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SUMMARY

As global temperatures rise, heat-related hazards will escalate, unevenly affecting different regions and

socioeconomic groups across the United States. However, we lack robust projections of who will face how

much heat in the future, a gap that risks misdirecting adaptation resources and deepening avoidable and ineq-

uitable health impacts. Here, we combine multi-model ensemble of climate projections from the Coupled

Model Intercomparison Project Phase 6 (CMIP6) with sociodemographic estimates to examine county-level

exposure to moist heat stress from the present day to 2100. Our results show scenario-dependent widening

of heat exposure by sociodemographic and geographic characteristics, with non-Hispanic Black populations,

older adults, and heat-prone Southern counties experiencing the greatest increases. Across intermediate,

high, and very high emission scenarios (SSP2-4.5, SSP3-7.0, and SSP5-8.5), absolute ‘‘Extreme Caution+’’ dis-

parities expand, with the largest gaps in 2100 between non-Hispanic Black and non-Hispanic White popula-

tions. By resolving exposure by group, location, and scenario, these results can better inform adaptation plan-

ning that reflects differential risk and allows for prioritizing resources for the most affected communities.

INTRODUCTION

Global warming increases heat stress, which poses profound

threats to human health and society,1–5 particularly during sum-

mer months.6,7 Recent decades have seen detrimental impacts

on human health due to increased heat exposure. For instance,

the contiguous United States (US) observed an increase in heat-

related mortality attributed to anthropogenic climate change,

with approximately 12,000 premature deaths occurring annually

during the 2010s.8,9 Increases in extreme heat stress and

SCIENCE FOR SOCIETY Extreme heat is the deadliest weather hazard in the United States (US), driving hos-

pital visits, straining power grids, and endangering outdoor workers. However, the burden is not shared

equally: race and ethnicity, age, income, and where you live shape who faces the greatest risk. Many com-

munities still lack clear, forward-looking guidance on where temperatures and heat stress will surge and

which residents will be hardest hit. Our study projects future heat exposure for every US county through

2100. We find that exposure rises everywhere, but gaps widen, especially in the South and among older

adults and Black communities. State and local leaders, health departments, and utilities can use these results

to target protections, such as cooling centers, home cooling assistance, shade and street trees, and worker

safeguards, where they are needed most, guiding fair and effective adaptation plans.

One Earth 9, 101528, January 16, 2026 © 2025 Elsevier Inc. 1
All rights are reserved, including those for text and data mining, AI training, and similar technologies.

ll

mailto:kaihuis@berkeley.edu
mailto:angel.hsu@unc.edu
https://doi.org/10.1016/j.oneear.2025.101528
http://crossmark.crossref.org/dialog/?doi=10.1016/j.oneear.2025.101528&domain=pdf


resulting heat-related deaths will be greater in higher-emission

future scenarios,10 which, in addition to direct mortality and

morbidity impacts of heat, will lead to a loss of agricultural pro-

ductivity11 and workplace efficiency12,13 as well as increases in

household energy consumption due to greater air-conditioning

demand.14

There is strong evidence that such heat hazards and exposure

are unevenly distributed across regions and socioeconomic

groups within the US.15 Neighborhoods with low-income and

less-educated residents within a US county are exposed to

significantly hotter temperatures than those with high-income

and more-educated residents.16 These differences in heat expo-

sure have contributed to disproportionate health burdens,

particularly in historically redlined areas17 and contemporary

disadvantaged communities. People of color and those living

below the poverty line experience higher heat exposure and

potentially more heat-related health risks than non-Hispanic

White populations in wealthier areas throughout these cit-

ies.18–22 Significant racial disparities in urban heat exposure

persist in 71% of US counties even when adjusting for income.16

To understand how temperature and moist heat stress might

evolve, Earth system models (ESMs) are widely used to project

future changes in the climate and atmospheric system based

on physical processes.23,24 These models are commonly run un-

der alternative shared socioeconomic pathways (SSPs) that are

associated with different emission trajectories and, therefore,

warming futures (such as different representative concentration

pathways [RCPs]). When ESM outputs for projected temperature

and relative humidity are combined with fine-scale SSP projec-

tions of sociodemographic features, they can, in principle, be

used to assess who will be exposed to dangerous heat, where,

and under which future scenarios. Existing studies have taken

important steps in this direction, typically relying on downscaled

climate data and overall population projections,25 often focusing

on specific geographic or sociodemographic units.26–28 For

example, Dahl et al.26 (also see Jones et al.29 for similar method-

ology) used downscaled climate models to estimate future US

National Weather Service (NWS)-defined heat index (HI) exceed-

ances relative to a 1971–2000 baseline. However, most studies

do not evaluate projected impacts on multiple demographic

groups simultaneously and at a spatially explicit, national scale.

As a result, we still lack scenario-specific, county-scale evidence

on whether heat-exposure disparities will widen or narrow

for which groups and in which regions.30 Understanding who

is affected by global warming and what drives exposure dis-

parities is therefore critical for crafting just and effective policy

responses.31

Here, we address the limited evidence on how future climate

warming will differentially increase moist heat stress across US

demographic groups. We couple downscaled Coupled Model

Intercomparison Project Phase 6 (CMIP6) ESM projections

(2020–2100) for five SSP-RCP scenarios with socio-demo-

graphic projections for 3,108 contiguous US counties to esti-

mate population-weighted HI exposure during summer months

(June, July, and August) when heat-related risks are highest

and to track how changing racial/ethnic and age structures

alter future exposure under intermediate, high, and very high

emission-socioeconomic pathways. This integrated climate-

socioeconomic approach shows that exposure disparities

widen over time, with non-Hispanic Black populations, older

adults, and counties in the Southern US experiencing the

largest increases in ‘‘Extreme Caution+’’ days. These results

demonstrate that climate projections and demographic

change jointly shape future heat inequities and underscore

the need for adaptation strategies that explicitly prioritize so-

cially vulnerable populations and the regions where they are

concentrated.

RESULTS

Rising summer moist heat stress through 2100

To assess how warming and humidity jointly amplify future heat

hazards, we first examined county-level summer (June, July, and

August) HI projections under five SSP-RCP scenarios for 2020–

2100. In doing so, we quantify both the magnitude and spatial

distribution of future moist heat stress. Summer months are

associated with higher heat-related hazards, with an even

greater likelihood of heat disorders under high-emission future

scenarios (Table S4).

As shown in Figure 1C, when comparing projected increases

in median HI for summer months across counties under the

SSP2-RCP4.5 scenario, which combines a ‘‘middle-of-the-

road’’ socioeconomic pathway with moderate population growth

and intermediate economic development aligned with countries’

current climate pledges,32 the median HI is projected to rise by

6.1◦F (3.4◦C) between 2020 and 2100. By 2100, under high-

emission scenarios (SSP5-RCP8.5), driven by continued fossil-

fuel reliance, the summer median increase in HI may reach as

high as 15.0◦F (8.3◦C). These numbers are significantly higher

than projected near-surface air temperatures between 4.2◦F

(2.3◦C) and 9.5◦F (5.3◦C) for the same time period, mainly due

to projected changes in relative humidity and the high sensitivity

of HI to air temperature under high humidity (changes in relative

humidity at the county level are detailed in Figure S4).33 The

combined impact of near-surface air temperature and humidity

results in a public health risk that potentially surpasses the risk

assumed when only considering the projected increase in

near-surface air temperature.

When HI, rather than solely projected near-surface air temper-

ature alone, is used, hazards rise more sharply with the inclusion

of both temperature and humidity (see methods) (Figure S2).

Increases in HI exceed those in near-surface air temperature,

especially under higher-emission future scenarios, such as

SSP3-RCP7.0 and SSP5-RCP8.5 (see county average increase

in Figure 1C and county-specific percentile change in

Figure S3). This pattern is most pronounced in the southern and

eastern regions of the US (Figures 1A and 1B). The increases in

near-surface air temperature and HI show different spatial pat-

terns. Consistent with prior studies,26 higher latitudes experience

a greater increase in near-surface air temperature; however, HI

increases are significantly higher in lower latitudes, especially in

southeastern coastal areas (Figure 1D). Humidity levels play a

critical role in heat perception in these areas, leading to an average

increase in HI of over 3◦F (1.7◦C) at latitude 30◦ N by 2100 under

the SSP2-RCP4.5 scenario. Under the high-emission scenario

(SSP5-RCP8.5), changes in HI at this latitude may exceed the in-

crease in near-surface air temperature by as much as 10◦F

(5.6◦C). These findings suggest that residents in the South will
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not only face heightened risks of heat exposure by 2100, as indi-

cated by high absolute HI values, but also will experience a more

rapid increase in HI by 2050 and 2100.

Prior research shows that 21st-century warming will increase

the frequency and intensity of extreme heat events and alter

the spatial pattern of daily minimum and maximum tempera-

tures, both of which heighten heat-related health risks.25,29,34

Since not all ESMs report daily maximum and minimum temper-

atures, we focus here on climate-induced disparities in summer

mean HI; however, Figures S24 and S25 show that HI estimated

from available daily average maximum temperatures reveals

spatial patterns similar to those presented here for the monthly

means, indicating that our main conclusions are robust to tem-

poral resolution.

