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A B S T R A C T

The urban heat island (UHI) effect, a phenomenon of local warming over urban areas, is the most well-known
impact of urbanization on climate. Globally consistent estimates of the UHI intensity (UHII) are crucial for
examining this phenomenon across time and space. However, publicly available UHII datasets are limited and
have several constraints: (1) they are for clear-sky surface UHII, not all-sky surface UHII and canopy (air tem-
perature) UHII; (2) the estimation methods often neglect anthropogenic disturbance, introducing uncertainties in
the estimated UHII. To address these issues, this study proposes a new dynamic equal-area (DEA) method that
can minimize the influence of various confounding factors on UHII estimates through a dynamic cyclic process.
Utilizing the DEA method and leveraging various gridded temperature data, we develop a global-scale (>10,000
cities), long-term (over 20 years by month), and multi-faceted (clear-sky surface, all-sky surface, and canopy)
UHII dataset. Based on these estimates, we provide a comprehensive analysis of the UHII and its trends in global
cities. The UHII is found to be greater than zero in >80% of cities, with global annual average magnitudes around
1.0 ◦C (day) and 0.8 ◦C (night) for surface UHII, and close to 0.5 ◦C for canopy UHII. Furthermore, an interannual
upward trend in UHII is observed in >60% of cities, with global annual average trends exceeding 0.1 ◦C/decade
(day) and over 0.06 ◦C/decade (night) for surface UHII, and slightly surpassing 0.03 ◦C/decade for canopy UHII.
Notably, there exists a positive correlation between the magnitude and trend of UHII, suggesting that cities with
stronger UHII tend to experience faster growth in UHII. Additionally, discrepancies in UHII are found between
different temperature data, stemming not only from distinctions in data types (surface or air temperature) but
also from differences in data acquisition times (Terra or Aqua), weather conditions (clear-sky or all-sky), and
processing methodologies (with or without gap filling). Overall, our proposed method, dataset, and analysis
results have the potential to provide valuable insights for future urban climate studies. The UHII dataset is
publicly available at https://doi.org/10.6084/m9.figshare.24821538.

1. Introduction

Urban heat island (UHI) effect refers to the phenomenon where the
temperature in urban areas is higher than that in the surrounding rural
areas (Rizwan et al., 2008). This phenomenon can have various adverse

impacts, including increased heat stress and health risks for residents,
rising energy demands and economic burdens, deterioration of air
quality, increased pressure on water resources, and the potential exac-
erbation of social inequalities and vulnerabilities within urban areas
(Chakraborty et al., 2023; Hsu et al., 2021; Li et al., 2018a; Li et al.,
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2019d; Zhou et al., 2018). The UHI intensity (UHII) is the main way to
quantify the strength of the UHI signal, reflecting the average temper-
ature difference between the urban area and its background reference
area (BRA). Several studies have extensively analyzed the UHII at
regional or global scales, with a primary focus on its spatiotemporal
variations, driving factors, and potential impacts (Cai et al., 2023; Chen
et al., 2023; Clinton and Gong, 2013; Du et al., 2016; Du et al., 2023; Gui
et al., 2019; Li et al., 2019a; Li and Chen, 2023; Liu et al., 2021; Manoli
et al., 2020; Peng et al., 2012; Ren et al., 2023; Shao et al., 2023; Yang
and Zhao, 2023; Yao et al., 2018a; Yao et al., 2019; Yao et al., 2017;
Zhao et al., 2014; Zhou et al., 2017; Zhou et al., 2014).

Accurate estimation of the UHII using a consistent method is a pre-
requisite for further analysis of this local urban climate signal across
regions. Several global and regional datasets have been generated for
this purpose. For instance, a global dataset of summertime surface UHII
during 2013 was produced by using the Moderate Resolution Imaging
Spectroradiometer (MODIS) land surface temperature (LST) products
(Center for International Earth Science Information Network - CIESIN -
Columbia University, 2016). This global-scale dataset has been used for
examining the spatial patterns of surface UHI effect and exploring its
relationship with demographic factors and prevailing climatic condi-
tions (Manoli et al., 2019). Based on the proposed simplified urban-
extent (SUE) algorithm, Chakraborty and Lee (2019) produced a
multi-year monthly surface UHII dataset encompassing almost 10,000
cities worldwide. They then built upon this data to analyze the spatial
and temporal patterns in surface UHI effect, exploring their relationship
with vegetation index. Subsequently, Chakraborty et al. (2020) modified
the SUE algorithm and leveraged it to create a spatially explicit surface
UHII database exclusively dedicated to the United States. This data was
used to analyze the spatiotemporal variability of heat islands in the
urbanized areas and combined with census data to reveal the inequity in
heat exposure across different ethnic and income groups (Hsu et al.,
2021). Niu et al. (2021) utilized the MODIS 8-day composite LST
product to create a surface UHII dataset covering 286 Chinese cities from
2001 to 2018, and further examined the spatial patterns and inter-
annual trends in surface UHII across China. Besides MODIS, Devereux
and Caccetta (2019) retrieved LST of Australian major cities by using the
Landsat 8 thermal infrared images, and further calculated the urban-
rural LST difference to form a surface UHII dataset. Chakraborty et al.
(2021a) developed a global ensemble surface UHII dataset using the SUE
algorithm based on Landsat LST and multiple surface emissivity models.
The UHII datasets generated by current studies have played a crucial
role in advancing research within the academic community. However,
the existing UHII datasets concentrate on utilizing remotely sensed LST
data for deriving surface UHII. This gives rise to two challenges: (1) the
accuracy of the estimated surface UHII is impacted by the occurrence of
missing data in the LST observations, which can only be acquired under
clear-sky conditions (Liao et al., 2022); (2) the surface UHII derived
from LSTmay not be representative of the canopy UHII across scales, the
latter being more closely associated with human perception of heat and
requiring air temperature data (Du et al., 2023; Venter et al., 2021). In
recent years, numerous data fusion techniques have emerged that can
effectively interpolate missing data to seamlessly generate LST data
under all weather conditions (Mo et al., 2021). Moreover, machine
learning methods have demonstrated efficacy in obtaining high-
accuracy surface air temperature (SAT) by synthesizing sparse in-situ
observations with a diverse set of surface attributes (Chen et al., 2022;
Yao et al., 2023). At present, several global-scale spatially seamless LST
and SAT datasets have been made publicly accessible (Hong et al., 2022;
Jia et al., 2023; Yao et al., 2023; Yu et al., 2022; Zhang et al., 2022a;
Zhang et al., 2022b). These datasets play a vital role as a complement to
existing clear-sky LST products (e.g., MODIS), offering new avenues for
studying and addressing challenges associated with urban climate
impacts.

Currently available UHII datasets exhibit variations in their estima-
tion methods, primarily attributed to disparities in the selection of BRAs.

For instance, the global surface UHI dataset released by CIESIN applied a
distance-based method, which defined the BRA as a constant 10 km
buffer area around the central urban area for all cities (Center for In-
ternational Earth Science Information Network - CIESIN - Columbia
University, 2016). The applicability of such distance-based method is
limited by the challenge of applying a single fixed buffer to cities of
varying sizes, particularly in the context of large-scale studies (Lai et al.,
2018; Yang et al., 2023b). The surface UHII dataset produced by
Chakraborty and Lee (2019) was generated using a SUE algorithm,
which defined the BRA as the non-built-up pixels within urban ag-
glomerations. The SUE method avoids buffer selection but faces chal-
lenges from anthropogenic disturbance, primarily due to the proximity
of the selected BRA to urban areas (Li et al., 2022; Yang et al., 2023b).
Many studies have used area-based methods to select the BRA, most
typically defining the BRA as the equal-area buffer surrounding the
central urban area (Chakraborty et al., 2021b; Peng et al., 2012; Yang
et al., 2017; Zhou et al., 2014). Such equal-area methods take the size of
the urban area into account when selecting the BRA, making them
suitable for multi-city UHI analysis (Li et al., 2022; Yang et al., 2023b).
However, traditional equal-area methods also encounter anthropogenic
disturbance and may consequently underestimate the UHII (Yang et al.,
2023b). Recently, Li et al. (2022) modified traditional equal-area
methods by excluding areas within the BRA with nighttime light in-
tensity (NLI) higher than the median value. This modified equal-area
method can mitigate the influence of anthropogenic disturbance on
UHII estimates, but further optimization is needed due to the following
reasons: (1) potential incomplete exclusion may arise when using the
median NLI in the BRA as a threshold, particularly in cities with rela-
tively high NLI in urban surroundings; (2) while the NTL can indicate
human activities, it may overlook man-made disturbance in areas with
low illumination or where lighting isn’t necessary (Levin et al., 2020;
Zhao et al., 2019). As an alternative, a number of studies have used the
impervious surface fraction (ISF) as a criterion for filtering the BRA
(Imhoff et al., 2010; Yang and Zhao, 2023; Yang et al., 2023a; Yao et al.,
2018b). For example, Yang et al. (2023a) and Yao et al. (2018b)
removed all areas with an ISF exceeding 5% from the BRA to ensure that
it closely reflects the natural state of the ground. However, these studies
did not dynamically adjust for the size of the BRA when removing areas
with high ISF values, resulting in a significant reduction or complete
absence of available BRA pixels (Liu et al., 2023; Yang et al., 2023a). In
addition to anthropogenic disturbance, the selection of the BRA also
requires the removal of other confounding factors, such as water bodies
and topographic relief (Yang et al., 2023b). Therefore, developing a new
method suitable for large-scale studies, capable of effectively mitigating
the influence of various confounding factors, is essential for establishing
a reliable and globally consistent UHII dataset.

To address the above problems, we have made efforts in this study
from the following aspects. First, drawing on the strengths of existing
area-based methods, we introduce a new dynamic equal-area (DEA)
method for estimating UHI. This method can minimize the influence of
various confounding factors through a dynamic cyclic process, better
emphasizing the impact of urbanization on local temperature. Second,
utilizing the DEA method and leveraging various gridded temperature
data, we develop a global-scale (covering >10,000 cities), long-term
(over 20 years by month), and multi-faceted (clear-sky surface, all-sky
surface, and canopy) UHII dataset. This UHII dataset fills the gap of
publicly available global-scale datasets of all-sky surface or canopy
UHII. Third, based on our UHII dataset, we make a comprehensive
analysis of the magnitude and trend of UHII, and perform a systematic
comparison of UHII estimates derived from different temperature data.
These analyses contribute to obtaining a more objective and compre-
hensive assessment of the spatiotemporal patterns and changing ten-
dencies of the UHI effect. Overall, our proposed DEA method, published
UHII dataset, and analysis results are anticipated to provide valuable
reference for future research on urban thermal environments.

Q. Yang et al.
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2. Data

2.1. Land cover data

The MODIS land cover type product (MCD12Q1) can provide annual
global-scale extent of “urban and built-up”. Based on previous studies
(Peng et al., 2012; Si et al., 2022; Zhou et al., 2017), we employed the
city clustering algorithm (CCA) to aggregate “urban and built-up” pixels,
categorizing pixels close to each other (within 2 km) as part of the same
urban cluster. We processed all MCD12Q1 data for the period
2001–2021 as described above and derived global urban clusters for
different years. To maintain consistency in urban clusters over the years,
we standardized urban clusters in previous years by referencing those of
the latest year (2021). Specifically, urban clusters that were treated as
separate entities in earlier years but were identified as the same one in
2021 were further aggregated into a single urban cluster. This procedure
facilitates comparative analysis of results across various years. Subse-
quently, we identified urban clusters that consistently exceeded 9 km2

for all years (2001− 2021), totaling 10,196 globally. These urban clus-
ters (or called cities) are distributed across various climate zones,
encompassing tropical (1480), arid (2193), temperate (3708), cold
(2806), and polar (9) zones (Fig. 1). In addition, we identified pixels
labelled as “water” or “permanent wetland” in MCD12Q1 for each year
to prepare for removing the influence of water bodies on UHII estimates
(Chakraborty and Lee, 2019; Lai et al., 2018).

