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ABSTRACT

The surface urban heat island (SUHI) effect, assessed through remotely sensed land surface temperature (LST),
remains a focal point in urban climate research. Conventional indicators like SUHI intensity (SUHII) and foot-
print (SUHIF) capture peak values and spatial extent but fail to account for the cumulative thermal load—a
critical dimension reflecting the total heat exposure imposed by spatially continuous warming, which directly
limits a holistic assessment of ecological and societal impacts of the SUHI effect. Therefore, this study introduces
an indicator termed SUHI capacity (SUHIC), designed to quantify the aggregated SUHI effect by integrating the
magnitude of the warming signal across all affected areas, thereby enabling a more comprehensive evaluation of
urban thermal environments. Furthermore, a direction-enhanced adaptive synchronous extraction (DEASE)
method is proposed for the quantification of SUHIC. This method can dynamically identify the optimal back-
ground reference area based on the urban-rural LST gradients in various directions within the city, without
relying on predefined mathematical models as previously. The results from 102 European cities first confirm that
the directional variations in urban-rural LST gradients, and the DEASE method can effectively capture these
distinctions for the simultaneous estimation of SUHII, SUHIF, and SUHIC. Secondly, the spatial patterns of ab-
solute SUHIC values show strong associations with those of SUHIF (R2 > 0.86), while its relative values
(normalized by the area of urban) align more closely with SUHII (R2 > 0.64). More importantly, SUHIC can serve
as a crucial reference for assessing the urban thermal signal when SUHII and SUHIF diverge. The proposed
method and framework contribute to standardizing the quantification of the SUHI effect.

1. Introduction

quantifying this effect and its potential impacts (Rajagopal et al., 2023;
Wong et al., 2021). Remotely sensed land surface temperature (LST) has

The process of urbanization is often accompanied by alterations in
land cover and the population concentration, resulting in localized
temperature increases and the formation of the urban heat island (UHI)
effect (Li et al., 2023; Liu et al., 2022; Rizwan et al., 2008; Zhou et al.,
2022). The UHI effect represents the most well-known local-scale impact
of urbanization on climate (Wang et al., 2025). Consequently, there is a
growing emphasis on conducting dedicated research aimed at better
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become a critical tool in quantifying the surface UHI (SUHI) effect
(Voogt and Oke, 2003; Weng, 2009; Zhou et al., 2018). Its advantages,
such as large-scale coverage, continuous monitoring, and cost-
effectiveness, make it logistically easier for intra-urban and inter-
urban assessments of the SUHI effect over traditional in-situ measure-
ments (Chakraborty et al., 2020; Chang et al., 2023). Existing studies
have extensively explored the SUHI effect, addressing various aspects
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including quantitative methods, spatiotemporal variations, driving fac-
tors, and potential impacts (Chang et al., 2025; Guo et al., 2025; Li et al.,
2018; Si et al., 2022; Yao et al., 2018; Zhou et al., 2018).

The SUHI intensity (SUHII) and the SUHI footprint (SUHIF) are two
widely recognized and commonly used quantitative indicators for
evaluating the city-scale heat island effects (Yang et al., 2023b; Zhou
et al., 2018). The SUHII indicator is typically calculated as the average
LST difference between the urban area and its background reference
area (BRA), offering insights into the magnitude of the SUHI effect
within the urban area (Li et al., 2022; Peng et al., 2012; Zhou et al.,
2014). On the other hand, the SUHIF indicator characterizes the spatial
extent or coverage of the SUHI effect, representing the maximum reach
or area influenced by the effect (Yang et al., 2023a; Yang et al., 2019;
Zhou et al., 2015). These two metrics together form the basis for un-
derstanding the spatial characteristics of the urban thermal environment
and have been widely applied in the monitoring, assessment, and
comparative studies of the SUHI effect (Yang et al., 2023b; Zhou et al.,
2015).