Spatial heterogeneity of impacts

To locate where these rising hazards concentrate, we classify

counties into heat risk categories according to the NWS and

assess how many people in counties move into higher-risk

bins across scenarios. We group HI values using NWS thresh-

olds categorized according to the social and health risks associ-

ated with ‘‘dangerous heat disorders with prolonged exposure

and/or physical activity in the heat’’ (Table 1). While the recently

developed national NWS HeatRisk was defined based on

various considerations such as frequency, duration, and demo-

graphic characters,35 in this article, when we refer to ‘‘risk,’’ we

are talking about the impacts of demographic groups exposed

to outdoor heat hazards while assuming that vulnerability does

not change substantially.
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Figure 1. Projected average heat index under five coupled SSP-RCP scenarios from 2020 to 2100

(A) Per-decade changes in near-surface air temperature at the county level.

(B) Per-decade changes in heat index (HI) at the county level.

(C) Increases in heat-related indicators (near-surface air temperature vs. HI). The solid lines represent median values across various Earth system models (see

supplemental methods for more details on the number of models), and the shaded areas represent values for the interquartile range.

(D) Changes in HI by latitude between 2020 and 2100. The solid line represents the median, while the shaded areas represent the interquartile range.
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Across various future scenarios, projections indicate a sub-

stantial increase in the number of US counties facing high heat

risks by mid-century and the end of the century. As shown in

Figure 2A (with numeric details in Table S5), in the low-emissions

scenario, following the sustainable development pathway

(SSP1-RCP2.6), approximately half of US counties (50.6%) are

projected to face higher risks by mid-century (2050, average

across 2045–2050). This percentage rises slightly higher to

51.1% by 2100 (average across 2095–2100) compared to

approximately 40% of counties at risk during the baseline period

(2020, average across 2015–2020).

Under the middle-of-the-road/intermediate greenhouse gas

(GHG) emissions scenario (SSP2-RCP4.5), the number of at-

risk counties increases from ∼40% to ∼66% from the baseline

period to the end of the century. By mid-century, this scenario

will result in 417 counties (13.4% of total counties), home to an

estimated population of around 43 million, moving from the

‘‘Safe’’ to ‘‘Caution’’ category. An additional 592 counties, where

approximately 78 million people reside, will move from the

‘‘Caution’’ to ‘‘Extreme Caution’’ category by the end of the

century.

The risk of prolonged heat exposure is even more pronounced

in the high-emission scenario (SSP5-RCP8.5). Only 8% of

the counties will stay in the ‘‘Safe’’ heat risk category by

the 2100s, and one out of five counties in the US will be in the

‘‘Danger’’ category. This scenario will pose risks to 480 counties

(14.9% of the total population) that will shift from the ‘‘Safe’’ to

‘‘Caution’’ category by the middle of this century, and 96.5%

of these counties will be further placed in an ‘‘Extreme Caution’’

category by the end of this century (Table S6). These counties

are mainly located in Iowa, Kentucky, and Indiana. In addition,

614 counties, mainly located in southeastern coastal states,

where ∼191 million people will reside by the end of this century,

will face risks associated with the ‘‘Danger’’ category. Notably,

all of these counties were initially identified as being at risk of

‘‘Caution’’ or ‘‘Extreme Caution’’ during the baseline period.

The at-risk counties are primarily located in the South census

region or Southern US, encompassing a total of 17 states

stretching from Texas and Oklahoma in the west to Delaware

in the east. The projected HI under different future scenarios

indicates elevated HI levels across the Southern US. As shown

in Figure 2B, half of the population in the South will live within

an ‘‘Extreme Caution’’ category by the end of the century under

SSP2-RCP4.5 (see Table S7 for full US Census region defini-

tions). By 2100, under the high-emission future scenario

(SSP5-RCP8.5), the majority of people (97.8%) living in the

Southern US will be classified as living in areas exposed to

‘‘Extreme Caution’’ and ‘‘Danger’’ heat risk categories. Even

in the Northeast region, which includes nine states and where

future HI is projected to be less severe than at lower latitudes

due to lower relative humidity, 97.75% of the population living

in this region in 2100 will experience HI values within the

‘‘Caution’’ and ‘‘Extreme Caution’’ risk categories.

Taken together, these results show that heat hazards do not

expand uniformly but concentrate in specific regions, especially

the Southern US, and that the number of people living in higher

NWS risk categories grows across all scenarios. This analysis

shows where future heat will be most consequential and pro-

vides the spatial basis for identifying future vulnerable geogra-

phies and populations.

Racial and ethnic heat-exposure disparities

To test whether the projected rise in moist heat stress will dispro-

portionately affect racial and ethnic groups, we overlay county-

level HI projections with SSP-consistent population projections

for major racial and ethnic groups. We quantify disparities as the

share of each group living in counties exceeding NWS thresholds

for ‘‘Caution’’ and ‘‘Extreme Caution.’’ We denote the two thresh-

olds as ‘‘Caution+’’ and ‘‘Extreme Caution+’’ (HI greater than or

equal to 90◦F [32.2◦C]). Because ‘‘Extreme Caution+’’ is the level

at which public health warnings, early interventions, and adaptive

actions become crucial, we focus on this threshold in the main text

and report population-weighted HI values alongside categorical

risk exposure to aid interpretation.

Baseline differences

The national population-weighted results indicate that, during

the baseline period, non-Hispanic Black populations experience

an average HI approximately 3◦F (1.7◦C) higher than non-His-

panic White populations (Table S8). This substantial absolute

disparity between non-Hispanic Black and non-Hispanic White

populations can largely be attributed to geographic distribution,

since 57.6% of non-Hispanic Black individuals reside in the

South, where HI is already high and remains consistently high

across all SSP-RCP scenarios.

Disparity metrics

We evaluate disparities using two complementary measures.

Absolute disparity measures the difference between a group’s

exposure and the overall population average, which tells us

how many more people, in percentage points, from a given

group are exposed to a specific heat condition. Relative

disparity, on the other hand, compares a group’s exposure as

a ratio of the average, helping us understand how much more

likely a group is to experience extreme heat compared to other

groups. Together, these measures help distinguish between

large population-level differences and more subtle but meaning-

ful inequities that might otherwise be overlooked. To further

explore these patterns, we mapped the percentile distribution

of Hispanic (all races), non-Hispanic Black, and non-Hispanic

White populations in counties experiencing HI above 90◦F

Table 1. Heat index and its relevance to public health risk

Classification Heat index Effect on the human body

Caution 80◦F–90◦F

(26.7◦C–32.2◦C)

fatigue possible with

prolonged exposure

and/or physical activity

Extreme

Caution

90◦F–103◦F

(32.2◦C–39.4◦C)

heat stroke, heat cramps,

or heat exhaustion possible

with prolonged exposure

and/or physical activity

Danger 103◦F–124◦F

(39.4◦C–51.1◦C)

heat cramps or heat exhaustion

likely, and heat stroke possible

with prolonged exposure and/or

physical activity

Extreme

Danger

125◦F (51.6◦C)

or higher

heat stroke highly likely

Source: US National Weather Service.
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(32.2◦C) (‘‘Extreme Caution’’) under SSP2-RCP4.5 and SSP5-

RCP8.5 scenarios in Figures S5 and S6. The results indicate

that counties with higher concentrations of Hispanic and non-

Hispanic Black populations are disproportionately exposed to

extreme heat risks (‘‘Extreme Caution+’’ risk).

Future disparities by scenario

Across SSP-RCP scenarios, we find that the overall absolute

disparity increases toward the end of the century, with more

pronounced increases under higher emission scenarios

(Figure 3B). This upward trend is primarily driven by rising dis-

parities among non-Hispanic Black and Hispanic (all races)

populations, both of which experience above-average heat

exposure (Figure 3A, with details in Figure S7). Under SSP2-

RCP4.5, the proportion of Hispanic populations exposed to

an HI value above ‘‘Extreme Caution’’ remains 6.8 to 8.3%

(mean values) above the national average, reaching 37.2%

vs. 30.2% for the total population by 2100 (Figure S7). Under

SSP3-RCP7.0, the non-Hispanic Black exposure rises from

near parity to greater than 5 percentage points above the

average by 2100, and under SSP5-RCP8.5 it reaches 76.7%

vs. 62.6% (a 14.1-point gap). We also assessed the sensitivity

of this trend to uncertainties in future population projections

and found that the direction of disparity growth remains robust,

even under varying demographic trajectories.

Examining disparities in HI exposure at the lower ‘‘Caution+’’

threshold (Figures S9–S12) produces the same group ordering:

non-Hispanic Black and Hispanic populations face greater

heat exposure than the average population (Figure S10). Under

the SSP2-RCP4.5 scenario, by 2050, non-Hispanic Black popu-

lations are the most disproportionately affected, with 13% higher

exposure at the ‘‘Caution+’’ risk threshold compared to the

average, followed by Hispanic populations at 5% above the

average. Under the SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-

RCP8.5 scenarios, absolute disparity for non-Hispanic Black

populations increases through mid-century and then declines

toward 2100 as HI levels become universally high. Relative

disparity results show the same pattern: a mid-century peak in

heat-exposure disparities for non-Hispanic Black populations,

followed by a later decline as everyone is exposed.

Absolute vs. relative patterns

As HI exposure becomes widespread, overall relative disparity

declines (Figure 3D), largely due to the near-universal increase

in HI across all populations. However, this trend does not imply

inequity declines, since the absolute number and share of
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Figure 2. Projected HI, population, and counties under five future scenarios in the US

(A) Projected median HI under five future scenarios in the US (see supplemental methods for more details).

