine-scale projections of SSPs (Figure 6). This
allows us to explore how varying assumptions about population
growth, economic productivity, and GHG emissions influence
the resulting heat stress projections and exposure disparities.
After 2050, these projections diverge significantly, highlighting
the increased uncertainty in projecting population growth and
economic activities far into the future, alongside varying as-
sumptions about equilibrium climate sensitivity across
models.®"

Even with bias-corrected datasets, uncertainties in future
climate projections remain large due to several factors. Bias
correction, which typically involves adjusting present-day
climate model outputs to match observational or reanalysis da-
tasets (such as ERA5), helps align historical simulations with
observed conditions. However, applying a fixed offset to bias
correct all future projections assumes that model biases remain
constant over time, which may not hold true given changes in
climate dynamics, feedback mechanisms, and model parame-
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terizations. Bias correction could even introduce additional
uncertainties, as previous studies observe,®” which can amplify
errors, particularly if biases vary non-linearly across different
areas. Therefore, while bias correction may shift the absolute
magnitude of projected HI values, it is unlikely to alter our anal-
ysis of the direction of disparities and trends highlighted in our
study. Since our primary focus is on understanding relative dif-
ferences in heat exposure across demographic groups and
geographic regions rather than absolute temperature values,
bias correction may not meaningfully change our key findings.
Instead, our ensemble approach ensures that projected trends
remain robust to the underlying uncertainties in the climate
model outputs.

Uncertainties in future population projections

Precisely projecting heat-related impacts and inequality is even
more challenging. Most SSPs are developed at the global scale
with energy and emission scenarios developed with regional or
national-level population projections. National or state-level HI
projections are insufficient to analyze demographic disparities
between different geographic populations. While scholars have
developed methodologies and techniques to downscale demo-
graphic composition to higher spatial resolutions,®® making
high-resolution projections (e.g., census block level) is intrinsi-
cally uncertain due to the additional assumptions needed in
the downscaling process. Thus, analyzing demographic patterns
at higher spatial resolutions, such as census tract or census
block level, is impeded by data constraints.

METHODS

Data description

Climate projections

Future climate projections were obtained from the Scenario
Model Intercomparison Project (ScenarioMIP) within the
CMIP6. We calculated the median values of HI, a moist heat
stress index used operationally by the NWS, at the standard
100-km resolution from 26 global climate and ESMs for five
SSP-RCP scenarios based on the model-simulated near-surface
air temperature (tas) and relative humidity (hurs). To do this,
monthly median tas and hurs were first extracted from all the
models and then averaged across the summer months to obtain
a June, July, and August (JJA) averaged HI. We then took the
median values from the multi-model ensemble to reduce the un-
certainty associated with model choice.

Figure S1 illustrates four tier 1 coupled SSP-RCP scenarios
(i.e., top priority scenarios modelers have identified that repre-
sent a wide spectrum of uncertainty in future socioeconomic
and climate forcing pathways) and an additional SSP1-RCP1.9
scenario (a scenario designed to limit global warming to 1.5°C
above the temperature in 1850-1900) that we focus on in this
study. ESMs use SSP-RCP emission scenarios from global inte-
grated assessment models that rely on regional/national-level
socioeconomic and technological projections. These projec-
tions generate global and regional GHG emissions, which are
then downscaled based on present-day spatial patterns and
used as inputs to ESMs. The ESMs, in turn, simulate future
climate variables such as temperature and humidity, which we
use to estimate the HI. The models used to project the HI are
listed in Table S2. We analyze the disparity of heat stress in the
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Figure 6. Projected total number of people affected by heat stress from 2020 to 2100
The black lines represent the most likely coupled SSP-RCP scenarios (SSP1-RCP1.9, SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-RCP8.5), while
gray lines denote projections under other possible coupled scenarios, highlighting the variability and potential range of outcomes.

baseline period (denoted as 2020, using the mean of 2015-
2020), middle-of-the-century period (denoted as 2050, using
the mean of 2045-2050), and end-of-the-century period (de-
noted as 2100, using the mean of 2095-2100).
Socioeconomic data

Multiple research efforts have developed fine-scale (e.g.,
county-level) sociodemographic projections aligned with SSP
narratives. SSPs not only serve as macro-level drivers of
GHG emissions that feed into climate models but also pro-
vide micro-level demographic patterns essential for assessing
disparities in heat exposure. We used these fine-scale socio-
demographic projections to combine with HIs to analyze dis-
parities in projected heat exposure. To assess the potential
impacts of projected moist heat hazards on different popula-

tions, we obtained socioeconomic data, including total popula-
tion and gender, race, and age groups from multiple sources
consistent with the SSPs considered in our study at finer spatial
resolution (see Table S3 for details). We then aggregated
the downscaled socioeconomic data into the county level to
analyze the potential outdoor exposure of different socio-
economic groups to future heat stress. Given the challenges
in downscaling and extrapolating GDP data for the SSPs,%*
we did not examine future disparities between different income
groups.