However, the SUHII and SUHIF indicators exhibit some limitations.
First, they only capture the peak value (one-dimensional) and spatial
extent (two-dimensional) characteristics of the thermal field, failing to
effectively reflect the continuous three-dimensional variation of the
SUHI effect along the urban-rural gradient (Yao et al., 2022). Second,
since the SUHII and SUHIF indicators possess distinct physical meanings
and numerical manifestations, there is no inherent strong correlation
between them (Yang et al., 2023b). This implies that a city with a higher
SUHII does not necessarily have a larger SUHIF, and vice versa (Yang
et al., 2023b; Yao et al., 2022). This decoupling, or even contradiction,
between the two indicators makes it difficult to objectively compare the
severity of the SUHI effect experienced by different cities (Yang et al.,
2023Db). For example, when comparing a city with high SUHII but small
SUHIF with a city with low SUHII but large SUHIF, relying solely on
either SUHII or SUHIF can lead to partial or even opposing conclusions
(Fig. 1). This evaluation dilemma remains a significant practical gap in
existing SUHI evaluation frameworks, directly hindering the scientific
and precise allocation of cooling resources to cities most severely
affected by the heat island effect (Fig. 1). Therefore, there is an urgent
need to develop a composite indicator capable of integrating informa-
tion from both SUHII and SUHIF, aiming to achieve a more
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comprehensive and systematic assessment of the SUHI effect and pro-
vide critical support for scientific decision-making.

Based on the Gaussian fitting technique, Yao et al. (2022) introduced
an indicator, termed SUHI capacity (SUHIC), to capture the spatial
continuity and cumulative nature of the SUHI effect. The SUHIC indi-
cator quantifies the total thermal load in three-dimensional space by
integrating the heat island intensity (i.e. SUHII) across all affected areas
(i.e. SUHIF) (Fig. 1). This integration makes SUHIC a unified benchmark
for inter-city comparison of SUHI severity. Hence, a key direct appli-
cation of this indicator is to identify the critical cities that require
prioritized allocation of cooling resources and policy interventions.
Furthermore, the SUHIC-derived thermal load offers a foundation for
indirect applications, including the estimation of urban cooling energy
demand and the assessment of population heat exposure risks. Conse-
quently, SUHIC represents not only a theoretical advancement but also a
vital tool bridging scientific research with urban planning and climate
adaptation practice.

However, the current estimation of SUHIC typically relies on the
Gaussian surface fitting method (Yao et al., 2022), a predefined math-
ematical model that has notable limitations in practical applications.
First, the Gaussian model assumes a sing-peak distribution of input LST
data, which limits its applicability in some polycentric cities where LST
values typically exhibit a multi-peak distribution pattern (Yang et al.,
2019; Yang et al., 2023b). Second, the Gaussian model presupposes that
LST follows a radially symmetric decay along the urban-rural gradient
(Anniballe et al., 2014; Yang et al., 2019; Yao et al., 2022). In fact, due to
spatially heterogeneous land cover and human activities, urban-rural
LST patterns often demonstrate strong directional variations (Yang
et al., 2023a). Incorporating directional variability is scientifically
critical when quantifying the SUHI indicators.

In summary, although existing research has made considerable ef-
forts and achievements in quantifying the SUHI effect, two major
research gaps remain:

(1) SUHII and SUHIF capture only peak intensity and spatial extent,
but fail to represent cumulative thermal load, limiting compre-
hensive assessment and objective cross-city comparisons.

(2) Existing Gaussian models assume single-peaked, symmetric LST
distributions, which cannot adequately describe multi-peaked or
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Fig. 1. The conceptual diagram illustrating the definition and potential application of the SUHIC indicator. SUHII, SUHIF, and SUHIC denote the intensity, footprint,

and capacity of the SUHI effect, respectively.
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asymmetric urban thermal patterns, thereby limiting their
broader applicability.