(B) Percentage of population living in the four US regions by the end of the century that will be located in areas classified as ‘‘Safe,’’ ‘‘Caution,’’ ‘‘Extreme Caution,’’

and ‘‘Danger,’’ according to the National Weather Service (NWS) HI. Note: ‘‘2020’’ denotes the baseline years we used for comparison (average of 2015–2020);

‘‘2050’’ denotes the middle of the century (average of 2045–2050); and ‘‘2100’’ denotes the end of the century (average of 2095–2100).
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non-Hispanic Black and Hispanic residents in high-risk counties

continue to rise. In fact, the group-specific relative disparity for

non-Hispanic Black populations continues to increase

(Figure 3C), especially in higher-emission scenarios. Conversely,

non-Hispanic other races (including Native American, Native

Hawaiian, and Asian populations) consistently have the lowest

exposure to ‘‘Extreme Caution+’’ risk across all SSP-RCP

scenarios.

Spatial concentration within the non-Hispanic Black

population

To examine whether these disparities are being driven by where

non-Hispanic Black populations reside, we compared counties

in the top and bottom quartiles of non-Hispanic Black popula-

tion share (Figure 4 and Table S9). These results show that

an increasing proportion of the non-Hispanic Black popula-

tion, particularly in counties with higher non-Hispanic Black

population shares, is at greater risk across time and under

more extreme SSP scenarios (e.g., SSP3-RCP7.0 or SSP5-

RCP8.5). In 2020, the proportion of counties exceeding

‘‘Safe’’ thresholds is relatively low across all SSP scenarios,

with SSP1-RCP2.6 showing that only 13% of the counties

with the highest shares of non-Hispanic Black populations

(i.e., top quartile) reach a level of summer HI exposure levels

where extreme caution is advised. By 2050, the risk increases

significantly, with SSP3-RCP7.0 showing 32% of counties in

the top quartile exceed even more critical heat thresholds

advising extreme caution, indicating severe heat conditions

that pose health risks. This substantial increase suggests an

escalating trend of growing vulnerability to extreme heat by

mid-century. The trend continues starkly into 2100, where the

SSP5-RCP8.5 scenario shows extreme peaks, with up to

78% of counties in the top quartile falling into the ‘‘Danger’’

category of the HI, indicating that an overwhelming majority

of the non-Hispanic Black populations in these counties could
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Figure 3. Racial/ethnicity disparity in exposure to HI above ‘‘Extreme Caution’’ threshold under future scenarios

(A) Absolute disparity of racial-ethnicity groups in exposure to HI above ‘‘Extreme Caution’’ threshold (HI ≥90◦F [32.2◦C]) under future scenarios.

(B) Overall absolute disparity in exposure to HI above ‘‘Extreme Caution’’ threshold under future scenarios.

(C) Relative disparity of racial-ethnicity groups in exposure to HI above ‘‘Extreme Caution’’ threshold under future scenarios.

(D) Overall relative disparity of racial-ethnicity groups in exposure to HI above ‘‘Extreme Caution’’ threshold under future scenarios.

Absolute disparity is measured as the difference between a group’s exposure and the overall population average, while relative disparity represents the ratio

of a group’s exposure to the population average. Hispanic, Hispanic (all races); NH-Black, non-Hispanic Black; NH-White, non-Hispanic White; NH-Others, non-

Hispanic other races. Each boxplot shows the interquartile range (IQR) (25th–75th percentile), with the median indicated by a horizontal line. Whiskers extend to

1.5× the IQR, and points beyond the whiskers are plotted as outliers. See supplemental methods for more details on the number of models. The black dashed

lines represent benchmark values for perfect equalization.
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experience severe heat stress, far surpassing other SSP

scenarios in terms of risk and potential health impacts.

These results show that racial and ethnic disparities observed

at baseline persist across thresholds (‘‘Caution+’’ and ‘‘Extreme

Caution+’’) widen in absolute terms for non-Hispanic Black

and Hispanic populations, especially under higher-emission

scenarios, and are magnified in counties with high concentra-

tions of these groups.

Age-related disparities in heat stress exposure

To assess whether population aging will interact with spatially

concentrated heat to create additional health-relevant ineq-

uities, we analyze heat exposure for three age groups—young

(<20 years), adult (20–64 years), and elderly (≥65 years)—

across four coupled SSP-RCP scenarios. We explore dispar-

ities in exposure to ‘‘Extreme Caution’’ heat levels, focusing

on changes in absolute and relative disparities over time

(Figure 5, with further details in Figures S13 and S14). Our re-

sults highlight that elderly individuals (age ≥65) currently expe-

rience lower HI than the average population (Figure 5A). How-

ever, in the future, HI values are projected to rise

approximately 0.2◦F (0.1◦C) higher than for adults (see

Table S10 for population-weighted HI). While population-

weighted HI exposure does not vary drastically by age group

at the national scale (Table S10), our expanded analysis of sub-

national regions reveals that localized elevation of the exposure

among elderly adults occurs in some regions, particularly in

warmer southern states. Furthermore, the same level of HI

poses greater health risks for the elderly, due to diminished

thermoregulatory capacity and a higher prevalence of chronic

illness.36,37 Figure S15 illustrates age-stratified trends in HI

Figure 4. Distribution of summer HI under

various SSP-RCP scenarios for non-His-

panic Black populations in US counties

from 2020 to 2100

Top and bottom quartiles represent the counties

with the highest and lowest proportions of non-

Hispanic Black population out of the county’s total

population, respectively.

exposure over time, showing modest

but persistent increases in exposure for

elderly populations under all scenarios.

Since elderly populations are more

vulnerable to heat-related health risks,

this increase in HI may heighten the

risk of heat-related illnesses and

mortality.38

By the end of the century, counties in

Florida, Texas, and coastal South Car-

olina, where a large proportion of the

elderly populations reside, are expected

to be exposed to ‘‘Extreme Caution’’

heat risks (Figures S13 and S14). The

elderly population is projected to experi-

ence a slightly higher relative exposure

to heat stress compared to the overall

population under the SSP2-RCP4.5

scenario (∼1% above the average; Figure 5C). While this differ-

ence is small in magnitude, it aligns with a broader trend of

increasing heat burden for aging populations, where even modest

increases in exposure could have disproportionate health

impacts. Currently, the young population (<20 years old) experi-

ences slightly higher exposure to HI above ‘‘Extreme Caution’’

(about 1% above the average), but this disparity decreases across

all scenarios over time (Figure 5D). Similar trends are observed in

HI exposure above the ‘‘Caution’’ threshold, where the elderly

populations are increasingly affected by heat risks (Figures S16–

S19). Age composition by HI category is shown in Figure S20.

Overall, age-related disparities are small at the national scale

but become meaningful in regions where elderly populations

and high HI co-occur.

DISCUSSION

This study addresses an unresolved question in the heat climate

literature: as US temperatures and humidity increase, will dispar-

ities in heat exposure across sociodemographic groups diminish

because exposure becomes widespread or intensify because

populations already located in hotter, more humid regions expe-

rience the largest additional burdens? Prior studies have been

limited to specific geographies, single population groups, or a

narrow set of scenarios, making it difficult to assess how expo-

sure evolves simultaneously across major racial and ethnic

groups and across all US counties. By combining CMIP6 projec-

tions of temperature and humidity with county-level, SSP-

consistent demographic projections for the contiguous US, we

provide a scenario-resolved, spatially explicit characterization

of who is exposed, where, and under which future pathways.
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Our findings indicate that Southern US counties, with the

largest percentage of people of color, specifically non-Hispanic

Black communities, will likely encounter the most substantial

HI increases over time and experience the most significant

absolute increases when compared to other demographic

groups, particularly non-Hispanic White populations. In terms

of age, populations over the age of 65 may be disproportion-

ately exposed to increased HI levels when compared to popu-

lations under the age of 65 in every scenario examined. As

the climate continues to warm, which is a trend observed

across all SSP-RCP scenarios, higher temperatures will not

be confined to the summer months but will extend into other

parts of the year.39 This prolonged heat exposure could further

exacerbate health risks, particularly for vulnerable populations,

especially the elderly and people of color who face a higher

likelihood of heat-related illness40 and are already experiencing

sustained high HI levels. These results underscore the need for

understanding differences in underlying sociodemographic

factors when evaluating future heat impacts and temperature

changes due to climate change. We now discuss three consid-

erations when applying these results to future studies or policy

applications.

The Southern US is most vulnerable to rising heat risks

Our findings consistently demonstrate that HI in the Southern US

remains persistently high across different future scenarios up

until 2100. Although SSPs do not explicitly account for migration

and that racial, ethnic, and age groups may substantially

shift their location from present-day patterns, our results show

that consistent patterns of heat exposure persist across demo-

graphic groups under different SSP scenarios. The counties

with the highest HI increase are collocated with counties with

higher percentages of non-Hispanic Black populations and peo-

ple over the age of 65 across different SSP-RCP scenarios. How-

ever, our results still represent a conservative estimation, since

we use the monthly average HI. Extreme-heat days, which can

exceed several standard deviations above the monthly average

HI, have the potential to pose even greater risks and, thus,
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Figure 5. Age disparity in exposure to HI above ‘‘Extreme Caution’’ threshold

(A) Absolute disparity and relative disparity of age groups in exposure to HI above ‘‘Extreme Caution’’ threshold under future scenarios.

(B) Overall absolute disparity of age groups in exposure to HI above ‘‘Extreme Caution’’ threshold (HI ≥90◦F [32.2◦C]) under future scenarios.

(C) Relative disparity of age groups in exposure to HI above ‘‘Extreme Caution’’ threshold under future scenarios.

(D) Overall relative disparity of age groups in exposure to HI above ‘‘Extreme Caution’’ threshold under future scenarios.