Heat index
Heat stress indices, which typically combine several factors
modulating human heat loading, including air temperature
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and humidity, can better inform the impact of heat on the
human body than air temperature alone. Here, we employ a
moist heat stress index because of its relevance to increasing
morbidity and mortality risk as a consequence of global warm-
ing, which would also be associated with changes in humidi-
ty.®®> Among the wide array of over 20 different heat indices
in the literature, we chose to use the NWS HI, which is a moist
heat stress index used by the NWS to measure how hot it
“feels” to the human body (see supplemental information for
more details).°®®” The NWS HI is based on Steadman’s
apparent temperature. Based on Steadman’s theory, Rothfusz
performed multiple regression analyses, described in a 1990
NWS Technical Attachment (SR 90-23).°>°” This HI is widely
used in heat warning systems and environmental health
research, and the relevant health risk categories, most
frequently exceeded and relevant for the Southern and South-
eastern US, are shown in Table 1. For ease of comparability, we
use the same threshold for all regions in our analysis.

This HI is a function of air temperature and relative humidity.
In our study, we use the projected near-surface temperature
(tas) and projected surface relative humidity (hurs) derived from
multiple CMIP6 models to calculate HI under different climate
change scenarios. The calculation of Hl is performed using the
R package weathermetrics developed by Anderson et al.®®

HI = — 42.379 + 2.04901523tas + 10.14333127hurs

— 0.22475541tas x hurs — (6.83783 x 10 ®)tas
— (5.481717 x 107 %) hurs + (1.22874 x 10~ %)tas
x hurs + (8.5282 x 10~ *)tas x hurs

— (1.99 x 10~ ®)tas x hurs.

If hurs is 13% or less and tas is between 80°F (26.7°C) and
112°F (44.4°C),

HI = HI — (13 ;hurs)-,/w - ‘2675 ~ 9% (gquation 1)

If hurs is over 85% and tas is between 80°F (26.7°C) and
87°F (30.5°C),

hurs — 85 87 — tas
HI_HI+( 10 )-\/ 3

Disparity metrics

We used absolute disparity and relative disparity to measure
disparity in heat exposure by racial groups and age groups.
The absolute disparity is calculated as the HI difference be-
tween demographic groups and, similarly, the relative disparity
is calculated using the ratio between demographic groups.
Specifically, the racial disparity measures the disparity of
non-Hispanic Black, Hispanic (all races), and non-Hispanic
other races against the non-Hispanic White population, while
the age disparity measures the disparity of the elderly popu-
lation (age >65) and the young population (age <20) against
the adult group (age 20-65). The absolute and relative dispar-
ities have been used in many studies'%®®~"° to measure socio-
demographic differences.

The absolute disparity for a given year is calculated as

(Equation 2)
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Absolute disparity of a demographic group = qg; — u(q),
(Equation 3)

where q; denotes the percentage of the population in exposure
to HI above a certain threshold for demographic group i; i.e.,
non-Hispanic White or adults (age 20-65). Larger values of
absolute disparity represent a higher percentage of a certain
group under heat risk, suggesting a larger disparity. Positive
numbers indicate the analyzed demographic group is more
affected by heat risks than the average. In analyzing disparity
within regions, we sum up the absolute values for all demo-
graphic groups of absolute disparity.

Overall absolute disparity across demographic groups is
calculated by

Overall absolute disparity = (Zln lgi — ﬂ(Q)|> /”~

(Equation 4)

Relative disparity by demographic group is calculated as
follows:

Qi
1)

Relative disparity closer to 0 suggests less disparity between
a demographic group and the average population. Positive
values indicate the demographic group more affected by the
heat risk, while negative values indicate the demographic group
less affected by the heat risk.

Overall relative disparities across demographic groups are
measured by the coefficient of variation (CoV), calculated by

Relative disparity = - 1.

(Equation 5)

Var(q)
u(q),

where g represents the percentage of a population (such as a
racial/ethnicity group or age group) exposed to the HI above a
certain threshold. In this analysis, the HI thresholds “Caution”
and “Extreme Caution” are used.

Population-weighted heat index

We used calculated population-weighted HI in summer
months (average HI for June, July, and August for the median
values of the outputs from various ESMs) (h)) in the contiguous
US by each sociodemographic group i for a given year, as
follows:

CoV = (Equation 6)

n
> Cipj
=1

hi = (Equation 7)

where c; is the projected average Hl for county j, and pj is the
projected population of demographic group i in county j, where
a group can be a racial group such as Black population or an
age group such as elderly population (age >65).

Based on the population-weighted HI, we provide a measure
of overall racial/ethnicity disparities considering all counties at
the national level as well as between geographic regions (e.g.,
Northeast, South, Midwest, and South).
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Supplemental Methods

CMIP6 models

CMIP6 (Coupled Model Intercomparison Project 6): We obtain near-surface air temperature
(2m above the ground) (fas) and corresponding relative humidity (hurs) from ScenarioMIP in
CMIP6. This database provides a range of outcomes based on concentration-driven
simulations from participating global coupled Earth System Models (ESMs)'. ScenarioMIP
specifically provides multi-model climate projections based on different scenarios with future
emissions and land use changes produced with Integrated Assessment Models (IAMs), using
1995-2014 as the historical baseline for simulations 2. Figure S1 illustrates the coupled SSP-
RCP simulations in CMIP6.