To address these issues, this study innovatively proposes a direction-
enhanced adaptive synchronous extraction (DEASE) method, which can
synchronously extract all three SUHI indicators (SUHII, SUHIF, and
SUHIC) in a more flexible manner. This new method builds upon our
previously proposed ASE method, which involves identifying the
turning point (TP) along the urban-rural gradient where LST shifts from
“rapid change” to “relative stability”, thereby adaptively selecting the
optimal BRA for SUHI indicator estimation (Yang et al., 2023b). The
DEASE method enhances ASE by critically incorporating directional
variations in LST along urban-rural gradients. Specifically, it detects TPs
along multiple radial directions to derive directional SUHIF (influenced
extent per direction) and directional SUHII (LST difference per direc-
tion), and then computes SUHIC by integrating the product of direc-
tional SUHII and SUHIF across all directions. In this way, without
relying on restrictive assumptions about LST distributions (e.g.,
Gaussian models), the DEASE method facilitates the consistent and
synchronous extraction of all three SUHI indicators.

Overall, the proposed DEASE method offers a unified framework for
defining and estimating multiple SUHI indicators without relying on
predefined mathematical models. By incorporating directional urban-
rural LST variations, the DEASE method can be effectively applied to
cities with complex urban thermal environments. Using this method, we
quantified SUHIIL, SUHIF, and SUHIC across 102 European cities. The
results demonstrate its strong universality and robustness, and under-
score the critical importance of the SUHIC indicator for large-scale SUHI
assessments and cross-city comparisons.

2. Data and study area
2.1. Data

As shown in Table 1, this study used five main datasets covering the
following attributes: urban boundaries, surface temperature, water,
elevation and climate zones. A detailed description of these datasets is
provided below.

Considering the influence of missing data on the quantitative ana-
lyses of the SUHI effect (Lai et al., 2018; Li et al., 2022; Yang et al.,
2023b), this study employed the seamless LST data produced by Zhang
et al. (2022). This dataset was generated by filling the original LST ob-

servations obtained by the Moderate Resolution Imaging
Table 1
Descriptions of data used in this study.

Type Resolution  Period Usage Reference

Seamless land 1 km 2014-2016  Estimation of SUHI Zhang
surface indicators et al.
temperature (2022)
(LST)

Global urban 30 m 2015 Extraction of urban Li et al.
boundary boundaries of (2020)
(GUB) selected cities and

removal of the
influence of
surrounding urban
areas

Global surface 30 m 2015 Removal of the Pekel et al.
water (GSW) influence of water (2016)

bodies

Digital 1 km \ Removal of the Van and
elevation influence of Jakob
model (DEM) topographic reliefs (2001)

Koppen-Geiger 1 km \ Determination of Beck et al.
climate the climate zone of (2018)
classification cities
map
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Spectroradiometer (MODIS) aboard the Aqua satellite. The validation
results indicate that the seamless LST data exhibit good accuracy, with a
global average root mean squared error below than 2 degrees Celsius
(°C) (Zhang et al., 2022). This dataset has been widely utilized both
globally and regionally because of its robust performance (Mashhoodi
and Unceta, 2024; Yang and Zhao, 2023; Yang et al., 2023b; Yuan et al.,
2023). In line with the original MODIS LST data, the seamless LST data
have daily observations for both daytime (~ 13:30) and nighttime (~
1:30), with a spatial resolution of 1 km. To facilitate analysis, the daily
LST observations were seasonally and annually averaged, with June-
—August designated as the summer season and December—February as
the winter season.

The global urban boundary (GUB) data produced by Li et al. (2020)
was used for delineating urban areas. The GUB data provide global
urban polygons based on a 30-m resolution image and has been widely
used in SUHI studies (Deng et al., 2024; Li et al., 2023; Liu et al., 2022;
Yang et al., 2023b). The surface elevation information was sourced from
the 1-km digital elevation model (DEM) produced by the Shuttle Radar
Topography Mission (SRTM). This dataset was employed to mitigate the
impact of topographic relief on the quantification of SUHI effect. The
distribution of surface water was detected using the global surface water
(GSW) data created by Pekel et al. (2016). The GSW dataset gives the
annual maximum extent of global surface water at a spatial resolution of
30 m. This dataset was used for removing the influence of surface water
on the SUHI indicator estimation. The climate zones were derived from
the major climate classes of the Koppen-Geiger climate classification
map (Beck et al., 2018). This dataset was used to identify the back-
ground climatic conditions of each city.