Each boxplot shows the IQR (25th–75th percentile), with the median indicated by a horizontal line. Whiskers extend to 1.5× the IQR, and points beyond the

whiskers are plotted as outliers. See supplemental methods for more details on the number of models. The black dashed lines represent benchmark values for

perfect equalization.
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potential disparities in outcomes, within a few days.23 Addition-

ally, impacts of heat exposure are highly context dependent,

particularly in heterogeneous urban environments, where local

urban design (such as the shade of buildings or trees) or avail-

ability of air conditioning plays a critical role in individuals’

perception of heat stress.20,24,39

Our estimation shows geographic overlaps between increases

in HI and vulnerable demographics for both race and age,

particularly in the Southern US, where the majority of the US

non-Hispanic Black population and elderly are located. These

demographic groups are well documented to be more vulnerable

to heat exposure, in part due to compounding factors such as

lower socioeconomic status, which is more prevalent in the

Southern US and has been linked to greater health risks in

previous studies.7,41,42 Our disparity analysis reveals that HI

increases will disproportionately affect non-Hispanic Black pop-

ulations compared to other racial groups. Furthermore, in the

worst-case climate warming scenarios, the gap between HI in-

creases for non-Hispanic Black populations and non-Hispanic

White populations widens over time. Other racial and ethnic

groups do experience a smaller HI disparity gap compared to

non-Hispanic White populations, and this gap narrows in the

future in every scenario examined. Further analysis of heat

disparity across regions reveals that both absolute and relative

disparities by racial/ethnic group in the South decline toward

the end of the century, as the HI remains uniformly high across

the region. In contrast, the West experiences the most significant

increase in disparity, particularly under the high-emission sce-

nario (SSP5-RCP8.5) (Figures S21–S24).

Regarding age, our study highlights a growing disparity in heat

exposure between individuals aged 65 and older and those

younger than 65, emphasizing the increasing HI and heat expo-

sure among more vulnerable elderly populations. Existing studies

have found that ‘‘people aged 65+ have been several times more

likely to die from heat-related cardiovascular disease than the

general population.’’43 This finding underscores the critical need

for prioritizing climate adaptation and mitigation strategies for

elderly people, who stand to be at a greater risk of heat-related

health effects due to increased exposure to HI when compared

with their younger, healthier counterparts.5,44

Incorporating equity considerations into adaptation

The findings of our study highlight a consistent demographic

disparity in future heat exposure, revealing greater and growing

gaps in exposure for non-Hispanic Black populations and the

elderly, particularly in the Southern US, across all future scenarios,

even with a conservative estimation based on monthly HI. Our an-

alyses did not consider the adoption of additional adaptation

measures, such as air conditioning and aggressive greening,

and assumed no changes in vulnerability (e.g., other underlying

health conditions that may become more chronic under climate

change). These measures, such as air conditioning45 and green

space,46 have been shown to be distributed unequally among

populations both in and outside of urban areas. Implementing

preventive measures to address these heat-exposure and adap-

tively measuring disparities is critical to shape future climate

policies to address what Frosch et al. refer to as the ‘‘climate

gap,’’ in which African American and Latino communities already

face disproportionate health and economic consequences due to

climate and environmental hazards.47 In addition, statistics also

show that labor-intensive outdoor industries—such as construc-

tion, landscaping, and logistics48,49—are primarily located in the

South,50,51 potentially posing higher health risks to labor forces

and economic loss to society.52,53

Analysis of mid- and long-term impacts of climate-related

heat exposure on different socioeconomic groups is crucial to

the development of adaptation plans at the local scale. According

to Malloy and Ashcraft,54 since just adaptation planning requires

the inclusion of socially vulnerable populations, knowing where

and whom these populations are is critical to engaging them in

processes that ensure their involvement in planning decisions

that ultimately affect them. The Inflation Reduction Act allocated

substantial funding for environmental and climate justice, posi-

tioning cities and states to support underserved communities.55

Recent uncertainties in fund distribution highlight the need for

sustained local engagement.

Limitations of seasonal focus and applying ESMs to

understand future heat stress

Our primary analysis focuses on the summer months (June, July,

and August) when heat exposure is most intense and health

risks are typically highest. This seasonal focus is consistent

with prior research,10–12 which identifies these months as expe-

riencing the greatest increases in temperature extremes and cu-

mulative heat stress, compounded by already elevated baseline

HI values. However, we acknowledge that this approach may un-

derestimate total annual heat exposure, particularly as extreme

heat events are increasingly occurring outside the traditional

summer season. For example, anomalous heatwaves in

September or earlier onset in May have been documented in

recent years, potentially exposing vulnerable populations to sub-

stantial risk. To account for such year-round events, some

studies adopt annualized measures such as person-days of

exposure.13 While our analysis does not capture these off-sea-

son events, we believe the summer-focused approach offers a

robust, policy-relevant baseline for evaluating acute heat risk.

Moreover, our study utilizes county-level averages of HI due to

the coarse resolution (∼100 km, see Table S2) of ESM spatial

grids, which are often larger than individual counties. These grids

limit our ability to capture fine-scale spatial variations in heat

stress that would be more relevant for furthering the analysis of

disparities. This limitation is particularly salient in the context of

urbanization, where microclimates within cities can lead to local-

ized areas with significantly higher heat exposure compared to

surrounding rural areas.56,57 ESMs lack the resolution, and

even appropriate urban representations, to capture these urban

heat islands, which potentially leads to an underestimation of

localized heat exposure in urban areas. While mesoscale models

have been recently used to demonstrate pervasive historical and

present-day disparities in moist heat stress within US cities,17

similar future projections that account for both future urban

growth and resolve the projected evolution of urban neighbor-

hood-scale characteristics are currently unavailable. This will

be an important consideration to more accurately quantifying

potential disparities in human impacts due to future warming

on an increasingly urbanizing planet. Moreover, these estimates

all relate to outdoor hazard and potential exposure, and overall

risk in the present and the future would also depend on the

time spent indoors vs. outdoors among different relevant
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populations and their vulnerabilities.58 Currently, there are sub-

stantial race- and income-based disparities in exposure and

vulnerability, including the nature of workplaces and air-condi-

tioning access, in the US,45 which would underestimate the

heat-related risks if only based on estimates of outdoor hazard.

Our analysis only focuses on monthly summertime average HI,

when heat hazards are most intensive and with the largest in-

creases (see Figure S27 for all months). We acknowledge that

this seasonal focus presents certain limitations. While this mea-

sure provides a valuable long-term climatological perspective

on future climate change, extreme heat events have more acute

impacts on human health.5 While US counties and regions expe-

riencing the highest heat stress due to these extreme events are

likely to remain consistent, the disparities between populations

living in these areas and others may become more pronounced

when considering sub-daily fluctuations in heat stress and multi-

day sustained exposure to high ambient heat stress. With all

that being said, our results confirm that global mean air tempera-

ture change is non-linearly related to moist heat stress change un-

der warming scenarios, meaning that the same future warming

experienced could trigger larger increases in societal and health

impacts than expected when only using air temperature.59

Physical model uncertainties

When utilizing future climate projections from ESMs, it is impor-

tant to be cognizant of various sources of uncertainties,

including those in the underlying model (parametric and struc-

tural uncertainties) as well as the scenarios (scenario uncer-

tainty). While measures in standardizing inputs across various

ESMs were taken to enhance the comparability of model out-

puts,60 the differences in outputs are still influenced by para-

metric uncertainty and model structural uncertainty.61 In our

analyses, we employ an ensemble of model results to consider

the uncertainty range arising from model choice and implemen-

tations, although it does not mitigate the overall uncertainty.

Additionally, the projections of sociodemographic changes

under different SSPs introduce further uncertainty. These

SSPs, widely used in scientific assessments like the IPCC Sixth

Assessment Report, outline five distinct future socioeconomic

scenarios, each paired with a demographic and economic

narrative and relevant assumptions (Table S1). In our study,

we pair each macro-level SSP-RCP scenario used by ESMs

with a set of fine-scale projections of SSPs (Figure 6). This

allows us to explore how varying assumptions about population

growth, economic productivity, and GHG emissions influence

the resulting heat stress projections and exposure disparities.

After 2050, these projections diverge significantly, highlighting

the increased uncertainty in projecting population growth and

economic activities far into the future, alongside varying as-

sumptions about equilibrium climate sensitivity across

models.61

Even with bias-corrected datasets, uncertainties in future

climate projections remain large due to several factors. Bias

correction, which typically involves adjusting present-day

climate model outputs to match observational or reanalysis da-

tasets (such as ERA5), helps align historical simulations with

observed conditions. However, applying a fixed offset to bias

correct all future projections assumes that model biases remain

constant over time, which may not hold true given changes in

climate dynamics, feedback mechanisms, and model parame-

terizations. Bias correction could even introduce additional

uncertainties, as previous studies observe,62 which can amplify

errors, particularly if biases vary non-linearly across different

areas. Therefore, while bias correction may shift the absolute

magnitude of projected HI values, it is unlikely to alter our anal-

ysis of the direction of disparities and trends highlighted in our

study. Since our primary focus is on understanding relative dif-

ferences in heat exposure across demographic groups and

geographic regions rather than absolute temperature values,

bias correction may not meaningfully change our key findings.

Instead, our ensemble approach ensures that projected trends

remain robust to the underlying uncertainties in the climate

model outputs.