Our analysis focuses on Tier 1 experiments (SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0,
and SSP5-RCP8.5) and the additional scenario designed to limit global warming to 1.5
degrees Celsius above 1850-1900 (a period often used as a proxy for pre-industrial
conditions), SSP1-RCP1.9. A detailed description of these scenarios under focus is provided
in Table S1.

Table S1. Coupled Shared Socioeconomic Pathways (SSP) and Representative Concentration
Pathways (RCP) scenarios considered in this study

SSP-RCP

Pathways Description

SSP1-RCP1.9 Very low GHG emissions: CO; emissions cut to net zero around 2050

SSP1-RCP2.6 Low GHG emissions: CO; emissions cut to net zero around 2075
Intermediate GHG emissions: CO, emissions around current levels until 2050,

SSP2-RCP4.5 then falling but not reaching net zero by 2100

SSP3-RCP7.0 High GHG emissions: CO emissions double by 2100

SSP5-RCPS.5 Very high GHG emissions: CO, emissions triple by 2075

We selected 25 models that performed the projection of near-surface air temperature (fas) and
near-surface relative humidity (hurs) to 2100. From these, we identified 4 models for SSP1-
RCP1.9, 16 models for SSP1-RCP2.6, 17 models for SSP2-RCP4.5, 16 models for SSP3-
RCP7.0, and 17 models for SSP5-RCP8.5 to calculate Heat Index (Table S2).


https://www.zotero.org/google-docs/?TDSePU
https://www.zotero.org/google-docs/?llabLL

Table S2. Model details from CMIP6

Model i i
ID Models oce Model Institute Resolutlp " (actugl grid Experiments = Variable Ensemble
county resolution specified) variant
tas hurs
SSP1-RCP1.9 = 0 0
SSP1-RCP2.6 1 1
AWI-CM- Alfred Wegener .
1 1-1-MR Germany Institute (AWT) 100km SSP2-RCP4.5 1 1 rlilpl
SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
SSP1-RCP1.9 0 0
BCC- SSP1-RCP2.6 1 0
. Beijing Climate 100km (320 x 160 .
2 Ci/ll\l/liz_ China Center (BCC) longitude/latitude) SSP2-RCP4.5 [ 0 rlilpl
SSP3-RCP7.0 1 0
SSP5-RCP8.5 1 0
SSP1-RCP1.9 1 0
Chinese Academy SSP1-RCP2.6 1 0
CAMS- . . 100km (320 x 160 .
3 China of Meteorological . . SSP2-RCP4.5 1 0 rlilpl
CSM1-0 . longitude/latitude)
Sciences (CAMS) SSP3-RCP7.0 1 0
SSP5-RCP8.5 1 0
SSP1-RCP1.9 = 0 0
SSP1-RCP2.6 1 1
CAS- . Chinese Academy 100km (256 x 128 .
4 ESM2-0 China of Sciences (CAS) longitude/latitude) SSP2-RCP4.5 ! I rlilpl
SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
SSP1-RCP1.9 = 0 0
CESM?2- National Center for =~ 100km (0.9x1.25 finite SSP1-RCP2.6 1 1
5 USA Atmospheric volume grid; 288 x 192 SSP2-RCP4.5 1 1 rlilpl
WACEM Research (NCAR) ~ longitude/latitud
esearch ( ) ongitude/latitude) SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
SSP1-RCP1.9 = 0 0
SSP1-RCP2.6 1 0
. Tsinghua 100km (288 x 192 .
6 CIESM China University longitude/latitude) SSP2-RCP4.5 1 0 rlilpl
SSP3-RCP7.0 0 0
SSP5-RCP8.5 1 0
SSP1-RCP1.9 0 0
Fondazione Centro SSP1-RCP2.6 1 1
CMCC- Euro-Mediterraneo = 100km (1deg; 288 x 192 .
7 CM2-SR5 ltaly sui Cambiamenti longitude/latitude) SSP2-RCP4.5 ; I rlilpl
Climatici (CMCC) SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
Fondazione Centro SSPI-RCPLD g 0
8 CMCC- Ital Euro-Mediterraneo ~ 100km (1deg; 288 x 192 SSP1-RCP2.6 1 1 clilpl
ESM2 Y sui Cambiamenti longitude/latitude) SSP2-RCP4.5 1 1 p
Climatici (CMCC) SSP3-RCP7.0 | 1