2.2. Temperature data

The MODIS LST products were used to derive UHII under clear-sky
conditions. Four MODIS LST products have been frequently used in
UHI-related studies (Zhou et al., 2018): MOD11A1 (Mod1), MOD11A2
(Mod2), MYD11A1 (Myd1), and MYD11A2 (Myd2). Among these, Mod1
and Mod2 originate from the Terra satellite (with transit times at
~10:30 and ~ 22:30 local time), while Myd1 and Myd2 are derived
from the Aqua satellite (with transit times at ~13:30 and ~ 1:30 local
time). Mod1 and Myd1 are daily products, while Mod2 and Myd2 are 8-

day composite products.
To reduce the bias in UHII estimation caused by missing LST data,

recent studies have favored the use of gap-filled seamless LST data (Yang
and Zhao, 2023; Yang et al., 2023b). Hence, this study incorporated two
recently introduced seamless LST products, namely SMod2 and SMyd1.
Among them, SMod2 was developed by Yao et al. (2023) through the
interpolation of the original Mod2 product, while SMyd1 was produced
by Zhang et al. (2022b) through the interpolation of the original Myd1
product. It should be noted that SMod2 and SMyd1 were interpolated
without accounting for weather conditions, thereby still representing
the LST under clear-sky conditions (Yao et al., 2023; Zhang et al.,
2022b). Given the difference between clear-sky and all-sky LSTs, we
incorporated the spatial-seamless all-sky LST data, denoted as AMod2,
generated by Yao et al. (2023) using the original Mod2 product. The
accuracies of these seamless LST datasets, namely SMod2, SMyd1, and
AMod2, have been extensively evaluated and they have been effectively
employed in various recent studies (Liu et al., 2023; Yang and Zhao,
2023; Yang et al., 2023b; Yuan et al., 2023).

Besides the above LST datasets, we also incorporated the gridded
SAT dataset produced by Yao et al. (2023) for the assessment of canopy
UHII. The gridded SAT dataset was generated from the seamless Mod2
LST observations, the in-situ air temperature measurements, and the
Cubist machine learning algorithm (Yao et al., 2023). Validation results
showed good accuracy of the reconstructed gridded SAT data, with the
global mean absolute errors<1 ◦C (Yao et al., 2023). It can provide both
the maximum andminimum temperatures of a day, corresponding to the
daytime and nighttime observations of the LST data, respectively.

These temperature datasets exhibit a spatial resolution of 1 km, and
apart from the original MODIS LST products, they are accessible only up
to the year 2020. These temperature datasets underwent separate
monthly averaging, followed by subsequent seasonal and annual aver-
aging. In the Northern Hemisphere (Southern Hemisphere), the months
corresponding to spring are March–May (September–November), to
summer are June–August (December–February), to Autumn are Sep-
tember–November (March–May), and to winter are December–February
(June–August).

Fig. 1. Spatial distributions of global cities. (a) Location and climate type of the 10,196 selected cities. (b) Number and percentage of cities categorized by their sizes.

Q. Yang et al.



Remote Sensing of Environment 312 (2024) 114343

4

2.3. Auxiliary data

Nighttime light intensity (NLI): The intensity of nighttime lights
serves as an indicator of human activity and can be used for identifying
areas within the BRA affected by anthropogenic disturbance. This study
utilized the global NPP-VIIRS-like NLI data developed by Chen et al.
(2021). This dataset boasts an extended timescale in comparison to the
original NPP-VIIRS NTL data, demonstrating good quality in both spatial
pattern and temporal consistency (Chen et al., 2021). The NPP-VIIRS-
like NTL data products used in this study cover the period 2001–2021.

Impervious surface fraction (ISF): In addition to addressing NLI, this
study further mitigated the influence of anthropogenic disturbance by
using the global impervious surface area (GISA) data developed by
Huang et al. (2022). This data provides the spatial distribution of
impervious surface across the globe at a 30-m resolution. The GISA has
been recently updated to 2021, and we utilized the annual data spanning
the period from 2001 to 2021. Using this data, we computed the pro-
portion of impervious surface within each temperature pixel extent,
resulting in global ISF data for each year spanning from 2001 to 2021.

Digital elevation model (DEM): The Global 30 Arc-Second Elevation
(GTOPO30) data, developed by United States Geological Survey (USGS),
can provide the elevation information of Earth’s terrain at a spatial
resolution of approximately 1 km. It was used for reducing the influence
of topographic relief on UHII estimates.

Climate classification map: The Köppen-Geiger Climate Classifica-
tion global map, generated by Beck et al. (2018), was employed to
determine the climate zone to which each urban cluster belongs. This
dataset exhibits a classification accuracy of 80% and has a spatial res-
olution of 1 km (Beck et al., 2018).

3. Methods

3.1. Methods for estimating UHII

The UHII is defined as the mean temperature difference between the
urban area and its BRA. The discrepancies among current UHII estima-
tion methods primarily stem from the selection of BRA, exerting a sub-
stantial influence on the magnitude of the estimated UHII (Li et al.,
2019b; Liu et al., 2023; Yang et al., 2023b; Yao et al., 2018b). In this
study, we proposed the DEA method (i.e. dynamic equal-area method)
for identifying the BRA and estimating UHII. This method can efficiently
eliminate the influence of confounding factors, including water, topo-
graphic relief, and anthropogenic disturbance, on UHII estimates.
Importantly, it ensures that the selected BRA possesses enough valid
pixels, maintaining a size equivalent to that of the urban area.

3.1.1. Workflow of the DEA method
As shown in Fig. 2, the DEAmethod mainly comprising the following

five steps.
Step 1: Creation of buffer. For an urban cluster with area of AU, create

a buffer around it with radius R. The initial value of R is determined by
the area of the urban cluster (see below for details).

Step 2: Removal of confounding factors. For the constructed buffer,
remove areas within it that satisfy any of the following conditions: (a)
water bodies; (b) areas outside the median elevation of the urban cluster
by ET meters; (c) areas with ISF ≥ ISFT; (d) areas with NLI ≥ NLIT.
Specific values of these parameters are shown below.

Step 3: Update of buffer radius. Calculate the area difference (ΔA)
between the urban cluster and the remaining area of the constructed
buffer, and update the buffer radius to R + ΔR. Repeat steps 1–3 until R
> RT or ΔA shows opposite signs between consecutive steps.

Step 4: Determination of BRA. Compare the absolute values of the
last two iterations of ΔA, and designate the remaining area of the buffer

Fig. 2. Flowchart of the dynamic equal-area (DEA) method for estimating UHII. ET, NLIT, and ISFT refer to the upper thresholds of elevation difference from urban
median value (EU), nighttime light intensity (NLI), and impervious surface fraction (ISF), respectively, applied to pixels retained within the background reference
area (BRA). RT represents the upper threshold for the buffer radius. Please refer to Methods section for details of these parameters.

Q. Yang et al.
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corresponding to the lower value as the final selected BRA.
Step 5: Calculation of UHII. Calculate the mean temperatures of the

urban cluster (TU) and the BRA (TB), respectively. The estimated UHII is
then expressed as: UHII = TU − TB.

3.1.2. Parameter settings of the DEA method
The initial buffer radius (referred as R0) is determined by the area of

the urban cluster (AU). Assuming the urban cluster as a disk with the
radius of RU, then the following equation holds:

(RU + R0)
2
= 2RU

2 (1)

AU = πRU
2 (2)

Jointly solving the above two equations yields that:

R0 =
( ̅̅̅

2
√

− 1
) ̅̅̅̅̅̅̅̅̅̅̅

AU/π
√

(3)

Construct the buffer using R0 and calculate the area difference (ΔA0)
between the urban cluster and the buffer. If ΔA0 > 0 in the initial step, it
implies that R0 takes a lower value, then ΔR should be greater than 0;
conversely, ΔR should be lower than 0. Given that the resolution of the
LST data is 1 km, we set |ΔR| = 1 km in this study.

To reduce the impact of topographic relief on UHII estimates, we
excluded areas beyond the median elevation of the urban cluster by ET
meters from the constructed buffer. Most studies have standardized ET to
50 m (Du et al., 2023; Imhoff et al., 2010; Lai et al., 2018; Yang and
Zhao, 2023; Yang et al., 2023a; Yang et al., 2023b), with a few excep-
tions opting for alternative thresholds such as100 m (Zhao et al., 2014).
In this study, we set ET at 50 m, a stringent threshold aimed at effectively
mitigating the impact of topographic relief, particularly in mountainous
cities with significant variations in terrain (Yang et al., 2023b).

To mitigate the influence of anthropogenic disturbance on UHII es-
timates, we constrained the ISF of all pixels within the BRA to remain
below a specified threshold (i.e. ISFT). Previous UHI-related studies have
demonstrated variability in their choice of ISFT, typically spanning from
5% to 20% (Imhoff et al., 2010; Liu et al., 2023; Yang and Zhao, 2023;
Yang et al., 2023a; Yao et al., 2018b; Zhou et al., 2016). In this study, we
applied a relatively stringent ISFT of 5%, as this is the most commonly
used threshold (Yao et al., 2018b).

Following the study of Li et al. (2022), we excluded pixels with
relatively high NLI from the BRA to further mitigate the influence of
anthropogenic activities. Compared to the previous study, we imple-
mented a stricter exclusion criterion by setting the upper threshold for
NLI (i.e. NLIT) to be 1 nW/cm2/sr for all areas within the BRA. We set
NLIT as this value because previous studies have indicated that NLIs
below than 1 nW/cm2/sr were predominantly associated with back-
ground noise (Chen et al., 2021; Zhao et al., 2020; Zheng et al., 2019).
This low threshold for NLI helps maximize the confidence in our selected
BRA to represent the natural surface state.

The DEA method dynamically adapts the buffer radius to eliminate
confounding factors while ensuring that the selected BRA retain enough
valid pixels. Meanwhile, the BRA should not be too distant from the
urban area, as remote pixels might reflect different climate regimes (Luo
and Lau, 2018). Hence, we set the maximum threshold (i.e. RT) for the
buffer radius to 100 km, and areas beyond this limit will be excluded
from the BRA. This setting of the maximum buffer radius is consistent
with that used in recent UHI-related studies (Du et al., 2023; Luo and
Lau, 2018).

We have conducted a thorough analysis of the potential impacts of
variations in the above threshold parameters (ET, ISFT, NLIT, and RT) on
UHII estimates. Please refer to Section 5.4 for detailed information
regarding the sensitivity analysis of these parameters.

3.1.3. Methods for comparative analysis
To validate the effectiveness of our proposed DEA method, we con-

ducted a comparative analysis with three other commonly used area-

based buffer methods.

(1) EAmethod: The equal-area (EA) method stands as one of the most
employed methods for UHII estimation (Peng et al., 2012; Zhou
et al., 2018; Zhou et al., 2014). This method establishes the BRA
by creating a buffer around the urban area of equal size. Similar
to our DEAmethod, the EAmethod also excludes areas within the
BRA that are affected by water bodies and/or topographic relief.

(2) IEA method: Building upon the BRA extracted by the EA method,
it is necessary to further exclude areas influenced by anthropo-
genic disturbance. Typically, areas with the ISF higher than 5%
within the BRA are identified for removal (Imhoff et al., 2010;
Yao et al., 2018b). This approach is denoted as the IEA method.

(3) MEA method: The modified equal-area (MEA) method proposed
by Li et al. (2022) seeks to reduce anthropogenic disturbance by
removing areas with high NLI within the BRA. The first step of the
MEA method involves mitigating the influences of water bodies
and topographic relief and creating a buffer twice the size of the
urban area. The subsequent step is to exclude areas within the
buffer where the NLI exceeds its median value.

3.2. Generation and analysis of our UHII dataset

3.2.1. Generation of a global, long-term, and multi-faceted UHII dataset
Based on the proposed DEA method, we obtained the UHII of 10,196

global cities (or urban clusters) to create a UHII dataset. This dataset
comprises the UHII values derived from eight different sources of tem-
perature data, and they describe aspects of the UHI effect (Table 1). The
UHII values derived from the original MODIS LST data, including IMod1
(i.e., UHII from the Mod1 data, hereinafter), IMod2, IMyd1, and IMyd2,
represent the surface UHII under clear-sky conditions. ISMod2 and ISMyd1
were derived from the gap-filed MODIS LST data, representing the clear-
sky surface UHII without the influence of missing data. IAMod2 was ob-
tained by using the seamless all-sky LST data, providing an assessment of
surface UHII under all-sky conditions. ISAT was computed using gridded
SAT data and represents the canopy UHII. All the mentioned UHII in-
dicators includemonthly values, seasonal averages, and annual averages
for each year during their respective accessible periods (Table 1).