Uncertainties in future population projections

Precisely projecting heat-related impacts and inequality is even

more challenging. Most SSPs are developed at the global scale

with energy and emission scenarios developed with regional or

national-level population projections. National or state-level HI

projections are insufficient to analyze demographic disparities

between different geographic populations. While scholars have

developed methodologies and techniques to downscale demo-

graphic composition to higher spatial resolutions,63 making

high-resolution projections (e.g., census block level) is intrinsi-

cally uncertain due to the additional assumptions needed in

the downscaling process. Thus, analyzing demographic patterns

at higher spatial resolutions, such as census tract or census

block level, is impeded by data constraints.

METHODS

Data description

Climate projections

Future climate projections were obtained from the Scenario

Model Intercomparison Project (ScenarioMIP) within the

CMIP6. We calculated the median values of HI, a moist heat

stress index used operationally by the NWS, at the standard

100-km resolution from 26 global climate and ESMs for five

SSP-RCP scenarios based on the model-simulated near-surface

air temperature (tas) and relative humidity (hurs). To do this,

monthly median tas and hurs were first extracted from all the

models and then averaged across the summer months to obtain

a June, July, and August (JJA) averaged HI. We then took the

median values from the multi-model ensemble to reduce the un-

certainty associated with model choice.

Figure S1 illustrates four tier 1 coupled SSP-RCP scenarios

(i.e., top priority scenarios modelers have identified that repre-

sent a wide spectrum of uncertainty in future socioeconomic

and climate forcing pathways) and an additional SSP1-RCP1.9

scenario (a scenario designed to limit global warming to 1.5◦C

above the temperature in 1850–1900) that we focus on in this

study. ESMs use SSP-RCP emission scenarios from global inte-

grated assessment models that rely on regional/national-level

socioeconomic and technological projections. These projec-

tions generate global and regional GHG emissions, which are

then downscaled based on present-day spatial patterns and

used as inputs to ESMs. The ESMs, in turn, simulate future

climate variables such as temperature and humidity, which we

use to estimate the HI. The models used to project the HI are

listed in Table S2. We analyze the disparity of heat stress in the
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baseline period (denoted as 2020, using the mean of 2015–

2020), middle-of-the-century period (denoted as 2050, using

the mean of 2045–2050), and end-of-the-century period (de-

noted as 2100, using the mean of 2095–2100).

Socioeconomic data

Multiple research efforts have developed fine-scale (e.g.,

county-level) sociodemographic projections aligned with SSP

narratives. SSPs not only serve as macro-level drivers of

GHG emissions that feed into climate models but also pro-

vide micro-level demographic patterns essential for assessing

disparities in heat exposure. We used these fine-scale socio-

demographic projections to combine with HIs to analyze dis-

parities in projected heat exposure. To assess the potential

impacts of projected moist heat hazards on different popula-

tions, we obtained socioeconomic data, including total popula-

tion and gender, race, and age groups from multiple sources

consistent with the SSPs considered in our study at finer spatial

resolution (see Table S3 for details). We then aggregated

the downscaled socioeconomic data into the county level to

analyze the potential outdoor exposure of different socio-

economic groups to future heat stress. Given the challenges

in downscaling and extrapolating GDP data for the SSPs,64

we did not examine future disparities between different income

groups.

Heat index

Heat stress indices, which typically combine several factors

modulating human heat loading, including air temperature

Figure 6. Projected total number of people affected by heat stress from 2020 to 2100

The black lines represent the most likely coupled SSP-RCP scenarios (SSP1-RCP1.9, SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, and SSP5-RCP8.5), while

gray lines denote projections under other possible coupled scenarios, highlighting the variability and potential range of outcomes.
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and humidity, can better inform the impact of heat on the

human body than air temperature alone. Here, we employ a

moist heat stress index because of its relevance to increasing

morbidity and mortality risk as a consequence of global warm-

ing, which would also be associated with changes in humidi-

ty.8,65 Among the wide array of over 20 different heat indices

in the literature, we chose to use the NWS HI, which is a moist

heat stress index used by the NWS to measure how hot it

‘‘feels’’ to the human body (see supplemental information for

more details).66,67 The NWS HI is based on Steadman’s

apparent temperature. Based on Steadman’s theory, Rothfusz

performed multiple regression analyses, described in a 1990

NWS Technical Attachment (SR 90-23).66,67 This HI is widely

used in heat warning systems and environmental health

research, and the relevant health risk categories, most

frequently exceeded and relevant for the Southern and South-

eastern US, are shown in Table 1. For ease of comparability, we

use the same threshold for all regions in our analysis.

This HI is a function of air temperature and relative humidity.

In our study, we use the projected near-surface temperature

(tas) and projected surface relative humidity (hurs) derived from

multiple CMIP6 models to calculate HI under different climate

change scenarios. The calculation of HI is performed using the

R package weathermetrics developed by Anderson et al.66

HI = − 42:379 + 2:04901523tas + 10:14333127hurs

− 0:22475541tas× hurs −
(
6:83783× 10− 3

)
tas

−
(
5:481717× 10− 2

)
hurs +

(
1:22874× 10− 3

)
tas

× hurs +
(
8:5282× 10− 4

)
tas× hurs

−
(
1:99× 10− 6

)
tas× hurs:

If hurs is 13% or less and tas is between 80◦F (26.7◦C) and

112◦F (44.4◦C),

HI = HI −

(
13 − hurs

4

)

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
17 − |tas − 95|

17

√

: (Equation 1)

If hurs is over 85% and tas is between 80◦F (26.7◦C) and

87◦F (30.5◦C),

HI = HI +

(
hurs − 85

10

)

⋅
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
87 − tas

5:

√

(Equation 2)

Disparity metrics

We used absolute disparity and relative disparity to measure

disparity in heat exposure by racial groups and age groups.

The absolute disparity is calculated as the HI difference be-

tween demographic groups and, similarly, the relative disparity

is calculated using the ratio between demographic groups.

Specifically, the racial disparity measures the disparity of

non-Hispanic Black, Hispanic (all races), and non-Hispanic

other races against the non-Hispanic White population, while

the age disparity measures the disparity of the elderly popu-

lation (age ≥65) and the young population (age <20) against

the adult group (age 20–65). The absolute and relative dispar-

ities have been used in many studies10,68–70 to measure socio-

demographic differences.

The absolute disparity for a given year is calculated as

Absolute disparity of a demographic group = qi − μ(q);
(Equation 3)

where qi denotes the percentage of the population in exposure

to HI above a certain threshold for demographic group i; i.e.,

non-Hispanic White or adults (age 20–65). Larger values of

absolute disparity represent a higher percentage of a certain

group under heat risk, suggesting a larger disparity. Positive

numbers indicate the analyzed demographic group is more

affected by heat risks than the average. In analyzing disparity

within regions, we sum up the absolute values for all demo-

graphic groups of absolute disparity.

Overall absolute disparity across demographic groups is

calculated by

Overall absolute disparity =

(
∑n

i
|qi − μ(q)|

)/

n:

(Equation 4)

Relative disparity by demographic group is calculated as

follows:

Relative disparity =
qi

μ(q)
− 1: (Equation 5)

Relative disparity closer to 0 suggests less disparity between

a demographic group and the average population. Positive

values indicate the demographic group more affected by the

heat risk, while negative values indicate the demographic group

less affected by the heat risk.

Overall relative disparities across demographic groups are

measured by the coefficient of variation (CoV), calculated by

CoV =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Var(q)

√

μ(q);
(Equation 6)

where q represents the percentage of a population (such as a

racial/ethnicity group or age group) exposed to the HI above a

certain threshold. In this analysis, the HI thresholds ‘‘Caution’’

and ‘‘Extreme Caution’’ are used.

Population-weighted heat index

We used calculated population-weighted HI in summer

months (average HI for June, July, and August for the median

values of the outputs from various ESMs) (hi) in the contiguous

US by each sociodemographic group i for a given year, as

follows:

hi =

∑n

j = 1

cjpij

∑n

j = 1

pij;

(Equation 7)

where cj is the projected average HI for county j, and pij is the

projected population of demographic group i in county j, where

a group can be a racial group such as Black population or an

age group such as elderly population (age ≥65).

Based on the population-weighted HI, we provide a measure

of overall racial/ethnicity disparities considering all counties at

the national level as well as between geographic regions (e.g.,

Northeast, South, Midwest, and South).
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Tobias, A., Astrom, C., Guo, Y., Honda, Y., Hondula, D.M., et al. (2021).

The burden of heat-related mortality attributable to recent human-induced

climate change. Nat. Clim. Chang. 11, 492–500. https://doi.org/10.1038/

s41558-021-01058-x.

9. Shindell, D., Zhang, Y., Scott, M., Ru, M., Stark, K., and Ebi, K.L. (2020).

The Effects of Heat Exposure on Human Mortality Throughout the

United States. GeoHealth 4, e2019GH000234. https://doi.org/10.1029/

2019GH000234.

10. Liu, Z., Anderson, B., Yan, K., Dong, W., Liao, H., and Shi, P. (2017). Global

and regional changes in exposure to extreme heat and the relative contri-

butions of climate and population change. Sci. Rep. 7, 43909.

11. Lesk, C., Anderson, W., Rigden, A., Coast, O., Jägermeyr, J., McDermid,
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Supplemental Methods 

 

CMIP6 models 

CMIP6 (Coupled Model Intercomparison Project 6): We obtain near-surface air temperature 

(2m above the ground) (tas) and corresponding relative humidity (hurs) from ScenarioMIP in 

CMIP6. This database provides a range of outcomes based on concentration-driven 

simulations from participating global coupled Earth System Models (ESMs)1. ScenarioMIP 

specifically provides multi-model climate projections based on different scenarios with future 

emissions and land use changes produced with Integrated Assessment Models (IAMs), using 

1995–2014 as the historical baseline for simulations 2. Figure S1 illustrates the coupled SSP-

RCP simulations in CMIP6.  