SSP5-RCP8.5 1 1
SSP1-RCP1.9 = 0 0
100km (deg average grid SSP1-RCP2.6 0 0
United E3SM-Project spacing; 90 x 90 x 6 .
9 E3SM-1-0 - gies  LLNL UCIUCSB longitude/latitude/cubefac SSP2-RCP4.5 I 1ilp]
e) SSP3-RCP7.0 0 0
SSP5-RCP8.5 1 0
SSP1-RCP1.9 = 0 0
100km (1 deg average grid SSP1-RCP2.6 0 0
E3SM-Project; spacing; 90 x 90 x 6 .
10 |E3SM-1-1]  USA RUBISCO longitude/latitude/cubefac Sor 2 RCP4S - 10 rlilpl
e) SSP3-RCP7.0 0 0
SSP5-RCP8.5 1 0
SSP1-RCP1.9 = 0 0
11 1-ECA States E3SM-Project longitude/latitude/cubefac  SSP2-RCP4.5 0 0 rlilpl
©) SSP3-RCP7.0 0 0
SSP5-RCP8.5 1 0
Spain, SSPI-RCP1.9 0 0
Gel:fxgr,ly 100km (linearly reduced SSP1-RCP2.6 1 1
12 EC- UK ’ EC—Ear.th- Gaussian grid equivalent SSP2-RCP4.5 1 1 rlilpl
Earth3 Finlar; d Consortium to 512 x 256
. ’ longitude/latitude) SSP3-RCP7.0 1 1
Switzerlan
d SSP5-RCP8.5 1 1
Spain, SSP1-RCP1.9 0 0
ftaly, 100km (linearly reduced SSP1-RCP2.6 0 0
EC- Germany, EC-Earth- Gaussian grid equivalent
13 Earth3- UK, . gneeq SSP2-RCP4.5 1 1 rlilpl
cC Finland Consortium to 512 x 256
. ’ longitude/latitude) SSP3-RCP7.0 0 0
Switzerlan
d SSP5-RCP8.5 1 1
Spain, SSPI-RCP1.9 0 0
ltaly, 100km (linearly reduced SSPI-RCP2.6 0 0
EC- Germany, EC-Earth- Gaussian grid equivalent
14 Earth3- UK, . ussian gric equiv SSP2-RCP45 0 0 rlilpl
AerChem  Finland Consortium to. 512 x 2.56
. ’ longitude/latitude) SSP3-RCP7.0 1 1
Switzerlan
d SSP5-RCP8.5 0 0
Spain, SSPI-RCP19 1 1
ltaly, 100km (linearly reduced SSP1-RCP2.6 1 1
EC- Germany, EC-Earth- Gaussian grid equivalent
15 Earth3- UK, . gheeq SSP2-RCP4.5 1 1 rlilpl
Ve Finland Consortium to 512 x 256
& nand, longitude/latitude) ~ SSP3-RCP7.0 1 1
Switzerlan
d SSP5-RCP8.5 1 1
Spain, SSPI-RCP1.9 1 1
ltaly, 100km (linearly reduced SSPI-RCP2.6 1 1
EC- Germany, EC-Earth Gaussian grid equivalent
16  Earth3- UK, “hart- ussian gnic equiy SSP2-RCP4.5 1 1 rlilpl
Veg-LR  Finland Consortium to. 512 x 2.56
. ’ longitude/latitude) SSP3-RCP7.0 1 1
Switzerlan
d SSP5-RCP8.5 1 1
|7 FGOALS- . =~ Chinese Academy 100km (360 x 180 SSPI-RCPL.9 = 0 0 Hilol
f3-L of Sciences (CAS) longitude/latitude) SSP1-RCP2.6 1 1 p




SSP2-RCP4.5 1 1
SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
First Institute of SSP1-RCP1.9 0 0
Oceanography,
FIO- Qingdao National = 100 km (0.9x1.25 finite SSPI-RCP2.6 | 1 L
18 China Laboratory for volume grid; 192 x 288  SSP2-RCP4.5 1 1 rlilpl
ESM-2-0 ) ) . .
Marine Science and longitude/latitude) SSP3-RCP7.0 0 0
Technology (FIO-
QLNM) SSP5-RCP8.5 1 1
National Oceanic SSP1-RCP1.9 1 1
and Atmospheric
GFDL- Administration, 100km (1 degree nominal SSP1-RCP2.6 g I
19 ESM4 USA Geophysical Fluid = horizontal resolution; 360 SSP2-RCP4.5 = 1 I rlilpl
Dynamics x 180 longitude/latitude) gSP3-RCP7.0 1 1
Laboratory
(NOAA-GFDL) SSP5-RCP8.5 1 1
SSP1-RCP1.9 = 0 0
INM- Institute for l(iglflmitfcfel/iit;itlugdoe-lelzo SSPI-RePO L 1| 1
20 Russia Numerical g' .2~ SSP2-RCP4.5 1 1 rlilpl
CM4-8 Mathematics (INM levels; top level sigma =
athematics (INM) 0.01)) SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
SSP1-RCP1.9 = 0 0
INM- Institute for l(iglflmitfcfel/iit;itlugdoe-x7l320 R e
21 Russia Numerical g' .7 '~ SSP2-RCP4.5 1 1 rlilpl
CM5-0 Mathematics (INM levels; top level sigma =
athematics (INM) 0.0002) SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
Max Planck SSPI-RCP1.9 = 0 0
Institute for
MPL Meteorology (MPI- 100km (spectral T127; 384 SSPI-RCP2.6 | 1 !
M); Deutscher x 192 longitude/latitude; SSP2-RCP4.5 = 1 1 .
22 ESMI1-2- Germany . : rlilpl
HR Wetterdienst 95 levels; top level 0.01  ggp3-RCP7.0 1 1
(DWD); Deutsches hPa)
Klimarechenzentru SSP5-RCPS.5 1 1
m (DKRZ)
SSP1-RCP1.9 1 1
MR Meteorological 100km (320 x 160 SSP1-RCP2.6 1 !
23 Japan Research Institute longitude/latitude; 80  SSP2-RCP4.5 1 1 rlilpl
ESM2-0
(MRI) levels; top level 0.01 hPa) SSP3-RCP7.0 1 1
SSP5-RCP8.5 1 1
SSP1-RCP1.9 = 0 0
Research Center for 100km (0.9x1.25 degree; SSP1-RCP2.6 1 0
. . Environmental 288 x 192 .
24 TaiESM1  Taiwan Changes, Academia  longitude/latitude; 30 SSP2-RCP4.5 1 0 rlilpl
Sinica (AS-RCEC) levels; top level ~2 hPa) SSP3-RCP7.0 = 1 0
SSP5-RCP8.5 1 0
SSP1-RCP1.9 = 0 0
NorESM2 Norwegian Climate lOka (1 degree SSPI-RCP2.6 1 1 .
25 MM Norway Centre (NCC) resolution; 288 x 192; 32 rlilpl
levels; top level 3 mb) SSP2-RCP4.5 1 1
SSP3-RCP7.0 1 1