3.2.2. Global analysis and comparison of the magnitude and trend of UHII
Utilizing the derived UHII dataset, we examined the spatiotemporal

patterns and inter-annual trends of UHII. To ensure a fair comparison,
the analysis was confined to the time frame (2003− 2020) covered by all
available data. First, we computed the average UHII for each city from
2003 to 2020 as a representative measure of the magnitude of UHI
signal. Subsequently, we analyzed the UHII trend across years for each
city using the Mann-Kendall (MK) and Sen’s slope estimator tests (Yang

Table 1
UHII indicators derived from different temperature data.

Indicator Data source Period Time Data Provider

Surface UHI intensity estimated by the clear-sky LST data
IMod1 MOD11A1 (Mod1) 2001–2021 ~10:30 &

~22:30
NASA

IMod2 MOD11A2 (Mod2)
IMyd1 MYD11A1 (Myd1) 2003–2021 ~13:30 &

~1:30IMyd2 MYD11A2 (Myd2)
Surface UHI intensity estimated by the seamless clear-sky LST data
ISMod2 Seamless MOD11A2

(SMod2)
2001–2020 ~10:30 &

~22:30
Yao et al.
(2023)

ISMyd1 Seamless MYD11A1
(SMyd1)

2003–2020 ~13:30 &
~1:30

Zhang et al.
(2023)

Surface UHI intensity estimated by the seamless all-sky LST data
IAMod2 All-sky MOD11A2

(AMod2)
2001–2020 ~10:30 &

~22:30
Yao et al.
(2023)

Canopy UHI intensity estimated by the gridded surface air temperature data
ISAT Surface air

temperature (SAT)
2001–2020 Max & Min Yao et al.

(2023)
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et al., 2019; Yao et al., 2019). On this basis, we made a thorough analysis
of the spatial, diurnal, and seasonal patterns of the magnitude and trend
of UHII, as well as the relationship between them. Besides, we conducted
a detail comparison of the UHII derived from different sources of tem-
perature data.

4. Results

4.1. Performance evaluations of the DEA method

Fig. 3 illustrates the spatial extent of the BRA and the average values
of ISF and NLI within it obtained through different methods. It is evident
that, in comparison to the traditional EA method, the IEA method can
largely reduce the ISF within BRAs, while the MEA method can sub-
stantially diminish the NLI within the BRAs. Our proposed DEA method
combines the advantages of IEA and MEA methods, proving more
effective in simultaneously reducing ISF and NLI within the BRA.
Therefore, the BRA obtained by the DEA method is expected to be less
influenced by anthropogenic disturbance and more representative of the
natural background climate compared to those obtained by other

methods.
Consequently, the UHII estimated by the DEA method is typically

higher than that estimated by other methods (Table 2 & Fig. S1). On
average for global cities, the UHII derived from the DEA method sur-
passes that of the EA method by more than 50% and is about 10% higher
than that of the IEA (or MEA) method (Table 2). This is attributed to the
effectiveness of the BRA selected by the DEA method, which systemat-
ically excludes areas with elevated temperatures associated with
anthropogenic activities. As a result, the DEA method can effectively
emphasize the temperature difference between the urban area and its
background. Additionally, the trend of UHII derived from the DEA
method is also more pronounced compared to that of other methods
(Table 3). Globally, the UHII trend of the DEA method surpasses that of
the IEA (or MEA) method by more than 25% during the daytime and
over 40% during the nighttime. The UHII trend of the EA method is the
lowest, reaching only about 1/10 to 1/5 of the UHII trend obtained by
the DEA method (Table 3). This suggests that the influence of anthro-
pogenic disturbance within the BRA can obscure the true trend of UHII,
and the DEA method, which eliminates this influence, can better high-
light the UHII trend.

Fig. 3. Comparisons of different methods, including EA, IEA, MEA, and DEA, for delineating the background reference area (BRA). (a) Spatial extents of BRAs and the
mean values of nighttime light intensity (NLI) and impervious surface fraction (ISF) within them in eight representative cities. (b) Mean values (95% confidence
intervals) of NLI within BRAs for global cities as well as for cities located in different climate zones. (c) Mean values (95% confidence intervals) of ISF within BRAs for
global cities as well as cities located in different climate zones. The comparison above is presented as an illustrative example from the year 2020. Please refer to the
Methods section for detailed explanations of each method.
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Overall, our proposed DEA method demonstrates superior effec-
tiveness in mitigating anthropogenic disturbance during the BRA se-
lection. Consequently, the UHII estimated by the DEA method more
effectively underscores the impact of urbanization on local temperature.

Given the advantages of the DEA method, the subsequent analysis will
be grounded in its outcomes.

Table 2
Global averages (± 95% confidence intervals) of the magnitude of UHII estimated by different temperature data and methods. The magnitude is calculated as the
average of UHII during 2003–2020. The magnitude of UHII estimated by the DEA method (bold) is significantly (p < 0.05, t-test) higher than that of other methods.

Period Method Magnitudes of UHII derived from different temperature datasets (◦C)

IMod1 IMod2 IMyd1 IMyd2 ISMod2 ISMyd1 IAMod2 ISAT

Annual day

EA 0.584 ± 0.015 0.581 ± 0.015 0.783 ± 0.016 0.774 ± 0.016 0.554 ± 0.015 0.653 ± 0.017 0.550 ± 0.014 0.298 ± 0.006
IEA 0.881 ± 0.022 0.876 ± 0.022 1.177 ± 0.025 0.163 ± 0.025 0.835 ± 0.022 1.020 ± 0.025 0.829 ± 0.022 0.427 ± 0.008
MEA 0.820 ± 0.021 0.815 ± 0.021 1.108 ± 0.025 1.094 ± 0.025 0.776 ± 0.020 0.956 ± 0.025 0.770 ± 0.020 0.407 ± 0.007
DEA 0.941 ± 0.025 0.934 ± 0.025 1.256 ± 0.031 1.239 ± 0.031 0.890 ± 0.025 1.125 ± 0.030 0.881 ± 0.025 0.457 ± 0.008

Annual night

EA 0.567 ± 0.009 0.559 ± 0.009 0.495 ± 0.008 0.490 ± 0.008 0.544 ± 0.09 0.463 ± 0.008 0.546 ± 0.009 0.312 ± 0.004
IEA 0.774 ± 0.011 0.763 ± 0.011 0.682 ± 0.010 0.673 ± 0.010 0.745 ± 0.011 0.651 ± 0.010 0.746 ± 0.011 0.435 ± 0.006
MEA 0.748 ± 0.010 0.737 ± 0.010 0.658 ± 0.010 0.649 ± 0.010 0.719 ± 0.010 0.627 ± 0.010 0.720 ± 0.010 0.417 ± 0.005
DEA 0.832 ± 0.12 0.820 ± 0.012 0.736 ± 0.012 0.726 ± 0.012 0.802 ± 0.012 0.708 ± 0.012 0.801 ± 0.012 0.473 ± 0.008

Summer day

EA 0.914 ± 0.022 0.911 ± 0.022 1.171 ± 0.025 1.166 ± 0.025 0.871 ± 0.020 1.099 ± 0.024 0.860 ± 0.020 0.367 ± 0.006
IEA 1.421 ± 0.031 1.415 ± 0.031 1.816 ± 0.037 1.808 ± 0.037 1.348 ± 0.029 1.620 ± 0.035 1.330 ± 0.030 0.543 ± 0.010
MEA 1.308 ± 0.029 1.302 ± 0.029 1.690 ± 0.035 1.682 ± 0.035 1.240 ± 0.029 1.505 ± 0.034 1.223 ± 0.028 0.514 ± 0.010
DEA 1.518 ± 0.037 1.510 ± 0.037 1.938 ± 0.043 1.928 ± 0.043 1.434 ± 0.035 1.746 ± 0.040 1.412 ± 0.035 0.583 ± 0.012

Summer night

EA 0.628 ± 0.008 0.612 ± 0.008 0.522 ± 0.008 0.512 ± 0.008 0.572 ± 0.008 0.472 ± 0.008 0.571 ± 0.008 0.290 ± 0.006
IEA 0.886 ± 0.013 0.863 ± 0.013 0.744 ± 0.012 0.730 ± 0.011 0.810 ± 0.012 0.690 ± 0.011 0.806 ± 0.012 0.418 ± 0.008
MEA 0.845 ± 0.012 0.824 ± 0.012 0.709 ± 0.010 0.695 ± 0.010 0.771 ± 0.010 0.657 ± 0.011 0.769 ± 0.010 0.395 ± 0.007
DEA 0.959 ± 0.014 0.934 ± 0.014 0.813 ± 0.012 0.797 ± 0.012 0.876 ± 0.012 0.760 ± 0.012 0.871 ± 0.012 0.459 ± 0.008

Winter day

EA 0.303 ± 0.012 0.307 ± 0.012 0.451 ± 0.016 0.449 ± 0.016 0.292 ± 0.012 0.421 ± 0.016 0.293 ± 0.012 0.229 ± 0.006
IEA 0.428 ± 0.016 0.435 ± 0.016 0.646 ± 0.022 0.645 ± 0.022 0.415 ± 0.016 0.608 ± 0.022 0.415 ± 0.016 0.314 ± 0.006
MEA 0.411 ± 0.016 0.418 ± 0.016 0.622 ± 0.020 0.621 ± 0.020 0.398 ± 0.016 0.588 ± 0.022 0.398 ± 0.016 0.304 ± 0.006
DEA 0.462 ± 0.020 0.470 ± 0.020 0.695 ± 0.024 0.694 ± 0.024 0.449 ± 0.020 0.662 ± 0.024 0.448 ± 0.020 0.337 ± 0.008

Winter night

EA 0.520 ± 0.010 0.515 ± 0.010 0.469 ± 0.010 0.464 ± 0.010 0.512 ± 0.008 0.437 ± 0.010 0.517 ± 0.008 0.333 ± 0.006
IEA 0.683 ± 0.012 0.675 ± 0.012 0.621 ± 0.014 0.612 ± 0.014 0.677 ± 0.012 0.592 ± 0.014 0.682 ± 0.013 0.452 ± 0.009
MEA 0.671 ± 0.012 0.664 ± 0.012 0.609 ± 0.014 0.600 ± 0.012 0.663 ± 0.012 0.579 ± 0.012 0.668 ± 0.012 0.438 ± 0.008
DEA 0.728 ± 0.014 0.720 ± 0.014 0.662 ± 0.016 0.652 ± 0.016 0.723 ± 0.014 0.635 ± 0.014 0.728 ± 0.014 0.490 ± 0.010

Table 3
Global averages (± 95% confidence intervals) of the trend of UHII estimated by different temperature data and methods. The trend denotes the change rate of UHII
estimated based on year-by-year values during 2003–2020. The trend of UHII estimated by the DEA method (bold) is significantly (p < 0.05, t-test) higher than that of
other methods.