 

Our analysis focuses on Tier 1 experiments (SSP1-RCP2.6, SSP2-RCP4.5, SSP3-RCP7.0, 

and SSP5-RCP8.5) and the additional scenario designed to limit global warming to 1.5 

degrees Celsius above 1850–1900 (a period often used as a proxy for pre-industrial 

conditions), SSP1-RCP1.9. A detailed description of these scenarios under focus is provided 

in Table S1. 

 

Table S1. Coupled Shared Socioeconomic Pathways (SSP) and Representative Concentration 

Pathways (RCP) scenarios considered in this study 

 

SSP-RCP 

Pathways Description 

SSP1-RCP1.9 Very low GHG emissions: CO2 emissions cut to net zero around 2050 

SSP1-RCP2.6 Low GHG emissions: CO2 emissions cut to net zero around 2075 

SSP2-RCP4.5 

Intermediate GHG emissions: CO2 emissions around current levels until 2050, 

then falling but not reaching net zero by 2100 

SSP3-RCP7.0 High GHG emissions: CO2 emissions double by 2100 

SSP5-RCP8.5 Very high GHG emissions: CO2 emissions triple by 2075 

 

 

We selected 25 models that performed the projection of near-surface air temperature (tas) and 

near-surface relative humidity (hurs) to 2100. From these, we identified 4 models for SSP1-

RCP1.9, 16 models for SSP1-RCP2.6, 17 models for SSP2-RCP4.5, 16 models for SSP3-

RCP7.0, and 17 models for SSP5-RCP8.5 to calculate Heat Index (Table S2).  

 

  

https://www.zotero.org/google-docs/?TDSePU
https://www.zotero.org/google-docs/?llabLL
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Table S2. Model details from CMIP6 

 

ID Models 
Model 

county  Model Institute  
Resolution (actual grid 

resolution specified) 
Experiments Variable 

Ensemble 

variant 

      tas hurs  

1 
AWI-CM-

1-1-MR 
Germany 

Alfred Wegener 

Institute (AWI) 
100km  

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

2 
BCC-

CSM2-

MR 

China 
Beijing Climate 

Center (BCC) 

100km (320 x 160 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 0 

SSP2-RCP4.5 1 0 

SSP3-RCP7.0 1 0 

SSP5-RCP8.5 1 0 

3 
CAMS-

CSM1-0 
China 

Chinese Academy 

of Meteorological 

Sciences (CAMS) 

100km (320 x 160 

longitude/latitude) 

SSP1-RCP1.9 1 0 

r1i1p1 

SSP1-RCP2.6 1 0 

SSP2-RCP4.5 1 0 

SSP3-RCP7.0 1 0 

SSP5-RCP8.5 1 0 

4 
CAS-

ESM2-0 
China 

Chinese Academy 

of Sciences (CAS) 

100km (256 x 128 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

5 
CESM2-

WACCM 
USA 

National Center for 

Atmospheric 

Research (NCAR) 

100km (0.9x1.25 finite 

volume grid; 288 x 192 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

6 CIESM China 
Tsinghua 

University 

100km (288 x 192 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 0 

SSP2-RCP4.5 1 0 

SSP3-RCP7.0 0 0 

SSP5-RCP8.5 1 0 

7 
CMCC-

CM2-SR5 
Italy 

Fondazione Centro 

Euro-Mediterraneo 

sui Cambiamenti 

Climatici (CMCC) 

100km (1deg; 288 x 192 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

8 
CMCC-

ESM2 
Italy 

Fondazione Centro 

Euro-Mediterraneo 

sui Cambiamenti 

Climatici (CMCC) 

100km (1deg; 288 x 192 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 
SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 



3 

SSP5-RCP8.5 1 1 

9 E3SM-1-0 
United 

States 

E3SM-Project 

LLNL UCI UCSB 

100km (deg average grid 

spacing; 90 x 90 x 6 

longitude/latitude/cubefac

e) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 0 0 

SSP2-RCP4.5 0 0 

SSP3-RCP7.0 0 0 

SSP5-RCP8.5 1 0 

10 E3SM-1-1 USA 
E3SM-Project; 

RUBISCO 

100km (1 deg average grid 

spacing; 90 x 90 x 6 

longitude/latitude/cubefac

e) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 0 0 

SSP2-RCP4.5 1 0 

SSP3-RCP7.0 0 0 

SSP5-RCP8.5 1 0 

11 
E3SM-1-

1-ECA 

United 

States 
E3SM-Project 

100km (90 x 90 x 6 

longitude/latitude/cubefac

e) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 0 0 

SSP2-RCP4.5 0 0 

SSP3-RCP7.0 0 0 

SSP5-RCP8.5 1 0 

12 
EC-

Earth3 

Spain, 

Italy, 

Germany, 

UK, 

Finland, 

Switzerlan

d 

EC-Earth-

Consortium 

100km (linearly reduced 

Gaussian grid equivalent 

to 512 x 256 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

13 
EC-

Earth3-

CC 

Spain, 

Italy, 

Germany, 

UK, 

Finland, 

Switzerlan

d 

EC-Earth-

Consortium 

100km (linearly reduced 

Gaussian grid equivalent 

to 512 x 256 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 0 0 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 0 0 

SSP5-RCP8.5 1 1 

14 
EC-

Earth3-

AerChem 

Spain, 

Italy, 

Germany, 

UK, 

Finland, 

Switzerlan

d 

EC-Earth-

Consortium 

100km (linearly reduced 

Gaussian grid equivalent 

to 512 x 256 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 0 0 

SSP2-RCP4.5 0 0 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 0 0 

15 
EC-

Earth3-

Veg 

Spain, 

Italy, 

Germany, 

UK, 

Finland, 

Switzerlan

d 

EC-Earth-

Consortium 

100km (linearly reduced 

Gaussian grid equivalent 

to 512 x 256 

longitude/latitude) 

SSP1-RCP1.9 1 1 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

16 
EC-

Earth3-

Veg-LR 

Spain, 

Italy, 

Germany, 

UK, 

Finland, 

Switzerlan

d 

EC-Earth-

Consortium 

100km (linearly reduced 

Gaussian grid equivalent 

to 512 x 256 

longitude/latitude) 

SSP1-RCP1.9 1 1 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

17 
FGOALS-

f3-L 
China 

Chinese Academy 

of Sciences (CAS) 

100km (360 x 180 

longitude/latitude) 

SSP1-RCP1.9 0 0 
r1i1p1 

SSP1-RCP2.6 1 1 
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SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

18 
FIO-

ESM-2-0 
China 

First Institute of 

Oceanography, 

Qingdao National 

Laboratory for 

Marine Science and 

Technology (FIO-

QLNM) 

100 km (0.9x1.25 finite 

volume grid; 192 x 288 

longitude/latitude) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 0 0 

SSP5-RCP8.5 1 1 

19 
GFDL-

ESM4 
USA 

National Oceanic 

and Atmospheric 

Administration, 

Geophysical Fluid 

Dynamics 

Laboratory 

(NOAA-GFDL) 

100km (1 degree nominal 

horizontal resolution; 360 

x 180 longitude/latitude) 

SSP1-RCP1.9 1 1 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

20 
INM-

CM4-8 
Russia 

Institute for 

Numerical 

Mathematics (INM) 

100km (2x1.5; 180 x 120 

longitude/latitude; 21 

levels; top level sigma = 

0.01)) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

21 
INM-

CM5-0 
Russia 

Institute for 

Numerical 

Mathematics (INM) 

100km (2x1.5; 180 x 120 

longitude/latitude; 73 

levels; top level sigma = 

0.0002) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

22 
MPI-

ESM1-2-

HR 

Germany 

Max Planck 

Institute for 

Meteorology (MPI-

M); Deutscher 

Wetterdienst 

(DWD); Deutsches 

Klimarechenzentru

m (DKRZ) 

100km (spectral T127; 384 

x 192 longitude/latitude; 

95 levels; top level 0.01 

hPa) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

23 
MRI-

ESM2-0 
Japan 

Meteorological 

Research Institute 

(MRI) 

100km (320 x 160 

longitude/latitude; 80 

levels; top level 0.01 hPa) 

SSP1-RCP1.9 1 1 

r1i1p1 

SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 

SSP5-RCP8.5 1 1 

24 TaiESM1 Taiwan 

Research Center for 

Environmental 

Changes, Academia 

Sinica (AS-RCEC) 

100km (0.9x1.25 degree; 

288 x 192 

longitude/latitude; 30 

levels; top level ~2 hPa) 

SSP1-RCP1.9 0 0 

r1i1p1 

SSP1-RCP2.6 1 0 

SSP2-RCP4.5 1 0 

SSP3-RCP7.0 1 0 

SSP5-RCP8.5 1 0 

25 
NorESM2

-MM 
Norway 

Norwegian Climate 

Centre (NCC) 

100km (1 degree 

resolution; 288 x 192; 32 

levels; top level 3 mb) 

SSP1-RCP1.9 0 0 

r1i1p1 
SSP1-RCP2.6 1 1 

SSP2-RCP4.5 1 1 

SSP3-RCP7.0 1 1 
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SSP5-RCP8.5 1 1 

Note: “tas” denotes near-surface air temperature (2m above the ground), “hurs” denotes 

relative humidity. 1 indicates available data; 0 indicates data that is not available. Data 

sources: https://github.com/WCRP-CMIP/CMIP6_CVs/blob/master/README.m 

 

In the analysis, we used the Heat Index, which is an indicator adopted by the National 

Weather Service (NWS), to measure how hot it “feels” to the human body. This index is 

primarily dependent on temperature and humidity, although other factors such as direct 

sunlight, wind speed, and cloud cover also affect people’s perception of heat3. We used the 

median value of near-surface air temperature and near-surface relative humidity for ensemble 

models to calculate the Heat Index without the bias correction procedures. Some bias 

correction procedures, such as quantile mapping, are commonly used when analyzing climate 

impacts, typically with extreme values, at high spatial resolution, such as daily4,5. Prior 

studies suggest that the bias correction process does not systematically over- or under-

estimate projected changes in the Heat Index due to the compensatory effect brought by 

temperature and humidity biases6. 