SSP5-RCP8.5 1 1

Note: “tas” denotes near-surface air temperature (2m above the ground), “hurs” denotes
relative humidity. 1 indicates available data; 0 indicates data that is not available. Data
sources: https://github.com/WCRP-CMIP/CMIP6 CVs/blob/master/README.m

In the analysis, we used the Heat Index, which is an indicator adopted by the National
Weather Service (NWS), to measure how hot it “feels” to the human body. This index is
primarily dependent on temperature and humidity, although other factors such as direct
sunlight, wind speed, and cloud cover also affect people’s perception of heat®. We used the
median value of near-surface air temperature and near-surface relative humidity for ensemble
models to calculate the Heat Index without the bias correction procedures. Some bias
correction procedures, such as quantile mapping, are commonly used when analyzing climate
impacts, typically with extreme values, at high spatial resolution, such as daily*°. Prior
studies suggest that the bias correction process does not systematically over- or under-
estimate projected changes in the Heat Index due to the compensatory effect brought by

temperature and humidity biases®.

Shared Socioeconomic Pathways
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Figure S1 SSP-RCP scenario matrix illustrating ScenarioMIP simulations in CMIP6 2
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Socioeconomic data

Total population, population by race, age, and gender are county-level projections under five
SSPs at a five-year interval from 2020 to 21007. Sociodemographic data collected from
multiple sources are detailed in Table S3. In our analysis, populations by race are categorized
into non-Hispanic White, non-Hispanic Black, Hispanic (all races), and non-Hispanic Other
Races. The age groups under study are classified into Young (age below 20), Adult (age 20—
64), and Elderly (age 65+). To get the downscaled data, Hauer® calculates cohort-change
ratios (CCRs) and cohort-change differences and projects into Leslie matrix population
projection models using inputs from autoregressive integrated moving average (ARIMA)
models and controls the projections to the SSPs.


https://www.zotero.org/google-docs/?Sb7hJJ
https://www.zotero.org/google-docs/?hVGWuA
https://www.zotero.org/google-docs/?HvLRBG
https://www.zotero.org/google-docs/?XS6COx
https://www.zotero.org/google-docs/?K6cEkd
https://www.zotero.org/google-docs/?gTwuG5

Table S3. Downscaled Sociodemographic data and their sources

Socioeconomic Original spatial
factors Data source resolution Reference
Urban fraction Gao et al. (2021) 1/8 degree 7
Socioeconomic Data and
Population Applications Center (SEDAC) US county 8
Socioeconomic Data and
Gender Applications Center (SEDAC) US county 8
Socioeconomic Data and
Race Applications Center (SEDAC) US county 8
Socioeconomic Data and
Age Applications Center (SEDAC) US county 8

Income Murakami 1/12 degree ?



https://www.zotero.org/google-docs/?FAMc1O
https://www.zotero.org/google-docs/?5tOa7M
https://www.zotero.org/google-docs/?GoXXmb
https://www.zotero.org/google-docs/?XQVJM3
https://www.zotero.org/google-docs/?FIWYWg
https://www.zotero.org/google-docs/?dlYmM9

Table S4. Probability of having heat disorders with prolonged exposure (summer average
HI>80F) under SSP5-RCP8.5