Period Method Trends of UHII derived from different temperature datasets (◦C/decade)

IMod1 IMod2 IMyd1 IMyd2 ISMod2 ISMyd1 IAMod2 ISAT

Annual day

EA 0.022 ± 0.004 0.023 ± 0.004 0.024 ± 0.004 0.026 ± 0.004 0.018 ± 0.003 0.024 ± 0.004 0.017 ± 0.003 − 0.004 ±

0.001
IEA 0.108 ± 0.006 0.110 ± 0.006 0.137 ± 0.008 0.138 ± 0.008 0.092 ± 0.006 0.129 ± 0.008 0.089 ± 0.006 0.024 ± 0.002
MEA 0.093 ± 0.006 0.094 ± 0.006 0.111 ± 0.008 0.113 ± 0.008 0.079 ± 0.005 0.104 ± 0.006 0.076 ± 0.005 0.020 ± 0.002
DEA 0.135 ± 0.012 0.137 ± 0.012 0.162 ± 0.012 0.163 ± 0.012 0.112 ± 0.010 0.157 ± 0.012 0.106 ± 0.010 0.032 ± 0.004

Annual night

EA 0.005 ± 0.002 0.002 ± 0.002 0.013 ± 0.002 0.013 ± 0.002
− 0.000 ±

0.001 0.013 ± 0.002
− 0.000 ±

0.001 0.000 ± 0.001

IEA 0.051 ± 0.004 0.047 ± 0.004 0.055 ± 0.004 0.053 ± 0.004 0.042 ± 0.004 0.056 ± 0.004 0.041 ± 0.004 0.025 ± 0.002
MEA 0.045 ± 0.004 0.042 ± 0.004 0.057 ± 0.004 0.055 ± 0.004 0.037 ± 0.003 0.056 ± 0.004 0.037 ± 0.003 0.022 ± 0.002
DEA 0.073 ± 0.006 0.069 ± 0.006 0.082 ± 0.006 0.080 ± 0.006 0.063 ± 0.004 0.084 ± 0.006 0.061 ± 0.004 0.039 ± 0.004

Summer day

EA 0.053 ± 0.006 0.054 ± 0.006 0.071 ± 0.006 0.072 ± 0.006 0.052 ± 0.004 0.068 ± 0.008 0.049 ± 0.004 − 0.001 ±

0.002
IEA 0.202 ± 0.008 0.205 ± 0.008 0.265 ± 0.010 0.266 ± 0.010 0.180 ± 0.008 0.247 ± 0.012 0.174 ± 0.008 0.037 ± 0.004
MEA 0.177 ± 0.010 0.180 ± 0.010 0.218 ± 0.012 0.219 ± 0.012 0.160 ± 0.008 0.199 ± 0.012 0.154 ± 0.008 0.033 ± 0.004
DEA 0.238 ± 0.016 0.241 ± 0.016 0.294 ± 0.018 0.297 ± 0.018 0.204 ± 0.016 0.282 ± 0.016 0.193 ± 0.014 0.047 ± 0.006

Summer
night

EA 0.023 ± 0.002 0.018 ± 0.002 0.022 ± 0.002 0.022 ± 0.002 0.008 ± 0.002 0.017 ± 0.002 0.007 ± 0.002 0.005 ± 0.001
IEA 0.082 ± 0.004 0.075 ± 0.004 0.073 ± 0.004 0.071 ± 0.004 0.057 ± 0.004 0.067 ± 0.004 0.055 ± 0.004 0.031 ± 0.002
MEA 0.073 ± 0.004 0.067 ± 0.004 0.072 ± 0.004 0.071 ± 0.004 0.050 ± 0.004 0.066 ± 0.004 0.048 ± 0.004 0.028 ± 0.002
DEA 0.106 ± 0.006 0.099 ± 0.006 0.104 ± 0.006 0.102 ± 0.006 0.078 ± 0.006 0.100 ± 0.006 0.073 ± 0.006 0.044 ± 0.004

Winter day

EA
− 0.007 ±

0.004
− 0.007 ±

0.004
− 0.021 ±

0.004
− 0.019 ±

0.004
− 0.012 ±

0.004
− 0.020 ±

0.006
− 0.012 ±

0.004
− 0.015 ±

0.002

IEA 0.015 ± 0.006 0.016 ± 0.006 0.013 ± 0.008 0.018 ± 0.008 0.004 ± 0.006 0.011 ± 0.008 0.004 ± 0.006
− 0.005 ±

0.002

MEA 0.017 ± 0.006 0.018 ± 0.006 0.013 ± 0.008 0.017 ± 0.008 0.009 ± 0.006 0.013 ± 0.008 0.009 ± 0.006 − 0.005 ±

0.002
DEA 0.038 ± 0.010 0.042 ± 0.010 0.040 ± 0.012 0.047 ± 0.012 0.027 ± 0.008 0.045 ± 0.010 0.026 ± 0.008 0.005 ± 0.003

Winter night

EA
− 0.007 ±

0.002
− 0.008 ±

0.002 0.006 ± 0.002 0.005 ± 0.002
− 0.005 ±

0.002 0.007 ± 0.002
− 0.005 ±

0.002
− 0.003 ±

0.002
IEA 0.026 ± 0.004 0.023 ± 0.004 0.036 ± 0.004 0.033 ± 0.006 0.028 ± 0.004 0.038 ± 0.004 0.028 ± 0.004 0.020 ± 0.003
MEA 0.024 ± 0.004 0.022 ± 0.004 0.042 ± 0.004 0.039 ± 0.004 0.028 ± 0.004 0.042 ± 0.004 0.027 ± 0.004 0.019 ± 0.003
DEA 0.042 ± 0.006 0.040 ± 0.006 0.056 ± 0.008 0.053 ± 0.008 0.048 ± 0.006 0.057 ± 0.006 0.047 ± 0.006 0.036 ± 0.004
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4.2. Magnitudes and trends of UHII

4.2.1. Magnitudes of UHII
The majority of cities worldwide exhibit a UHII greater than zero,

with over 80% experiencing it during the day and over 90% at night
(Figs. 4–5). Cities with UHII lower than zero are primarily concentrated
in the Middle East and North Africa (Figs. 4–5). On average, for global
cities, the annual daytime surface UHII is around 1 ◦C (0.881–1.239 ◦C,
depending on the temperature data), which is significantly (p < 0.05, t-
test) higher than that during annual nighttime (0.708–0.832 ◦C)
(Table 2). While the annual nighttime canopy UHII exhibits a slightly
stronger magnitude than the annual daytime canopy UHII for their
global averages (0.473 ◦C versus 0.457 ◦C) (Table 2). In terms of sea-
sonal variation, the surface UHII generally shows stronger magnitude in
summer compared to winter for both daytime and nighttime global
averages (Fig. 6). In contrast, the canopy UHII follows a similar seasonal
pattern (summer > winter) for daytime global averages but an opposite
pattern for nighttime global averages (Fig. 6).

The magnitude of UHII displays noticeable variation across climatic
zones (Figs. 4–5), with changes in diurnal and seasonal patterns (Fig. 6).
Both surface and canopy UHIIs have their lowest average magnitudes in
the arid zone, while they are much stronger in tropical, temperate, and
cold zones during annual daytime (Fig. 4b). Conversely, during annual
nighttime, arid cities experience the highest average magnitudes of
surface and canopy UHIIs, followed by cities located in cold, temperate,
and tropical zones (Fig. 5b). This leads to variations in the diurnal
patterns of UHII among climate zones, with tropical cities exhibiting the
strongest positive day-night difference, while arid cities experience the
lowest negative day-night difference. In addition, discrepancies are
observed in the seasonal patterns of UHII across various climate zones
(Fig. 6). In the tropical zone, surface UHII exhibits opposing seasonal
patterns between daytime (summer>winter) and nighttime (summer<
winter) averages, while canopy UHII is higher in winter than summer for
both daytime and nighttime averages (Fig. 6). In the arid zone, daytime
UHIIs (surface and canopy) peak in spring and decline to their lowest
levels in autumn, while nighttime UHIIs reach their lowest values in
summer (Fig. 6). In the temperate and cold zones, both surface and
canopy UHIIs exhibit higher average magnitudes during summer
compared to winter, regardless of whether it is daytime or nighttime
(Fig. 6).

4.2.2. Trends of UHII
Over 60% of the global cities exhibit an increasing trend in UHII,

with approximately half of these cities displaying significant (p < 0.05,
MK test) growth trends (Figs. 7–8). On average, for global cities, the
annual daytime surface UHII trend exceeds 0.1 ◦C/decade
(0.106–0.163 ◦C/decade), approximately twice the corresponding
nighttime surface UHII trend (0.061–0.082 ◦C/decade) (Table 3). In
contrast, the trend of annual nighttime canopy UHII appears to be
slightly stronger than that during annual daytime (0.039 ◦C/decade
versus 0.032 ◦C/decade) (Table 3). Seasonally, surface and canopy
UHIIs consistently display stronger magnitudes in summer compared to
winter for both daytime and nighttime global averages (Fig. 9).

Spatially, cities with higher UHII trends are concentrated in the
tropical and temperate climate zones, while the trend is negative in
some cities located in the arid and cold climate zones (Figs. 7–8). On
average, annual daytime UHIIs (surface and canopy) have their lowest
and negative trends in the arid zone, minor but positive trends in the
cold zone, and much stronger trends in the tropical and temperate zones
(Fig. 7b). Conversely, during annual nighttime, the highest average
trends are observed in the arid or tropical zones, followed by cities
located in the temperate and cold zones (Fig. 8b). Similar to the
magnitude of UHII, the trend of UHII also exhibits different seasonal
patterns among climate zones (Fig. 9). In the tropical zone, the trends of
surface UHII are averagely higher in summer than in winter during
daytime, while the opposite is observed during nighttime (Fig. 9).

However, for averages of tropical cities, the trends of canopy UHII
appear consistent across seasons during daytime but show evident dif-
ferences between summer and winter at nighttime (Fig. 9). In the arid
zone, the average trends of surface UHII are much higher in winter than
summer, while a weak but opposite seasonal pattern is observed for the
average trends of daytime canopy UHII (Fig. 9). Furthermore, for cities
located in the temperate and cold zones, the average trends of UHII are
higher in summer compared to winter, which remains consistent for
both surface and canopy UHIIs (Fig. 9).

4.2.3. Associations between the magnitude and trend of UHII
We observe a significant (p < 0.05) positive correlation between the

magnitude and trend of UHII (Fig. 10), suggesting that cities with
stronger UHII have experienced faster growth in UHII over recent de-
cades. This positive correlation holds true for all UHII indicators, with
surface UHII showing a stronger association compared to canopy UHII
(Fig. 10). Besides, daytime UHII exhibits a closer association between
magnitude and trend compared to nighttime UHII (Fig. 10). Addition-
ally, the UHII and its trends share the same sign in most cities (about 2/
3) (Fig. 10), implying that cities with positive magnitude of UHII also
tend to exhibit positive trend of UHII, and vice versa.

4.3. Comparisons of UHII derived from various temperature data

4.3.1. Terra vs. Aqua
The Aqua overpass is closer to the daily peak of LST compared to

Terra. As a result, the UHII derived from the Aqua LST (IMyd, specifically
IMyd1 or IMyd2) demonstrates a higher daytime magnitude and a lower
nighttime magnitude compared to the surface UHII derived from the
Terra LST (IMod, specifically IMod1 or IMod2) (Figs. 4–5). Globally, the
averagemagnitude of IMyd is approximately 30% higher than IMod during
annual daytime and roughly 10% lower than IMod during annual
nighttime. Moreover, the trends of UHII derived from the Aqua LST tend
to surpass that of the Terra LST (Figs. 7–8). Globally, the annual daytime
and nighttime trends of IMyd are approximately 20% and 10% higher,
respectively, than the trends of IMod. Besides, both the magnitude and
trend of IMyd exhibit more pronounced variations than IMod in terms of
seasonal and diurnal differences (Figs. 6, 9). These results demonstrate
that the Aqua LST appears more advantageous in capturing the spatial
and temporal variations of UHII compared to the Terra LST.

4.3.2. Daily LST vs. 8-day composite LST
The comparison indicates a close resemblance between the UHII

derived from daily LST (IMod1 or IMyd1) and the UHII derived from 8-day
composite LST (IMod2 or IMyd2). While the global average magnitude of
IMod1 (IMyd1) is slightly higher than that of IMod2 (IMyd2), the difference
between them is not statistically significant (p > 0.05, t-test) (Figs. 4–5).
Likewise, the differences between the trend of IMod1 and the trend of
IMod2, as well as the trend of IMyd1 and the trend of IMyd2, are not found to
be significant (p > 0.05, t-test) (Figs. 7–8). The above results demon-
strate that studying UHII at annual- or seasonal-averaged scales yields
very similar outcomes whether using daily LST or 8-day composite LST.
Consequently, opting for 8-day composite LST appears to be a more
favorable choice for such UHI studies in terms of saving data processing
complexity.