  

 
Figure S1 SSP-RCP scenario matrix illustrating ScenarioMIP simulations in CMIP6 2  

 

Socioeconomic data 

Total population, population by race, age, and gender are county-level projections under five 

SSPs at a five-year interval from 2020 to 21007. Sociodemographic data collected from 

multiple sources are detailed in Table S3. In our analysis, populations by race are categorized 

into non-Hispanic White, non-Hispanic Black, Hispanic (all races), and non-Hispanic Other 

Races. The age groups under study are classified into Young (age below 20), Adult (age 20–

64), and Elderly (age 65+). To get the downscaled data, Hauer8 calculates cohort-change 

ratios (CCRs) and cohort-change differences and projects into Leslie matrix population 

projection models using inputs from autoregressive integrated moving average (ARIMA) 

models and controls the projections to the SSPs. 

  

https://www.zotero.org/google-docs/?Sb7hJJ
https://www.zotero.org/google-docs/?hVGWuA
https://www.zotero.org/google-docs/?HvLRBG
https://www.zotero.org/google-docs/?XS6COx
https://www.zotero.org/google-docs/?K6cEkd
https://www.zotero.org/google-docs/?gTwuG5
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Table S3. Downscaled Sociodemographic data and their sources 

 

Socioeconomic 

factors Data source 

Original spatial 

resolution Reference 

 Urban fraction Gao et al. (2021) 1/8 degree 7 

 

Population 

Socioeconomic Data and 

Applications Center (SEDAC) US county 8 

 

Gender 

Socioeconomic Data and 

Applications Center (SEDAC) US county 8 

 

Race 

Socioeconomic Data and 

Applications Center (SEDAC) US county 8 

 

Age 

Socioeconomic Data and 

Applications Center (SEDAC) US county 8 

 Income Murakami 1/12 degree 9 

 

 

 

  

https://www.zotero.org/google-docs/?FAMc1O
https://www.zotero.org/google-docs/?5tOa7M
https://www.zotero.org/google-docs/?GoXXmb
https://www.zotero.org/google-docs/?XQVJM3
https://www.zotero.org/google-docs/?FIWYWg
https://www.zotero.org/google-docs/?dlYmM9
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Table S4. Probability of having heat disorders with prolonged exposure (summer average 

HI>80F) under SSP5-RCP8.5 

 

Month 2020 
205

0 

210

0 

Increase in 

likelihood of 

heat disorders 

(2020–-2050) 

Increase in 

likelihood of heat 

disorders (2020–-

2100) 

Jan 0.00 0.00 0.04 0.00 0.04 

Feb 0.00 0.00 0.04 0.00 0.04 

Mar 0.00 0.01 0.12 0.01 0.12 

Apr 0.04 0.10 0.22 0.05 0.18 

May 0.19 0.27 0.44 0.08 0.26 

Jun 0.35 0.45 0.63 0.10 0.28 

Jul 0.47 0.56 0.75 0.09 0.28 

Aug 0.47 0.57 0.75 0.10 0.28 

Sep 0.32 0.41 0.63 0.09 0.31 

Oct 0.17 0.24 0.42 0.07 0.25 

Nov 0.04 0.10 0.24 0.06 0.20 

Dec 0.00 0.00 0.12 0.00 0.12 
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Figure S2 Difference between Heat Index and near-surface air temperature in contiguous US 

under five coupled SSP-RCP scenarios 
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Figure S3 Changes in percentile rank of HI between baseline year (average across 2016 and 

2020) and middle of the century (average across 2046 and 2050) (left panel) and between 

baseline year and the end of the century (average across 2096 and 2100)  
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Figure S4 Changes in relative humidity in counties in the contiguous US under five coupled 

SSP-RCP scenarios 
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Table S5 Number of counties by Heat Index zones under five coupled SSP-RCP scenarios 

 

Time SSP-RCP Region Safe Caution Extreme Caution Danger 

2020 SSP1-RCP1.9 
Midwest 1010 45 0 0 

South 578 758 86 0 

West 397 17 0 0 

Northeast 217 0 0 0 

Total 2202 820 86 0 

SSP1-RCP2.6 
Midwest 747 308 0 0 

South 479 733 210 0 

West 395 19 0 0 

Northeast 217 0 0 0 

Total 1838 1060 210 0 

SSP2-RCP4.5 
Midwest 727 328 0 0 

South 502 710 210 0 

West 390 24 0 0 

Northeast 217 0 0 0 

Total 1836 1062 210 0 

SSP3-RCP7.0 
Midwest 769 286 0 0 

South 482 733 207 0 

West 394 20 0 0 

Northeast 217 0 0 0 

Total 1862 1039 207 0 

SSP5-RCP8.5 
Midwest 689 366 0 0 

South 429 771 222 0 

West 395 19 0 0 
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Northeast 217 0 0 0 

Total 1730 1156 222 0 

2050 SSP1-RCP1.9 
Midwest 910 145 0 0 

South 531 669 222 0 

West 392 21 1 0 

Northeast 217 0 0 0 

Total 2050 835 223 0 

SSP1-RCP2.6 
Midwest 591 464 0 0 

South 345 697 380 0 

West 384 29 1 0 

Northeast 217 0 0 0 

Total 1537 1190 381 0 

SSP2-RCP4.5 
Midwest 528 523 4 0 

South 293 686 443 0 

West 381 32 1 0 

Northeast 217 0 0 0 

Total 1419 1241 448 0 

SSP3-RCP7.0 
Midwest 534 513 8 0 

Northeast 216 1 0 0 

South 246 645 531 0 

West 380 33 1 0 

Total 1376 1192 540 0 

SSP5-RCP8.5 
Midwest 451 584 20 0 

Northeast 215 2 0 0 

South 209 624 589 0 
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West 375 37 2 0 

Total 1250 1247 611 0 

2100 SSP1-RCP1.9 
Midwest 915 140 0 0 

South 534 759 129 0 

West 393 21 0 0 

Northeast 217 0 0 0 

Total 2059 920 129 0 

SSP1-RCP2.6 
Midwest 596 459 0 0 

South 321 726 375 0 

West 385 28 1 0 

Northeast 217 0 0 0 

Total 1519 1213 376 0 

SSP2-RCP4.5 
Midwest 324 644 87 0 

Northeast 204 13 0 0 

South 145 566 711 0 

West 366 44 4 0 

Total 1039 1267 802 0 

SSP3-RCP7.0 
Midwest 81 603 371 0 

Northeast 121 96 0 0 

South 1 365 851 205 

West 285 120 9 0 

Total 488 1184 1231 205 

SSP5-RCP8.5 
Midwest 7 372 673 3 

 
Northeast 33 163 21 0 

 
South 0 141 670 611 
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West 203 193 18 0 

  
Total 243 869 1382 614 
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Table S6 Changes in heat exposure between Heat Index zones in 2050 and 2100 

 

Coupled SSP-

RCP 

scenarios 

2050 2100 

No 

moveme

nt (%) 

Safe to 

Cautio

n (%) 

Caution 

to 

Extreme 

Caution 

(%) 

No 

moveme

nt (%) 

Safe to 

Caution 

(%) 

Safe to 

Extreme 

Caution 

(%) 

Caution 

to 

Extreme 

Caution 

(%) 

Caution 

to 

Danger 

(%) 

Extreme 

Caution 

to 

Danger 

(%) 

SSP1-RCP1.9 91.4  

(90.7) 

2.3  

(4.9) 

6.2  

(4.4) 

94.9 

(94.0) 

2.1  

(4.6) 
NA 2.9  

(1.4) 
NA NA 

SSP1-RCP2.6 87.4  

(84.8) 

6.1  

(9.7) 

6.5  

(5.5) 

86.0 

(84.4) 

6.8 

(10.3) 
NA 7.2 

(5.3) 
NA NA 

SSP2-RCP4.5 81.2  

(78.9) 

10.3  

(13.4) 

8.5  

(7.7) 

59.0 

(55.3) 

26.2 

(25.6) 
NA 14.9 

(19.0) 
NA NA 

SSP3-RCP7.0 78.8  

(73.6) 

11.0  

(15.6) 

10.2  

(10.7) 

17.4 

(17.0) 

45.7 

(37.6) 

4.3  

(6.6) 

22 

(32.2) 

1.8  

(0.8) 

8.9  

(5.8) 

SSP5-RCP8.5 72.7  

(72.0) 

14.9  

(15.4) 

12.4  

(12.5) 

7.2 

(8.0) 

35.5 

(27.8) 

21.4 

(20.0) 

15.1 

(24.4) 

11.2 

(12.6) 

9.6  

(7.1) 

 

Note: the numbers show the percentage of population (numbers out of parentheses) and 

number of counties (numbers in parentheses) using 2020 as a reference,  the percentage may 

not add up to 100% due to rounding. 
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Table S7. US Census Regions in the contiguous United States  

 