Increase in Increase in
205 210 likelihood of likelihood of heat
Month 2020 0 0 heat disorders disorders (2020—
(2020—-2050) 2100)
Jan 0.00 0.00 0.04 0.00 0.04
Feb 0.00 0.00 0.04 0.00 0.04
Mar 0.00 0.01 0.12 0.01 0.12
Apr 0.04 0.10 0.22 0.05 0.18
May 0.19 0.27 0.44 0.08 0.26
Jun 0.35 0.45 0.63 0.10 0.28
Jul 0.47 0.56 0.75 0.09 0.28
Aug 0.47 0.57 0.75 0.10 0.28
Sep 0.32 0.41 0.63 0.09 0.31
Oct 0.17 0.24 0.42 0.07 0.25
Nov 0.04 0.10 0.24 0.06 0.20

Dec 0.00 0.00 0.12 0.00 0.12
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Table SS Number of counties by Heat Index zones under five coupled SSP-RCP scenarios

Time SSP-RCP Region Safe Caution Extreme Caution Danger
2020 SSP1-RCP1.9 .
Midwest 1010 45 0 0
South 578 758 86 0
West 397 17 0 0
Northeast 217 0 0 0
Total 2202 820 86 0
SSP1-RCP2.6
Midwest 747 308 0 0
South 479 733 210 0
West 395 19 0 0
Northeast 217 0 0 0
Total 1838 1060 210 0
SSP2-RCP4.5
Midwest 727 328 0 0
South 502 710 210 0
West 390 24 0 0
Northeast 217 0 0 0
Total 1836 1062 210 0
SSP3-RCP7.0 .
Midwest 769 286 0 0
South 482 733 207 0
West 394 20 0 0
Northeast 217 0 0 0
Total 1862 1039 207 0
SSP5-RCP8.5 .
Midwest 689 366 0 0
South 429 771 222 0

West 395 19 0 0



Northeast 217 0 0
Total 1730 1156 222
2050 SSP1-RCP1.9 .
Midwest 910 145 0
South 531 669 222
West 392 21 1
Northeast 217 0 0
Total 2050 835 223
SSP1-RCP2.6 .
Midwest 591 464 0
South 345 697 380
West 384 29 1
Northeast 217 0 0
Total 1537 1190 381
SSP2-RCP4.5 .
Midwest 528 523 4
South 293 686 443
West 381 32 1
Northeast 217 0 0
Total 1419 1241 448
SSP3-RCP7.0 .
Midwest 534 513 8
Northeast 216 1 0
South 246 645 531
West 380 33 1
Total 1376 1192 540
SSP5-RCP8.5 .
Midwest 451 584 20
Northeast 215 2 0
South 209 624 589
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West 375 37 2 0
Total 1250 1247 611 0
2100 SSP1-RCP1.9 .
Midwest 915 140 0 0
South 534 759 129 0
West 393 21 0 0
Northeast 217 0 0 0
Total 2059 920 129 0
SSP1-RCP2.6 .
Midwest 596 459 0 0
South 321 726 375 0
West 385 28 1 0
Northeast 217 0 0 0
Total 1519 1213 376 0
SSP2-RCP4.5 .
Midwest 324 644 87 0
Northeast 204 13 0 0
South 145 566 711 0
West 366 44 4 0
Total 1039 1267 802 0
SSP3-RCP7.0 .
Midwest 81 603 371 0
Northeast 121 96 0 0
South 1 365 851 205
West 285 120 9 0
Total 488 1184 1231 205
SSP5-RCP8.5 )
Midwest 7 372 673 3
Northeast 33 163 21 0
South 0 141 670 611
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West

Total

203

243

193

869

18

1382

614
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Table S6 Changes in heat exposure between Heat Index zones in 2050 and 2100

Coupled SSP-
RCP
scenarios

2050 2100
Caution Caution Extreme
to Safe to to Caution Caution
No  Safeto Extreme| No Safeto Extreme Extreme to to

moveme Cautio Caution

moveme Caution Caution Caution Danger Danger

nt (%) n(%) (%) |[nt(%) (%) (%) (0) (%) (%)
SSPI-RCP1.9| 91.4 2.3 6.2 94.9 2.1 NA 2.9 NA NA
(90.7) (49) (44 | (9400 (4.6 (1.4
SSP1-RCP2.6| 87.4 6.1 6.5 86.0 6.8 NA 7.2 NA NA
(84.8) (9.7) (5.5 | (844) (10.3) (5.3)

SSP2-RCP4.5| 81.2 103 8.5 59.0 26.2 NA 14.9 NA NA
(78.9) (13.4) (7.7) | (55.3) (25.6) (19.0)
SSP3-RCP7.0| 788 11.0 102 17.4 45.7 4.3 22 1.8 8.9

(73.6) (15.6) (10.7) | (17.0) (37.6) (6.6) (32.2) (0.8) (5.8)
SSP5-RCP8.5| 727 149 124 7.2 35.5 21.4 15.1 11.2 9.6
(72.0) (154 (d2.5) | (8.0) (27.8) (20.00 (244 (12.6) (7.1

Note: the numbers show the percentage of population (numbers out of parentheses) and
number of counties (numbers in parentheses) using 2020 as a reference, the percentage may

not add up to

100% due to rounding.
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Table S7. US Census Regions in the contiguous United States