4.3.3. Original LST vs. seamless LST
Spatiotemporally seamless LST can be achieved through the inter-

polation of the original clear-sky LST data with gaps. The resulting
seamless LST is categorized into two groups, namely the seamless clear-
sky LST and the seamless all-sky LST, based on whether the interpolation
method considers weather conditions. Comparison results reveal that
the UHII derived from the original LST is generally stronger than that
based on seamless clear-sky or all-sky LST. Globally, the average
magnitude of IMod2 (based on the original clear-sky LST) is higher than
ISMod2 (based on the seamless clear-sky LST) or IAMod2 (based on
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Fig. 4. Magnitudes of annual daytime UHII derived from different temperature data. (a1-a8) Spatial patterns across global cities. (b) Mean values (95% confidence
intervals) for different climate zones and for the globe. (c) Mutual comparisons through t-tests. The magnitude is calculated as the average of UHII during 2003–2020.
Please refer to Table 1 for specific details about each UHII indicator.
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Fig. 5. Same as Fig. 4, but for annual nighttime UHII.

Q. Yang et al.



Remote Sensing of Environment 312 (2024) 114343

11

seamless all-sky LST) by about 5% and 2% during annual daytime and
nighttime, respectively (Figs. 4–5). Meanwhile, the average trend of
IMod2 is higher than the trends of ISMod2 and IAMod2 by approximately
20% and 30%, respectively, during annual daytime, and by about 5%
during annual nighttime (Figs. 7–8). Additionally, it has been observed
that the discrepancies between the UHII derived from the original LST
and that derived from seamless LST are more pronounced during the
summertime (Figs. 6, 9). The above results suggest that the UHII esti-
mated based on the original LST with gaps may overestimate the surface
UHI effect. The use of seamless LST data, in contrast, can significantly
reduce the bias in the quantification of UHII caused by missing data.

4.3.4. LST vs. SAT
The magnitude and trend of surface UHII, derived from LST, are both

higher and exhibit greater spatial heterogeneity compared to canopy
UHII, derived from SAT. On global average, the magnitude of surface
UHII is about 2–3 times and 1.5–2 times higher than that of canopy UHII
during annual daytime and nighttime, respectively (Figs. 4–5). Mean-
while, the trend of surface UHII is about 3–5 times and 1.5–2 times
higher than that of canopy UHII during annual daytime and nighttime,
respectively (Figs. 7–8). Additionally, both the magnitude and trend of
surface UHII exhibit greater seasonal variations compared to canopy
UHII. Globally, the summer-winter difference in the magnitude and
trend of daytime surface UHII can reach more than 5 times the canopy
UHII (Figs. 6, 9). These results underscore the substantial discrepancies
between surface and canopy UHIIs, suggesting a potential over-
estimation of human perceived UHII when derived from remotely sensed
LST (Venter et al., 2021).

5. Discussion

5.1. Implications of this study in terms of methodology, dataset, and
analysis

(1) This study introduces a newmethod for more accurate estimation
of UHII.

Accurate quantification of UHII is a fundamental requirement for
studying the urban thermal environment (Li et al., 2019b; Liu et al.,
2023; Yang et al., 2023b). Several methods for UHII estimation have
been proposed in previous studies, which differ mainly in the selection
of the BRA. Traditional BRA selection methods can be broadly catego-
rized into distance-based and area-based methods (Li et al., 2019b; Yang
et al., 2023b). Area-based methods consider the size of the city itself in
the BRA selection, making them suitable for large-scale UHI studies that
encompass cities of different sizes (Lai et al., 2018). Moreover, it is
crucial to select a BRA that minimizes the influence of confounding
factors, including both natural influences (such as water bodies and
topographic relief) and anthropogenic disturbance (such as man-made
surfaces and human activities) (Li et al., 2022). These confounding
factors can introduce anomalies in the BRA temperature, potentially
reducing the full UHI signal. Most existing area-based methods have
effectively eliminated natural influences when extracting the BRA, but
have overlooked the anthropogenic disturbance (Peng et al., 2012; Yang
et al., 2017; Zhou et al., 2014). Recently, Li et al. (2022) proposed a
method for removing the anthropogenic disturbance by excluding areas
in the BRA with excessive NLI. Our study draws on this idea and further
incorporates the ISF to propose a new method for quantifying UHII,
termed the DEA method. This method can minimize the influence of
various confounding factors through a dynamic cyclic process. The
comparative results indicate that our proposed DEA method

Fig. 6. Seasonal variations of the magnitude of UHII derived from different temperature data. (a) Daytime results. (b) Nighttime results. The magnitude is calculated
as the average of UHII during 2003–2020. Colored points and error bars represent the averages and 95% confidence intervals, respectively. Please refer to Table 1 for
specific details about each UHII indicator.
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Fig. 7. Trends of annual daytime UHII derived from different temperature data. (a1-a8) Spatial patterns across global cities. (b) Mean values (95% confidence
intervals) for different climate zones and for the globe. (c) Mutual comparisons through t-tests. The trend denotes the change rate of UHII estimated based on year-by-
year values during 2003–2020. Please refer to Table 1 for specific details about each UHII indicator.
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Fig. 8. Same as Fig. 7, but for annual nighttime UHII trends.
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outperforms the previous equal-area methods in mitigating anthropo-
genic interference (Fig. 3). As a result, it more effectively emphasizes the
temperature difference between the urban area and its backgrounds
(Tables 2–3).

(2) This study pioneers the development of a global, long-term, and
multi-faceted UHII dataset.

In this study, we generate and provide a UHII dataset through the
proposed DEA method, incorporating temperature data from various
sources. Our UHII dataset has several advantages over previously pub-
lished datasets. (a) Our UHII dataset spans a diverse range of regions and
time periods, encompassing over 10,000 cities worldwide over a 20-year
period on a monthly basis. (b) Our UHII dataset contains multi-faceted
UHII indicators, including the regular clear-sky UHII based on the
original MODIS LST, the all-sky UHII based on the seamless MODIS LST,
and the canopy UHII derived from the gridded SAT. These advantages
enable our UHII dataset to support various application scenarios. First, it
facilitates the analysis of diurnal and seasonal patterns in the UHI effect.
Recent studies have shown that clear-sky surface UHII exhibits a variety
of complex diurnal and seasonal patterns influenced by factors such as
evapotranspiration and surface albedo (Liu et al., 2022; Yang and Zhao,
2023). Our UHII dataset enables a more comprehensive analysis of
diurnal and/or seasonal patterns of the UHI effect, encompassing
comparative analyses of various UHII indicators (clear-sky and all-sky),
assessment of the influence of city size and morphology, and examina-
tion of inter-annual trends. Second, our UHII dataset can be combined
with advanced time-series analysis methods to explore the long-term
dynamic characteristics of UHII. Currently, UHII and other urban
climate trends are often estimated using linear regression methods
(Chakraborty and Lee, 2019; Chakraborty and Qian, 2024; Du et al.,
2023; Li et al., 2023; Yao et al., 2019; Yao et al., 2017), which overlooks

the non-linear inter-annual variations of urban heat islands. Land
transformation during urban expansion and extreme climatic conditions
could lead to abrupt shifts in the UHI effect (Varentsova and Varentsov,
2021). Future studies could use time-series decomposition tools, such as
Breaks For Additive Season and Trend (BFAST), to identify breakpoints
in inter-annual UHII changes, thereby improving the detailed and ac-
curate detection of long-term UHII trends. Third, our UHII dataset can be
used to synergistically analyze factors influencing the UHI effect from
both temporal and spatial perspectives. Peng et al. (2012) developed a
multiple linear regression model of the clear-sky surface UHII using
multi-year average data from 419 global cities, examining the primary
drivers influencing the spatial distribution of the UHI effect. Yao et al.
(2019) examined the inter-annual trends in clear-sky surface UHII from
2003 to 2019 across 397 major global cities, emphasizing that increased
vegetation in rural areas contributes to intensifying the UHII effect.
These studies have analyzed the drivers of the UHI effect from either a
spatial or a temporal perspective. As the UHI is a spatiotemporal dy-
namic phenomenon, a simultaneous analysis combining both spatial and
temporal dimensions can provide a more comprehensive understanding.
Future research could employ dynamic space-time panel models
(Debarsy et al., 2012) that integrate our UHII data with possible influ-
encing factors (e.g., climate, landcover, and anthropogenic activities) to
better understand the complex causes of the UHI effect. In summary, our
UHII dataset represents a significant addition to the existing publicly
available datasets, allowing researchers in efficiently conducting various
UHI-related studies.

(3) This study systematically compares UHII estimates derived from
different temperature data.

Temperature data serve as the foundation for quantifying the UHI
phenomenon. Currently, most studies use the original MODIS LST data

Fig. 9. Seasonal variations of the trend of UHII derived from different temperature data. (a) Daytime results. (b) Nighttime results. The trend denotes the change rate
of UHII estimated based on year-by-year values during 2003–2020. Colored points and error bars represent the averages and 95% confidence intervals of UHII trends,
respectively. Please refer to Table 1 for specific details about each UHII indicator.
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for UHI analysis (Cao et al., 2016; Chakraborty and Lee, 2019; Li et al.,
2022; Manoli et al., 2019; Mentaschi et al., 2022; Peng et al., 2012; Yang
et al., 2017; Yang et al., 2019; Yang et al., 2023a; Yao et al., 2018a; Yao
et al., 2017; Zhou et al., 2014; Zhou et al., 2015), while there are also
several studies utilizing the gap-filled seamless MODIS LST or SAT for

this purpose (Du et al., 2021; Du et al., 2023; Li and Chen, 2023; Liao
et al., 2022; Yang and Zhao, 2023; Yang et al., 2023b; Yang et al., 2024).
Despite potential differences in estimated UHII between different data-
sets, systematic comparative analyses are still lacking. This study ad-
dresses this gap by conducting a comprehensive analysis using our

Fig. 10. Associations between the magnitude and trend of UHII. (a1-a8) Results for annual daytime UHII. (b1-b8) Results for annual nighttime UHII. The magnitude
is calculated as the average of UHII during 2003–2020, while the trend denotes the change rate of UHII estimated based on year-by-year values during 2003–2020.
Their relations are evaluated by Pearson correction coefficient (r) and significance (* p < 0.05). The numerical value within each quadrant denotes the percentage of
cities falling within that quadrant. Subplots (a1-a8 or b1-b8) represent the results of eight UHII indicators derived from different temperature data and are detailed
in Table 1.
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multi-faceted UHII dataset. We find notable differences in the estimated
UHII based on various temperature datasets. These differences arise not
only between data types (LST or SAT) but also due to acquisition times
(Terra or Aqua), weather conditions (clear-sky or all-sky), and pro-
cessing methodologies (with or without gap filling). The discrepancies
resulting from temperature data differences can influence several as-
pects of UHII, encompassing magnitudes, trends, and their spatial and
temporal patterns. Notably, clear-sky surface UHII is found to be slightly
(about a few to a dozen percent) higher than all-sky surface UHII and
largely (up to several times) higher than canopy UHII, based on their
global annual averages of magnitudes and trends (Tables 2–3). Addi-
tionally, the UHII estimated using the Terra LST tends to be lower than
that using the Aqua LST, and the UHII estimated using the original LST
data is typically higher than that estimated using the gap-filled seamless
LST data (Tables 2–3). These results contribute to an objective assess-
ment of the UHII effect, particularly indicating that the use of clear-sky
observations may overestimate the actual UHII (more related to air
temperature) perceived by people (Venter et al., 2021).

(4) This study investigates the magnitude and trend of UHII in a
synergistic manner.

The magnitude and trend of UHII are pivotal aspects in the urban
thermal environment research (Du et al., 2023; Manoli et al., 2019; Zhou
et al., 2018). However, few studies have simultaneously analyzed both
the magnitude and the trend of UHII on a global scale and explored their
relationships. We conduct a synergistic analysis of the magnitude and
trend of UHII using the dataset developed in this study. Our findings
suggest that urbanization can induce localized temperature changes,
manifesting as either localized temperature increases (heat islands) or
decreases (cold islands) (Figs. 4–5). While the cold island phenomenon
has been observed in several cities, predominantly in arid zones, the vast
majority of global cities continue to face a heat island (Figs. 4–5). More
importantly, our findings indicate a year-over-year increasing trend of
UHII in most cities over this period (Figs. 7–8). Additionally, the trend of
UHII is significantly and positively correlated with its magnitude
(Fig. 10), indicating cities with stronger UHII tend to experience faster
growth in UHII. This implies that cities with a more pronounced UHII
may encounter elevated localized thermal risks in the future, empha-
sizing the urgency of improving the urban thermal environment. Pre-
vious studies have demonstrated that increasing green coverage,
optimizing urban layout, and enhancing energy efficiency in buildings
can effectively mitigate urban heat (Gago et al., 2013; Wong et al., 2021;
Zhou et al., 2018). These measures not only contribute to alleviating the
current urban heat issue but also yield positive long-term impacts on the
city’s future climate and environment.