State State Code Region 

Alabama AL South 

Arkansas AR South 

Arizona AZ West 

California CA West 

Colorado CO West 

Connecticut CT Northeast 

District of Columbia DC South 

Delaware DE South 

Florida FL South 

Georgia GA South 

Iowa IA Midwest 

Idaho ID West 

Illinois IL Midwest 

Indiana IN Midwest 

Kansas KS Midwest 

Kentucky KY South 

Louisiana LA South 

Massachusetts MA Northeast 

Maryland MD South 

Maine ME Northeast 

Michigan MI Midwest 

Minnesota MN Midwest 

Missouri MO Midwest 

Mississippi MS South 

Montana MT West 

North Carolina NC South 

North Dakota ND Midwest 

Nebraska NE Midwest 

New Hampshire NH Northeast 

New Jersey NJ Northeast 

New Mexico NM West 

Nevada NV West 

New York NY Northeast 

Ohio OH Midwest 

Oklahoma OK South 

Oregon OR West 

Pennsylvania PA Northeast 

Rhode Island RI Northeast 

South Carolina SC South 

South Dakota SD Midwest 

Tennessee TN South 

Texas TX South 

Utah UT West 

Virginia VA South 

Vermont VT Northeast 

Washington WA West 

Wisconsin WI Midwest 
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West Virginia WV South 

Wyoming WY West 
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Table S8. Population-weighted Heat Index by race under four coupled SSP-RCP scenarios 

 

Race/Ethnicity 

SSP-RCP 

scenarios 2020 2050 2100

Non-Hispanic White SSP1-RCP2.6 77.0 79.6 80.3

Non-Hispanic Black SSP1-RCP2.6 80.0 82.5 82.7

Hispanic (all races) SSP1-RCP2.6 80.2 82.6 82.7

Non-Hispanic other races SSP1-RCP2.6 76.5 78.7 79.0

Non-Hispanic White SSP2-RCP4.5 77.1 80.1 83.7

Non-Hispanic Black SSP2-RCP4.5 79.9 83.1 86.4

Hispanic (all races) SSP2-RCP4.5 80.2 83.0 86.0

Non-Hispanic other races SSP2-RCP4.5 76.5 79.1 82.0

Non-Hispanic White SSP5-RCP8.5 77.4 81.4 93.3

Non-Hispanic Black SSP5-RCP8.5 80.4 84.5 96.8

Hispanic (all races) SSP5-RCP8.5 80.4 84.1 95.3

Non-Hispanic other races SSP5-RCP8.5 76.7 80.2 91.0

Non-Hispanic White SSP3-RCP7.0 76.8 80.6 88.7

Non-Hispanic Black SSP3-RCP7.0 79.8 83.7 91.8

Hispanic (all races) SSP3-RCP7.0 80.1 83.5 91.0

Non-Hispanic other races SSP3-RCP7.0 76.3 79.4 86.6
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Figure S5 Population percentile of racial/ethnic groups in exposure to HI above Extreme 

Caution under SSP2-RCP4.5 scenario 
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Figure S6 Population percentile of racial/ethnic groups in exposure to HI above Extreme 

Caution under SSP5-RCP8.5 scenario 
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Figure S7 Percentage of population exposed to Extreme Caution+ heat risk under coupled 

SSP-RCP scenarios by racial/ethnic group 
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Figure S8 Population percentile of racial/ethnic groups in exposure to HI above Caution 

under SSP2-RCP4.5 scenario 
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Figure S9 Population percentile of racial/ethnic groups in exposure to HI above Caution 

under SSP5-RCP8.5 scenario 

 

. 



24 

 
 

 

Figure S10 Percentage of population exposed to Caution heat risk and above under coupled 

SSP-RCP scenarios by racial/ethnic group  
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Figure S11 Racial/ethnicity disparity in exposure to Heat Index above Caution (HI ≥
𝟖𝟎°𝑭 ) threshold under future scenarios. (A) Absolute disparity of racial-ethnicity groups 

in exposure to Heat Index above Caution threshold under future scenarios; (B) Overall 

absolute disparity in exposure to Heat Index above Caution threshold under future scenarios; 

(C) Relative disparity of racial-ethnicity groups in exposure to Heat Index above Caution 

threshold under future scenarios. (D) Overall relative disparity of racial-ethnicity groups in 

exposure to Heat Index above Caution threshold under future scenarios; (Absolute disparity 

is measured as the difference between a group’s exposure and the overall population average, 

while relative disparity represents the ratio of a group’s exposure to the population average. 

Hispanic: Hispanic (all races), NH-Black: Non-Hispanic Black, NH-White: Non-Hispanic 

White, NH-Others: Non-Hispanic Other Races. Each box plot shows the interquartile range 

(25th–75th percentile), with the median indicated by a horizontal line. Whiskers extend to 

1.5× the IQR, and points beyond the whiskers are plotted as outliers. Please see 

Supplementary Information SI1.1 for more details on the number of models. The black dash 

lines represent benchmark values for perfect equalization.)  
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Figure S12 Race/ethnicity composition for each Heat Index zone 
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Table S9. Percentage of the distribution of non-Hispanic black populations in the bottom and 

top quartiles of summer Heat Index distributions from 2020 to 2100.  

 2020 2050 2100 

 bottom top bottom top bottom top 

SSP1-RCP1.9 1.67% 3.48% 4.38% 12.5% 5.15% 1.29% 

SSP1-RCP2.6 2.19% 12.5% 6.18% 20.36% 13.26% 13.14% 

SSP2-RCP4.5 2.45% 11.21% 6.95% 27.06% 22.39% 36.60% 

SSP3-RCP7.0 2.45% 11.73% 7.59% 31.83% 41.18% 63.92% 

SSP5-RCP8.5 2.45% 13.14% 9.52% 38.53% 57.27% 78.22% 

 

 
S 2.3.2 Age disparity 

Table S10 Population-weighted Heat Index by age under four coupled SSP-RCP scenarios 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Age SSP-RCP scenarios 2020 2050 2100 

Adult SSP1-RCP2.6 77.97 80.63 81.20 

Elderly SSP1-RCP2.6 77.75 80.67 81.45 

Young SSP1-RCP2.6 78.23 80.87 81.32 

Adult SSP2-RCP4.5 77.97 81.12 84.61 

Elderly SSP2-RCP4.5 77.74 81.15 84.82 

Young SSP2-RCP4.5 78.24 81.38 84.76 

Adult SSP3-RCP7.0 77.78 81.59 89.58 

Elderly SSP3-RCP7.0 77.54 81.62 89.78 

Young SSP3-RCP7.0 78.04 81.85 89.74 

Adult SSP5-RCP8.5 78.28 82.34 94.14 

Elderly SSP5-RCP8.5 78.06 82.37 94.32 

Young SSP5-RCP8.5 78.55 82.60 94.31 
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Figure S13 Population percentile of age groups in exposure to HI above Extreme Caution 

under SSP2-RCP4.5 scenario 
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Figure S14 Population percentile of age groups in exposure to HI above Extreme Caution 

under SSP5-RCP8.5 scenario 
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Figure S15 Percentage of population exposed to Extreme Caution+ heat risk under coupled 

SSP-RCP scenarios by age group 
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Figure S16 Population percentile of age groups in exposure to HI above Caution under 

SSP2-RCP4.5 scenario 
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Figure S17 Population percentile of age groups in exposure to HI above Caution under 

SSP5-RCP8.5 scenario 
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Figure S18 Age disparity in exposure to Heat Index above Caution (HI ≥ 𝟖𝟎°𝑭 ) 
threshold. (A) Absolute disparity and relative disparity of age groups in exposure to Heat 

Index above Caution threshold under future scenarios. (B) Overall absolute disparity of age 

groups in exposure to Heat Index above  Caution threshold under future scenarios; (C) 

Relative disparity of age groups in exposure to Heat Index above  Caution threshold under 

future scenarios; (D) Overall relative disparity of age groups in exposure to Heat Index above  

Caution threshold under future scenarios. (Note 1: Each box plot shows the interquartile 

range (25th–75th percentile), with the median indicated by a horizontal line.Whiskers extend 

to 1.5× the IQR, and points beyond the whiskers are plotted as outliers. Please see 

Supplementary Information SI1.1 for more details on the number of models. Note 2: The 

black dash lines represent benchmark values for perfect equalization.)  
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Figure S19 Percentage of population exposed to Extreme Caution+ heat risk under coupled 

SSP-RCP scenarios by age group 
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Figure S20 Age composition for each Heat Index zone 
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Figure S21 Total racial/ethnic absolute disparity by region  
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Figure S22 Total racial/ethnic relative disparity by region  
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Figure S23 Total age absolute disparity by region  
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Figure S24 Total age absolute disparity by region  
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Figure S25 Number of summer days (June–August) at NWS heat-risk thresholds (“Caution,” 

“Extreme Caution,” “Danger”). Daily maximum air temperature and daily minimum relative 

humidity were used to compute daily maximum HI. Values shown are from the EC-Earth3 

CMIP6 model under SSP2–RCP4.5, summed across the three months. 
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Figure S26 Total number of days exceeding NWS heat-risk thresholds (“Caution,” “Extreme 

Caution,” “Danger”). Daily maximum air temperature and daily minimum relative humidity 

were used to compute daily maximum HI. Values shown are from the EC-Earth3 CMIP6 

model under SSP2–RCP4.5, summed across the three months. 
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disparities of heat risks due to climate change

 
Figure S27 Likelihood of heat exposure for all months under SSP2-RCP4.5 and SSP5-

RCP8.5 scenarios in 2020, 2050, and 2100 
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