State State Code  Region
Alabama AL South
Arkansas AR South
Arizona AZ West
California CA West
Colorado CcO West
Connecticut CT Northeast
District of ColumbiaDC South
Delaware DE South
Florida FL South
Georgia GA South
Iowa IA Midwest
Idaho ID West
Illinois IL Midwest
Indiana IN Midwest
Kansas KS Midwest
Kentucky KY South
Louisiana LA South
Massachusetts MA Northeast
Maryland MD South
Maine ME Northeast
Michigan MI Midwest
Minnesota MN Midwest
Missouri MO Midwest
Mississippi MS South
Montana MT West
North Carolina NC South
North Dakota ND Midwest
Nebraska NE Midwest
New Hampshire NH Northeast
New Jersey NJ Northeast
New Mexico NM West
Nevada NV West
New York NY Northeast
Ohio OH Midwest
Oklahoma OK South
Oregon OR West
Pennsylvania PA Northeast
Rhode Island RI Northeast
South Carolina SC South
South Dakota SD Midwest
Tennessee TN South
Texas TX South
Utah uT West
Virginia VA South
Vermont VT Northeast
Washington WA West
Wisconsin WI Midwest

16



West Virginia
Wyoming

wv
WY

South
West
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Table S8. Population-weighted Heat Index by race under four coupled SSP-RCP scenarios

SSP-RCP
Race/Ethnicity scenarios 2020 2050 2100
Non-Hispanic White SSP1-RCP2.6 77.0 79.6 80.3
Non-Hispanic Black SSP1-RCP2.6 80.0 82.5 82.7
Hispanic (all races) SSP1-RCP2.6 80.2 82.6 82.7
Non-Hispanic other races ~ SSP1-RCP2.6 76.5 78.7 79.0
Non-Hispanic White SSP2-RCP4.5 77.1 80.1 83.7
Non-Hispanic Black SSP2-RCP4.5 79.9 83.1 86.4
Hispanic (all races) SSP2-RCP4.5 80.2 83.0 86.0
Non-Hispanic other races ~ SSP2-RCP4.5 76.5 79.1 82.0
Non-Hispanic White SSP5-RCP8.5 77.4 81.4 93.3
Non-Hispanic Black SSP5-RCPS8.5 80.4 84.5 96.8
Hispanic (all races) SSP5-RCPS.5 80.4 84.1 95.3
Non-Hispanic other races ~ SSP5-RCP8.5 76.7 80.2 91.0
Non-Hispanic White SSP3-RCP7.0 76.8 80.6 88.7
Non-Hispanic Black SSP3-RCP7.0 79.8 83.7 91.8
Hispanic (all races) SSP3-RCP7.0 80.1 83.5 91.0
Non-Hispanic other races  SSP3-RCP7.0 76.3 79.4 86.6
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Population percentile in exposure to Hl above Extreme Caution under SSP2-RCP4.5
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Figure S5 Population percentile of racial/ethnic groups in exposure to HI above Extreme
Caution under SSP2-RCP4.5 scenario
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Population percentile in exposure to Hl above Extreme Caution under SSP5-RCP8.5

2020
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Figure S6 Population percentile of racial/ethnic groups in exposure to HI above Extreme
Caution under SSP5-RCP8.5 scenario
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Figure S7 Percentage of population exposed to Extreme Caution+ heat risk under coupled
SSP-RCP scenarios by racial/ethnic group
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Population percentile in exposure to Hl above Caution under SSP2-RCP4.5

2020
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Figure S8 Population percentile of racial/ethnic groups in exposure to HI above Caution
under SSP2-RCP4.5 scenario
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Population percentile in exposure to Hl above Caution under SSP5-RCP8.5
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Figure S9 Population percentile of racial/ethnic groups in exposure to HI above Caution
under SSP5-RCP8.5 scenario
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Figure S10 Percentage of population exposed to Caution heat risk and above under coupled
SSP-RCP scenarios by racial/ethnic group
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in exposure to Heat Index above Caution threshold under future scenarios; (B) Overall
absolute disparity in exposure to Heat Index above Caution threshold under future scenarios;

(C) Relative disparity of racial-ethnicity groups in exposure to Heat Index above Caution
threshold under future scenarios. (D) Overall relative disparity of racial-ethnicity groups in

exposure to Heat Index above Caution threshold under future scenarios; (Absolute disparity
1s measured as the difference between a group’s exposure and the overall population average,

while relative disparity represents the ratio of a group’s exposure to the population average.
Hispanic: Hispanic (all races), NH-Black: Non-Hispanic Black, NH-White: Non-Hispanic
White, NH-Others: Non-Hispanic Other Races. Each box plot shows the interquartile range
(25th—75th percentile), with the median indicated by a horizontal line. Whiskers extend to
1.5x the IQR, and points beyond the whiskers are plotted as outliers. Please see

Supplementary Information SI1.1 for more details on the number of models. The black dash
lines represent benchmark values for perfect equalization.)
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Table S9. Percentage of the distribution of non-Hispanic black populations in the bottom and
top quartiles of summer Heat Index distributions from 2020 to 2100.