5.2. Comparisons with previous research

Differences in data, methods, and time periods among previous
studies have led to variations in the estimated UHII, even for the same
city (Table S1). Taking Riyadh as an example, our results indicate that
the annual daytime and nighttime canopy UHII are 0.15 ◦C and 1.86 ◦C,
respectively (Fig. S1). These values are roughly consistent with the
findings of Alghamdi andMoore (2015) but diverging greatly from those
reported by Haddad et al. (2024). Taking Paris as another example, our
results indicate that annual daytime surface UHII ranges from 1.58 ◦C to
2.63 ◦C, which is higher than the nighttime surface UHII, varying from
1.33 ◦C to 2.00 ◦C (Fig. S1). A similar day-night contrast was also
observed by Chakraborty et al. (2019), but not in other studies (Le Roy
et al., 2019; Sherafati et al., 2018). Obviously, the discrepancies be-
tween previous studies make it difficult to assess the reliability of our
results by comparing them to a few specific cities. Fortunately, there are
several global-scale studies analyzing the UHI effect, offering an op-
portunity to better validate the reliability of our results. The basic in-
formation and main quantitative results of the global UHI studies are

presented in Tables S2-S3. Below, we will outline the main findings of
these global studies and compare them with ours, focusing on the
magnitude and trend of UHII, respectively.

Existing global-scale studies of magnitudes have focused primarily
on surface UHII with a limited number of cities. For instance, Peng et al.
(2012) quantified the surface UHII in 419 major global cities using the
traditional equal-area (i.e. EA) method and discovered that the global
average magnitude of surface UHII was 1.5 ◦C and 1.1 ◦C during the
annual day and night, respectively. Li et al. (2022) estimated surface
UHII in 1112 global cities using the modified equal-area (i.e. MEA)
method and reported average magnitudes of 1.73 ◦C and 1.22 ◦C for
annual daytime and nighttime, respectively. Du et al. (2021) conducted
a simultaneous analysis of surface and canopy UHIIs in 336 global cities
by using a distance-based method. They found that the global average
magnitude of the annual daytime and nighttime surface UHIIs was
1.7 ◦C and 1.1 ◦C, respectively, surpassing the corresponding canopy
UHIIs of 0.6 ◦C and 0.8 ◦C. The above studies are concentrated in major
global cities, resulting in higher average magnitudes of UHII during both
the annual day and night compared to our results averaged over 10,000
global cities (~1.2 ◦C and ~ 0.7 ◦C for surface UHII, ~0.46 ◦C and ~
0.47 ◦C for canopy UHI, Table 2). This is primarily due to the general
positive correlation between UHII and city size (Zhou et al., 2017). Thus,
we categorized cities based on their sizes and calculated the average
magnitude of UHII for each group (Fig. S2). When restricting the cities to
those larger than 100 km2 (totaling 930 cities), we found that the
annually averaged magnitude of surface UHII was about 1.8 ◦C (day)
and 1.2 ◦C (night), and canopy UHII was about 0.65 ◦C (day) and 0.73 ◦C
(night) (Fig. S2). Obviously, these values are much closer to the annual
averages of the above studies focused major global cities. Additionally, a
global-scale analysis conducted by Chakraborty and Lee (2019) included
over 7000 cities. This study reported global mean surface UHII magni-
tudes of 1.0 ◦C for annual daytime and 0.5 ◦C for annual nighttime,
which are notably lower than those estimated by previous studies and
ours. This could be attributed to the potential underestimation of UHII
resulting from the simplified urban-extent (i.e. SUE) method they used,
which selects the BRA in very close proximity to the urban area and does
not account for reducing anthropogenic disturbance (Li et al., 2022;
Yang et al., 2023b).

In terms of the UHII trends, a recent study by Du et al. (2023)
analyzed the interannual trends of surface and canopy UHIIs over the
period 2003–2020 in 5643 global cities. They showed that the surface
UHII exhibited global average increasing trends of 0.19 ◦C/decade and
0.06 ◦C/decade during the annual day and night, respectively, while the
canopy UHII exhibited global average increasing trends of about
0.03 ◦C/decade during both the annual day and night. The annual
daytime and nighttime UHII trends estimated by Du et al. (2023) are
somewhat in line with that calculated in our study (0.163 ◦C/decade and
0.080 ◦C/decade for surface UHII, 0.032 ◦C/decade and 0.039 ◦C/
decade for canopy UHII, Table 3). Additionally, Yao et al. (2019)
analyzed the interannual trend of surface UHII during 2003–2017 in 397
cities worldwide and reported global average increasing trends of
0.29 ◦C/decade and 0.10 ◦C/decade for annual daytime and nighttime,
respectively. Given the general positive correlation between the UHII
trend and city size (Fig. S3), the surface UHII trends identified by Yao
et al. (2019) in 397 major global cities are notably higher than those
averaged over 10,000 global cities in our study. However, upon focusing
on the largest 397 cities within our dataset, we observed surface UHII
trends of 0.222 ◦C/decade (daytime) and 0.095 ◦C/decade (nighttime)
annually, which are only slightly lower than the results reported by Yao
et al. (2019). The discrepancies between our results and previous studies
are understandable due to differences in city samples and UHII estima-
tion methods. It should be noted that Chakraborty and Lee (2019) and Si
et al. (2022) also analyzed the surface UHII trends in global cities.
However, the UHII trends obtained by them are notably weaker than
those reported by other studies, possibly due to their use of the SUE
method or its updated version, which may systematically underestimate
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UHII (Li et al., 2022; Yang et al., 2023b).
In summary, while some disparities exist, our findings generally

align with those of existing studies regarding the magnitude and trend of
UHII. This, to some extent, supports the reliability of our datasets and
results. It’s crucial to note that previous studies have shown variations in
data, methodology, and results, and have focused on solely one or two
types of UHII (Tables S1-S2). This limits a comprehensive quantitative
understanding of the UHII effect at global scales. Our study addresses
this gap by examining eight different types of UHII in over 10,000 cities
worldwide, using consistent data and methods. As such, it serves as a
significant addition to the existing body of global UHII research.

5.3. Validations against other global UHII datasets

We compared our UHII dataset with two publicly available global
surface UHII datasets. The first one, referred to here as the Chakra-
borty’s dataset, covers 10,136 cities worldwide and was produced using
the SUE method proposed by Chakraborty and Lee (2019). Apart from
the city-level average surface UHII, the Chakraborty’s dataset also in-
cludes spatially continuous pixel-level surface UHII in urban areas. We
averaged these pixel-level surface UHII from the Chakraborty’s dataset
using our defined urban clusters, and then matched them to our surface
UHII dataset based on the unique identifiers of the urban clusters. This
approach overcomes the challenges of city-pair matching caused by
discrepancies in the definition of city boundaries between our dataset
and Chakraborty’s dataset . For a fair comparison, we excluded cities
without overlapping urban areas in both datasets and those with
anomalous UHII values due to limited availability of pixel-level data.
Ultimately, our comparative analyses included 7106 cities. Moreover,
this comparative analysis was confined to using just 2020 data, owing to
heavy workload constraints. As shown in Fig. 11, the surface UHII
derived from our dataset shows a remarkable degree of congruence with
that of Chakraborty’s dataset. Despite the variations observed for indi-
vidual cities, there is an evident linear correlation when considering the

overall relationship between the two datasets (Fig. 11a). Besides, both
datasets display a consistent distribution pattern of surface UHII across
different climate zones (Fig. 11b). It is worth noting that the surface
UHII estimated from the Chakraborty’s dataset manifests a marked
reduction compared to that estimated by our DEA method, while it ap-
proximates the surface UHII derived through the conventional EA
method (Fig. 11b). This is because the SUE method used to generate the
Chakraborty’s dataset does not account for anthropogenic disturbance
when estimating the UHII, resulting in a systematic bias towards lower
UHII estimates (Li et al., 2022; Yang et al., 2023b). In addition to
Chakraborty’s dataset, we also included the summer 2013 surface UHII
dataset published by CIESIN, which covers over 30,000 cities worldwide
(Center for International Earth Science Information Network - CIESIN -
Columbia University, 2016). However, due to variations in the location
of cities and the boundaries of urban areas, it is challenging to perform
city-by-city matching analyses. To overcome this, we selected the largest
10,196 cities (the same number as in our dataset) from the CIESIN
dataset, and then compared the global and climate-zone mean surface
UHIIs of these selected cities with those from our dataset. It is found that
the surface UHII in the CIESIN dataset has average magnitudes similar to
those obtained through the EA method, but noticeably lower than those
estimated by our DEA method (Fig. S4). This is because the CIESIN
dataset was generated using a traditional distance-based method, which
simply defined the BRA as a 10 km buffer around the urban area,
without considering the elimination of various confounding factors.
However, the distribution pattern of the surface UHII in the CIESIN
dataset is generally comparable to that of our dataset in terms of climate-
zone averages (Fig. S4).

There is currently no publicly available canopy UHII dataset, which
prevents us from performing a comparative analysis like the one as
described above for surface UHII. To assess the reliability of our esti-
mated canopy UHII, we have included another SAT data produced by
Zhang et al. (2023), known as the HiTIC data. This data provides daily
average SAT at 1 km resolution on a monthly basis, covering mainland

Fig. 11. Comparisons of surface UHII (IMxd2) between ours and that produced by Chakraborty and Lee (2019). (a1-b1) Annual daytime results during 2020. (a2-b2)
Annual nighttime results during 2020. Columns and error bars in subplots (b1-b2) represent the averages and 95% confidence intervals, respectively. IMxd2 refers to
the average of IMod2 and IMyd2.The comparisons only include cities with partial or complete overlap of urban areas between our data and the Chakraborty’s data,
amounting to 7106 cities globally. Please refer to the Methods section for details about the EA and DEA methods.

Q. Yang et al.



Remote Sensing of Environment 312 (2024) 114343

18

China with high accuracy (RMSE = 0.60 ◦C). We applied the DEA
method to the HiTIC SAT data and calculated the annual average canopy
UHII for 1241 cities in mainland China in 2020. Subsequently, we
compared these canopy UHII values with those from our own UHII
dataset through city-to-city analysis. It is important to note that the
HiTIC data only provides daily average SAT values for mainland China.
Thus, to facilitate a fair comparison, we averaged our daytime and
nighttime SATs, along with the corresponding canopy UHIIs, to repre-
sent their daily average values. The average SATs derived from the
HiTIC SAT data show substantial agreement with the results of our study
for both the urban area and the BRA (Fig. S5), confirming the reliability

of the SAT data used in this analysis. In addition, the canopy UHII
derived from the HiTIC SAT data shows a strong linear relationship and
similar average magnitudes compared to our UHII dataset (Fig. S5).

In summary, although there are some discrepancies, our UHII dataset
shows considerable overall consistency with existing datasets, partially
confirming its credibility. Furthermore, it is noteworthy that existing
data tend to underestimate the magnitude of UHII, highlighting the
critical need to control for confounding factors, especially anthropo-
genic disturbance, when quantifying the UHI effect. This fact also un-
derlines the advantages of our proposed DEA method.

Fig. 12. Sensitivity of the global average magnitude of UHII to the parameters in the DEA method. (a1-a2) ET denotes the upper threshold of the difference between
the elevation of pixels within the background reference area (BRA) and the median elevation of the urban area. (b1-b2) ISFT represents the upper threshold of
impervious surface fraction for pixels within the BRA. (c1-c2) NLIT represents the upper threshold of nighttime light intensity for pixels within the BRA. (d1-d2) RT is
the upper threshold for the buffer radius when searching for suitable pixels of the BRA. Those on the left (a1-d1) represent annual daytime results and those on the
right (a2-d2) represent annual nighttime results. Colored points and error bars represent the averages and 95% confidence intervals, respectively. The sensitivity
analysis is based on the estimated UHII using the DEA method for the year 2020. Please refer to Table 1 for detailed information regarding the eight UHII indicators.
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5.4. Sensitivity analysis of the parameters in the DEA method

The DEA method mainly involves four parameters, including ET,
ISFT, NLIT, and RT. ET denotes the upper threshold for the difference
between the elevation of pixels within the BRA and the median elevation
of the urban area, utilized to mitigate the impact of topographic relief on
UHII estimates. ISFT and NLIT represent the upper thresholds of ISF and
NLI for pixels within the BRA, respectively, both aimed at mitigating the
influence of anthropogenic disturbance on UHII estimates. RT is the
upper threshold for buffer radius, used to prevent the selection of BRA
pixels located too far from the urban area. Referring to previous studies,
we set ET, ISFT, NLIT, and RT to 50 m, 5%, 1 nW/cm2/sr, and 100 km,
respectively, as detailed in Section 3.1.2. To assess the sensitivity of UHII
estimates to these parameters, we varied the value of each parameter
and observed the resulting changes in UHII estimates over repeated
experiments. During the sensitivity test for one parameter, all other
parameters remained at their default values throughout the repeated
experiments. Additionally, due to workload constraints, the parameter
sensitivity analysis was limited to the year 2020. While there are year-
to-year variations in the estimated UHII, these inter-annual differences
are improbable to change the conclusions of parameter sensitivity
analysis.

It is observed that the estimated UHII demonstrates an overall
increasing trend with an increase in the ET (Fig. 12a & Fig. S6a).
Increasing ET can lead to a greater elevation difference between the BRA
and the urban area, especially notable in mountainous cities where
surrounding elevations often largely surpass those of the urban area
(Yang et al., 2023b). As temperature typically decreases with increasing
elevation, the higher elevations in the BRA caused by larger ET can lower
its average temperature. Consequently, this reduction in temperature in
the BRA can lead to an increase in the estimated UHII. Although alter-
ations in ET may affect cities with significant topographical variations
(Yang et al., 2023b), their influence on global and regional UHII aver-
ages is minimal (Fig. 12a & Fig. S6a). For instance, increasing ET from
50 m to 100 m results in less than a 2% change in the global mean UHII
(Fig. 12a).

It is found that the increase in ISFT or NLIT generally results in a
decrease in the estimated UHII (Fig. 12 & Fig. S6). Opting for larger
values of ISFT and NLIT weakens the constraints on ISF and NLI within
the BRA, potentially leading to an increase of these factors within the
selected BRA. The magnitudes of ISF and NLI to some extent reflect the
intensity of human activities, and they tend to be positively correlated
with temperature (Li et al., 2019c; Yang et al., 2021). Therefore, an
increase in ISF and/or NLI will result in a rise in the average temperature
of the BRA and consequently a decrease in the estimated UHII. On
average, globally, increasing ISFT from the commonly used 5% to 25%
results in a reduction in the estimated UHII of about 1–3% (Fig. 12b),
while increasing NLIT from 1 to 5 nW/cm2/sr leads to a reduction in the
estimated UHII of about 5–10% (Fig. 12c). Additionally, the estimated
UHII demonstrates relatively higher sensitivity to NLIT for tropical and
arid cities (Fig. S6c). Therefore, imposing strict limits on ISF and NLI
within the BRA is necessary to mitigate the impact of anthropogenic
disturbance on UHII estimates. This rationale also underlies the decision
to set ISFT and NLIT as relatively stricter thresholds in this study.

Compared to other parameters, changes in RT have a much smaller
overall effect on the estimated UHII (Fig. 12d & Fig. S6d). The RT de-
termines the maximum search extent when identifying the BRA. If the
buffer radius reaches the RT but does not capture enough valid BRA
pixels, the selected BRA will be smaller than the urban area. When RT is
set to 100 km, <1% of cities experience a deficiency in selected BRA
pixels. This proportion increases to 2% when RT is reduced to 50 km.
This suggests that over 98% of global cities are unaffected by changes in
RT. Consequently, the estimated UHII exhibits overall minimal sensi-
tivity to RT. Specifically, the transition from 50 km to 100 km in RT
results in less than a 1% change in both global and regional UHII av-
erages (Fig. 12d & Fig. S6d).

Overall, although parameter variations can lead to changes in the
estimated UHII, their effects are minimal and unlikely to alter the overall
spatiotemporal patterns. This, to some extent, supports the robustness of
our DEA method with respect to parameters. Although parameter
changes have little effect on the estimated UHII on a global or regional
scale, they may inevitably affect specific cities. Therefore, in this study,
uniform and fixed parameters are used for all cities globally, reducing
the uncertainty of varying parameters and improving comparability
between cities.

5.5. Uncertainties in our UHII dataset

Our UHII dataset cannot fully capture the spatial and temporal de-
tails of the UHI effect. Firstly, it provides an overview of the temperature
difference between urban areas and their BRAs, offering only a broad
estimate of the UHII effect without capturing finer spatial variations.
Complex urban landscapes and human activities can lead to heteroge-
neity in the spatial distribution of temperature within cities, creating
localized areas of high and low temperatures (Yang et al., 2022; Yang
et al., 2023c). Increasing green spaces and reducing industrial land use
during urban renewal can lower localized temperature, helping to
mitigate the UHI effect (Wang and Shu, 2020). Identifying small “cold
islands” created by localized low-temperature areas in cities and un-
derstanding their spatial distribution and causes are crucial for
improving the urban thermal environment (Kumar et al., 2024). Our
UHII dataset lacks the ability to capture localized temperature changes,
potentially overlooking the local benefits of mitigation measures during
urban renewal. Second, our UHII dataset offers monthly data but lacks
sufficient information on finer time scales, such as daily or weather-
specific variations in UHII (Zhang et al., 2024). This limitation makes
it challenging for our UHII dataset to capture dynamic changes in the
urban thermal environment during short-term climate extremes, e.g. the
interaction between the UHI effect and heat waves (Tian et al., 2023;
Xue et al., 2023). Overall, our UHII dataset is well-suited for large-scale
and long-term analyses of the UHI effect, but may introduce un-
certainties when applied to localized or detailed analyses.

Our canopy UHII estimated by gridded SAT shows inconsistencies
with that derived from in-situ observations. Most previous in-situ ana-
lyses have reported that the canopy UHII is generally higher at night
than during the day (Alghamdi and Moore, 2015; Du et al., 2021; Le Roy
et al., 2019; Venter et al., 2021; Wang et al., 2023). However, this
diurnal pattern is not observed in our canopy UHII data for about half of
the global cities. There may be two possible reasons for this discrepancy:
(1) Differences between in-situ and gridded SATs. While global valida-
tion results indicate overall strong agreement between gridded SAT and
in-situ observations (Yao et al., 2023), the estimated gridded SAT based
on machine learning methods may be constrained by the input satellite-
derived LST. This could potentially introduce a systematic bias in the
estimated gridded SAT, influencing the resulting canopy UHII to exhibit
patterns akin to surface UHII (e.g., higher values during daytime
compared to nighttime). (2) Differences in the way UHII is calculated.
Using spatially continuous gridded SAT data involves averaging SAT
values across all pixels within urban areas or BRAs. In contrast, spatially
dispersed in-situ observations calculate the mean SAT by averaging
observations from all sites within these areas. This site sampling
approach may not accurately reflect the overall average SAT of the
urban area or the BRA, potentially introducing bias in the UHII calcu-
lated based on in-situ observations compared to gridded estimates.

To verify the above conjecture, we selected 30 Chinese cities,
ensuring each city has at least one in-situ meteorological station within
both its urban area and BRA (Fig. S7). The in-situ meteorological data
were obtained from the China Meteorological Data Service Centre,
which provides daily maximum (daytime) and minimum (nighttime)
SATs for the year 2010. We calculated the annual average SAT of all in-
situ observations within the urban area and the BRA separately (denoted
as in-situ SAT), and then determined the canopy UHII (denoted as in-situ
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ISAT) for each city. Meanwhile, we extracted the gridded SATs for the
pixels corresponding to in-situ stations and calculated the annual
average values of these pixels within the urban area and the BRA
separately (denoted as pixel-level SAT). We then calculated the differ-
ence in pixel-level SAT between the urban area and the BRA to obtain
the canopy UHII (denoted as pixel-level ISAT) for each city. The differ-
ence between pixel-level ISAT and in-situ ISAT reflects the impact of
variations in SAT data on the estimated canopy UHII. Besides, we
calculated the average gridded SAT of all available pixels within the
urban area and the BRA separately (denoted as city-level SAT), and the
obtained the canopy UHII (denoted as city-level ISAT, i.e., the ISAT ob-
tained by our DEA method). The difference between city-level ISAT and
pixel-level ISAT reflects the influence of UHII calculation ways on the
estimated canopy UHII.

Our comparisons indicate that the pixel-level SAT is generally lower
than the in-situ SAT, with the difference being more pronounced in the
BRA than in the urban area (Fig. 13 and Fig. S8). This urban-rural
asymmetry in the difference between pixel-level and in-situ SATs re-
sults in a higher pixel-level ISAT compared to the in-situ ISAT (Fig. 13 and
Fig. S8). More importantly, the urban-rural asymmetry is more pro-
nounced during the day, resulting in a greater overestimation of pixel-
level ISAT compared to in-situ ISAT during daytime (Fig. 13 and
Fig. S8). On average across the 30 Chinese cities, the annual daytime in-
situ ISAT is only 0.065 ± 0.130 ◦C, much smaller than the pixel-level ISAT
of 0.635 ± 0.143 ◦C (Fig. S8). Meanwhile, the annual nighttime in-situ
ISAT reaches 0.470 ± 0.218 ◦C, slightly smaller than the pixel-level
ISAT of 0.600 ± 0.135 ◦C (Fig. S8). Consequently, the pixel-level ISAT
does not exhibit the distinct nighttime-over-daytime characteristics
observed in the in-situ ISAT. Additionally, our comparisons indicate that,
despite variations in some cities, the overall difference between city-
level and pixel-level SATs does not show significant urban-rural asym-
metry during both daytime and nighttime (Fig. 13 and Fig. S8).

Consequently, the discrepancy between city-level ISAT and pixel-level
ISAT is relatively small and shows minimal day-night variations
(Fig. 13). On average for the 30 Chinese cities, the annual daytime city-
level ISAT is 0.610 ± 0.088 ◦C and the annual nighttime city-level ISAT is
0.590 ± 0.099 ◦C, both of which are very close to the pixel-level ISAT
(Fig. S8). In general, the estimated canopy UHII can be influenced by
both the data types (in-situ or gridded SAT) and the UHII calculation
ways (pixel-level or city-level). However, the difference in SAT data
seems to primarily account for the discrepancies between canopy UHIIs
estimated by in-situ observations and gridded data. Compared to ISAT
estimated by in-situ observations, ISAT derived from gridded data tends
to overestimate daytime values, causing daytime ISAT to approach or
even exceed nighttime ISAT.

To summarize, our UHII dataset presents some uncertainties due to
limitations in the resolution and accuracy of available global tempera-
ture data. These uncertainties may limit the applicability of our UHII
dataset, making it challenging to characterize detailed spatiotemporal
patterns of UHII within a city and potentially leading to an over-
estimation of daytime canopy UHII in some cities. Future work should
focus on urban areas and their surroundings, developing large-scale,
multi-source, high-resolution temperature products capable of accu-
rately depicting complex urban-rural scenarios for global cities. This
effort is crucial for enhancing the reliability of UHII quantitative results
and gaining detailed knowledge of the spatiotemporal patterns in the
urban thermal environment.

5.6. Limitations and future work

First, we utilize the MODIS landcover product to delineate the urban
extent. Different globally available urban extent products show differ-
ences in the delineation of urban areas, and the choice of different
products also affects the measured UHII (Yang et al., 2023a). However, a

Fig. 13. Differences in surface air temperature (SAT) and canopy UHII (ISAT) between those derived from the in-situ observations and those derived from gridded
data across 30 Chinese cities. The in-situ SAT is derived from the China Meteorological Data Centre, and the pixel-level or city-level SAT is extracted from the gridded
data provided by Yao et al. (2023). The pixel-level SAT refers to the average gridded SAT of pixels at the locations of in-situ meteorological stations within the urban
area or the background reference area (BRA). The city-level SAT refers to the average gridded SAT for all available pixels within the urban area or the BRA. The
central lines in the boxes are the median values. The color-filled dots in the boxes and the error bars around them show the mean and 95% confidence intervals. The
locations of the 30 Chinese cities are presented in Fig. S7 in the supplementary materials.