2020 2050 2100
bottom top bottom top bottom top

| | | | | |
SSP1-RCP1.9  1.67% 3.48% 4.38% 12.5% 5.15% 1.29%
SSP1-RCP2.6  2.19% 12.5% 6.18% 20.36% 13.26% 13.14%
SSP2-RCP4.5  2.45% 11.21% 6.95% 27.06% 22.39% 36.60%
SSP3-RCP7.0  2.45% 11.73% 7.59% 31.83% 41.18% 63.92%
SSP5-RCP8.5  2.45% 13.14% 9.52% 38.53% 57.27% 78.22%

S 2.3.2 Age disparity

Table S10 Population-weighted Heat Index by age under four coupled SSP-RCP scenarios

Age SSP-RCP scenarios 2020 2050 2100
Adult SSP1-RCP2.6 77.97 80.63 81.20
Elderly SSP1-RCP2.6 77.75 80.67 81.45
Young SSP1-RCP2.6 78.23 80.87 81.32
Adult SSP2-RCP4.5 77.97 81.12 84.61
Elderly SSP2-RCP4.5 77.74 81.15 84.82
Young SSP2-RCP4.5 78.24 81.38 84.76
Adult SSP3-RCP7.0 77.78 81.59 89.58
Elderly SSP3-RCP7.0 77.54 81.62 89.78
Young SSP3-RCP7.0 78.04 81.85 89.74
Adult SSP5-RCP8.5 78.28 82.34 94.14
Elderly SSP5-RCPS.5 78.06 82.37 94.32
Young SSP5-RCP8.5 78.55 82.60 94.31
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Population percentile in exposure to Hl above Extreme Caution under SSP2-RCP4.5
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Figure S13 Population percentile of age groups in exposure to HI above Extreme Caution
under SSP2-RCP4.5 scenario
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Population percentile in exposure to Hl above Extreme Caution under SSP5-RCP8.5
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Figure S14 Population percentile of age groups in exposure to HI above Extreme Caution
under SSP5-RCP8.5 scenario
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Population percentile in exposure to Hl above Caution under SSP2-RCP4.5
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Figure S16 Population percentile of age groups in exposure to HI above Caution under
SSP2-RCP4.5 scenario
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Population percentile in exposure to Hl above Caution under SSP5-RCP8.5
2020

Adult Elderly

50°N 1
45°N

40°N 4
35°N 4

30°N A

25°N 4

120°W 110°W 100°W 90°W 80°W 70°W  120°W 110°W 100°W 90°W 80°W 70°W  120°W 110°W 100°W 90°W 80°W 70°W
2050

Adult Elderly
50°N A =

45°N 1
40°N
35°N
30°N

25°N 4

120°W 110°W 100°W 90°W 80°W 70°W  120°W 110°W 100°W 90°W 80°W 70°W

2100
50°N

Elderly Young

45°N 4
40°N 4
35°N 4
30°N A
25°N 1

120°W 110°W 100°W 90°W 80°W 70°W  120°W 110°W 100°W 90°W 80°W 70°W  120°W 110°W 100°W 90°W 80°W 70°W
Population percenlile _
0 20 40 60 80 100

Figure S17 Population percentile of age groups in exposure to HI above Caution under
SSP5-RCP8.5 scenario
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Figure S18 Age disparity in exposure to Heat Index above Caution (HI = 80°F )
threshold. (A) Absolute disparity and relative disparity of age groups in exposure to Heat
Index above Caution threshold under future scenarios. (B) Overall absolute disparity of age
groups in exposure to Heat Index above Caution threshold under future scenarios; (C)
Relative disparity of age groups in exposure to Heat Index above Caution threshold under
future scenarios; (D) Overall relative disparity of age groups in exposure to Heat Index above
Caution threshold under future scenarios. (Note 1: Each box plot shows the interquartile
range (25th—75th percentile), with the median indicated by a horizontal line. Whiskers extend
to 1.5x the IQR, and points beyond the whiskers are plotted as outliers. Please see
Supplementary Information SI1.1 for more details on the number of models. Note 2: The
black dash lines represent benchmark values for perfect equalization.)
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Figure S19 Percentage of population exposed to Extreme Caution+ heat risk under coupled
SSP-RCP scenarios by age group
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Figure S25 Number of summer days (June—August) at NWS heat-risk thresholds (“Caution,”
“Extreme Caution,” “Danger”). Daily maximum air temperature and daily minimum relative
humidity were used to compute daily maximum HI. Values shown are from the EC-Earth3
CMIP6 model under SSP2-RCP4.5, summed across the three months.
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Figure S26 Total number of days exceeding NWS heat-risk thresholds (“Caution,” “Extreme
Caution,” “Danger”). Daily maximum air temperature and daily minimum relative humidity
were used to compute daily maximum HI. Values shown are from the EC-Earth3 CMIP6

model under SSP2-RCP4.5, summed across the three months.
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disparities of heat risks due to climate change
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Figure S27 Likelihood of heat exposure for all months under SSP2-RCP4.5 and SSP5-
RCP8.5 scenarios in 2020, 2050, and 2100
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