Q. Yang et al.



Remote Sensing of Environment 312 (2024) 114343

21

lack of consensus on the classification of urban areas complicates the
selection of an optimal urban extent product (Li et al., 2020; Tau-
benböck et al., 2019; Zhao et al., 2022). Moreover, the MODIS LST
products, and thus all the datasets derived from these products, use a
classification-based emissivity approach that is constrained by this
MODIS land cover (Snyder et al., 1998). Therefore, to maintain internal
consistency between LST and land cover, we use only the MODIS
product for delineating urban extents in this study.

Second, this study proposes a new DEA method and demonstrates its
effectiveness in estimating UHII by comparing it with existing area-
based methods. However, various recent methods for quantifying UHII
have been proposed, such as the SUE method (Chakraborty and Lee,
2019), the ISF-based method (Li et al., 2018b), and the adaptive syn-
chronous extraction (ASE) method (Yang et al., 2023b). The advantages,
disadvantages, and applicable scenarios of these methods have been
extensively discussed in previous studies (Yang et al., 2023a; Yang et al.,
2023b). For instance, the ISF-based method gets rid of the delineation of
urban and rural areas, but the assumed linear relationship between ISF
and LST by this method is not universally satisfied for all cities (Yang
et al., 2023a). The SUE method is favored for its simplicity, but it is
constrained by systematically lower UHII due to the BRA often being too
close to the urban area (Li et al., 2022; Yang et al., 2023b). Moreover,
the ASEmethod demonstrates the ability to select the most optimal BRA,
but its complexity often requires considerable computing power for
large-scale applications (Yang et al., 2023b). As these methods have
been extensively compared in previous studies, they are not considered
again in this analysis. Instead, the focus of this study is on comparing
area-based methods that are more directly relevant to our proposed DEA
method and then developing the global UHII dataset.

Third, this study integrates temperature data from eight different
sources to create a multi-faceted UHII dataset. Although we also have
calculated canopy UHII from one gridded estimate of SAT, other thermal
metrics (e.g., heat index, humidex, wet-bulb temperature, dew point
temperature), more pertinent to human perception (Chakraborty et al.,
2022; Wang et al., 2023), are still absent. We intend to expand our UHII
dataset in the future, particularly as global high-resolution data with
additional thermal metrics become available.

6. Conclusion

Publicly released UHII datasets are relatively few and have the
following limitations: (1) a focus on clear-sky surface UHII, lack of
datasets for all-sky surface UHII and canopy UHII; (2) the estimation
methods used often neglect the impact of anthropogenic interference,
resulting in uncertainties in the estimated UHII. To address the above
issues, this study proposes a new DEA method for UHII estimation. We
apply this method to eight different gridded temperature datasets to
create a long-term, multi-faceted UHII dataset covering over 10,000
cities worldwide. Based on this dataset, we conduct a comprehensive
analysis of the magnitude and trend of UHII obtained by different
methods and temperature datasets.

The DEA method proposed in this study effectively mitigates the
influence of various confounding factors, including water bodies,
topography relief, and anthropogenic disturbance, on the selection of
the BRA. More importantly, the DEA method ensures that the size of
selected BRA is sufficient (equal to the urban area) and can reflect the
background climate (not too far away from the urban area). Quantitative
comparison results indicate that, in contrast to existing area-based
methods, the DEA method is more adept at mitigating the influence of
anthropogenic disturbance. Besides, the UHII estimated by the DEA
method exhibits higher magnitude and trend, indicating its efficacy in
emphasizing the impact of urbanization on local temperature.

Over 80% of global cities experience UHII greater than zero, and over
60% of global cities witness an upward interannual trend in UHII over
the past two decades. The global average magnitudes of surface UHII are
approximately 1 ◦C (0.881–1.239 ◦C, depending on the temperature

data source) and 0.8 ◦C (0.708–0.832 ◦C) during the day and night,
respectively, throughout the year, which are significantly higher than
the magnitudes of canopy UHII for both the annual daytime average
(0.457 ◦C) and the annual nighttime average (0.473 ◦C). The global
average trends of surface UHII exceed 0.1 ◦C/decade (0.106–0.163 ◦C/
decade) and 0.06 ◦C/decade (0.061–0.082 ◦C/decade) during the day
and night, respectively, throughout the year, which are much stronger
than the trends of canopy UHII for both the annual daytime average
(0.032 ◦C/decade) and the annual nighttime average (0.039 ◦C/decade).
Notably, there exists a positive correlation between the magnitude and
trend of UHII, indicating that cities with stronger UHII tend to experi-
ence faster growth in UHII. This reinforcing cycle between UHII and its
trend emphasizes the urgent need for immediate action in managing
urban thermal environments.

Differences in UHII based on various temperature datasets are
notable. These differences arise not only between data types (LST or
SAT) but also due to acquisition times (Terra or Aqua), weather condi-
tions (clear-sky or all-sky), and processing methodologies (with or
without gap filling). The findings reveal that clear-sky surface UHII
tends to be marginally higher (about a few to a dozen percent) than all-
sky surface UHII, and substantially higher (up to several times) than
canopy UHII, both in magnitudes and trends. Additionally, the UHII
estimated from the Terra LST tends to be lower compared to estimates
from the Aqua LST, while UHII calculated from the original LST data
generally exceeds that derived from the gap-filled seamless LST data.
Therefore, carefully choosing appropriate temperature data and
combining various UHII indicators are crucial for gaining a thorough
and accurate understanding of the urban thermal environment.

In summary, the main contributions of this study can be summarized
as follows. (1) We introduce a new DEA method that demonstrates su-
perior effectiveness in mitigating the influence of confounding factors
on UHII estimates. (2) We develop a global, long-term, multi-faceted
UHII dataset, which addresses the gap in publicly available all-sky sur-
face or canopy UHII datasets. (3) We identify positive correlations be-
tween the magnitude and trend of UHII, and provide a systematic
comparison results of UHII estimates derived from different temperature
data sources. Overall, our proposed DEA method and UHII dataset, as
well as the analysis results, are expected to draw the attention of the
research community towards advancing research on the urban thermal
environment.

CRediT authorship contribution statement

Qiquan Yang: Writing – review & editing, Writing – original draft,
Visualization, Software, Resources, Methodology, Investigation, Fund-
ing acquisition, Conceptualization. Yi Xu: Writing – review & editing,
Supervision, Funding acquisition. TC Chakraborty:Writing – review &
editing, Formal analysis.Meng Du: Visualization, Formal analysis, Data
curation. Ting Hu: Writing – review & editing, Software. Yue Liu:
Writing – review& editing, Resources, Investigation. Rui Yao:Writing –
review & editing, Resources. Jie Yang: Writing – review & editing,
Resources. Shurui Chen: Writing – review & editing, Visualization.
Changjiang Xiao: Writing – review & editing, Visualization. Renrui
Liu:Writing – review & editing, Visualization.Mingjie Zhang:Writing
– review & editing, Visualization, Resources. Rui Chen: Writing – re-
view & editing.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

The global NPP-VIIRS-like nighttime light intensity data is available

Q. Yang et al.



Remote Sensing of Environment 312 (2024) 114343

22
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earthengine.google.com/). All data are available upon reasonable
request from the authors.
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2018. Present and future Köppen-Geiger climate classification maps at 1-km
resolution. Sci. Data 5, 1–12.

Cai, Z., La Sorte, F.A., Chen, Y., Wu, J., 2023. The surface urban heat island effect
decreases bird diversity in Chinese cities. Sci. Total Environ. 902, 166200.

Cao, C., Lee, X., Liu, S., Schultz, N., Xiao, W., Zhang, M., Zhao, L., 2016. Urban heat
islands in China enhanced by haze pollution. Nat. Commun. 7, 12509.

Center for International Earth Science Information Network - CIESIN - Columbia
University, 2016. Global Urban Heat Island (UHI) Data Set, 2013. Palisades, New
York. NASA Socioeconomic Data and Applications Center (SEDAC).

Chakraborty, T., Lee, X., 2019. A simplified urban-extent algorithm to characterize
surface urban heat islands on a global scale and examine vegetation control on their
spatiotemporal variability. Int. J. Appl. Earth Obs. Geoinf. 74, 269–280.

Chakraborty, T.C., Qian, Y., 2024. Urbanization exacerbates continental-to regional-scale
warming. One Earth 2590–3330.

Chakraborty, T., Hsu, A., Manya, D., Sheriff, G., 2019. Disproportionately higher
exposure to urban heat in lower-income neighborhoods: a multi-city perspective.
Environ. Res. Lett. 14, 105003.

Chakraborty, T., Hsu, A., Manya, D., Sheriff, G., 2020. A spatially explicit surface urban
heat island database for the United States: characterization, uncertainties, and
possible applications. ISPRS J. Photogramm. Remote Sens. 168, 74–88.

Chakraborty, T., Lee, X., Ermida, S., Zhan, W., 2021a. On the land emissivity assumption
and landsat-derived surface urban heat islands: a global analysis. Remote Sens.
Environ. 265, 112682.

Chakraborty, T., Sarangi, C., Lee, X., 2021b. Reduction in human activity can enhance
the urban heat island: insights from the COVID-19 lockdown. Environ. Res. Lett. 16,
054060.

Chakraborty, T., Venter, Z., Qian, Y., Lee, X., 2022. Lower urban humidity moderates
outdoor heat stress. AGU Adv. 3, e2022AV000729.

Chakraborty, T., Newman, A.J., Qian, Y., Hsu, A., Sheriff, G., 2023. Residential
segregation and outdoor urban moist heat stress disparities in the United States. One
Earth 6, 738–750.

Chen, Z., Yu, B., Yang, C., Zhou, Y., Yao, S., Qian, X., Wang, C., Wu, B., Wu, J., 2021. An
extended time series (2000–2018) of global NPP-VIIRS-like nighttime light data from
a cross-sensor calibration. Earth Syst. Sci. Data 13, 889–906.

Chen, S., Yang, Y., Deng, F., Zhang, Y., Liu, D., Liu, C., Gao, Z., 2022. A high-resolution
monitoring approach of canopy urban heat island using a random forest model and
multi-platform observations. Atmos. Meas. Tech. 15, 735–756.

Chen, Q., Liu, R., Cheng, Q., Chen, Y., Cao, S., Du, M., Li, K., 2023. Evaluating the impact
of sky view factor and building shadow ratio on air temperature in different
residential and commercial building scenarios: a case study of Beijing, China. Urban
Clim. 49, 101509.

Clinton, N., Gong, P., 2013. MODIS detected surface urban heat islands and sinks: global
locations and controls. Remote Sens. Environ. 134, 294–304.

Debarsy, N., Ertur, C., LeSage, J.P., 2012. Interpreting dynamic space–time panel data
models. Stat. Methodol. 9, 158–171.

Devereux, D., Caccetta, P., 2019. Land Surface Temperature and Urban Heat Island
Estimates for Australian Capital Cities, Summer 2018-19. Australia. Commonwealth
Scientific and Industrial Research Organisation (CSIRO).

Du, H., Wang, D., Wang, Y., Zhao, X., Qin, F., Jiang, H., Cai, Y., 2016. Influences of land
cover types, meteorological conditions, anthropogenic heat and urban area on
surface urban heat island in the Yangtze River Delta urban agglomeration. Sci. Total
Environ. 571, 461–470.

Du, H., Zhan, W., Liu, Z., Li, J., Li, L., Lai, J., Miao, S., Huang, F., Wang, C., Wang, C.,
2021. Simultaneous investigation of surface and canopy urban heat islands over
global cities. ISPRS J. Photogramm. Remote Sens. 181, 67–83.

Du, H., Zhan, W., Voogt, J., Bechtel, B., Chakraborty, T.C., Liu, Z., Hu, L., Wang, Z., Li, J.,
Fu, P., 2023. Contrasting trends and drivers of global surface and canopy urban heat
islands. Geophys. Res. Lett. 50, e2023GL104661.

Gago, E.J., Roldan, J., Pacheco-Torres, R., Ordóñez, J., 2013. The city and urban heat
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