2.2. Study area

Building on previous studies, the GUB polygons situated within a 2
km proximity were merged into the same urban cluster (Lai et al., 2021;
Yang and Zhao, 2023; Yang et al., 2023b; Zhou et al., 2014). Subse-
quently, a total of 102 urban clusters, varying in size and shape, were
randomly selected across Europe to represent the urban areas of the
target cities. We focus on European cities because they have well-
documented urban development patterns and are frequently affected
by severe heat waves (Shreevastava et al., 2021; Garcia-Leon et al.,
2021). As shown in Fig. 2, the selected 102 European cities are
distributed across three climate zones: arid (7), temperate (52), and cold
(43).

3. Methods

In this study, we present a novel DEASE method that enables the
simultaneous estimation of SUHII, SUHIF, and SUHIC. This method
began by extracting the optimal BRA in each direction based on
continuous characteristics of urban-rural LST gradients. Building upon
this foundation, the directional components of each SUHI indicator were
computed based on their respective definitions. Ultimately, the SUHII
indicators for the entire city were obtained by integrating all these
directional components. In terms of implementation, the DEASE method
comprises three main components: construction and division of buffers,
search for turning points by directions, and calculation of SUHI
indicators.

3.1. Construction and division of buffers
As shown in Fig. 3, this part consists of three main steps:
(1) Construction of buffers
For each city, we created twenty buffer rings around its urban area,

with each buffer’s area being half of the central urban area (Yang et al.,
2023b). This design enables the outermost buffer and its inner regions to
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Fig. 2. The spatial distribution of 102 selected European cities and their urban areas.
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Urban
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Fig. 3. The flow diagram illustrating the process of constructing and dividing buffers.

cover an area far exceeding the maximum extent influenced by the SUHI (2) Removal of disturbed areas

effect reported in existing studies (Yang et al., 2023b; Zhou et al., 2015).

Moreover, we specified that the width of the constructed buffer rings Adhering to established practices in previous research (Du et al.,
should not be less than the spatial resolution of the LST image (1 km), 2023; Li et al., 2022; Yang et al., 2023b; Zhou et al., 2014; Zhou et al.,
ensuring that each buffer contains LST pixels. The setting of twenty 2015), we excluded areas within the buffers containing water bodies and
buffer rings has been demonstrated to be sufficient for encompassing all exhibiting abnormal elevation. Besides, we also removed areas within
turning points across the 102 European cities (see Results). the buffers covered by other urban areas and their extensions that have
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tripled in size (Yang et al., 2023b; Yao et al., 2019). The above strategies
contribute to minimizing influence caused by disturbing factors, thereby
enhancing the reliability of the estimated SUHI indicators (Yang et al.,
2023b).

(3) Division by directions

We divided the constructed buffers equally in an angular manner,
radiating outward from the center of mass of the urban area. The buffers
were divided into twelve sectors at 30-degree intervals (the divisions of
other angles were also attempted). Consequently, each sector consists of
twenty buffer subdivisions, and their areas gradually increase in the
direction away from the central urban (Fig. 3).

3.2. Search for turning points by directions

Based on previous studies (Li et al., 2019; Yang et al., 2023b), LST
typically experiences an initial rapid change followed by a stabilization
process when transitioning from urban to rural areas. There should be a
turning point (TP) along the urban-rural LST gradients, and the regions
where this TP is located represent the most optimal BRA (Yang et al.,
2023Db). Considering the directional differences in LST distributions, we
identified TPs in various directions of the city based on the continuous
characteristics of urban-rural LST gradients. In each direction, the
principle of extracting the TP is depicted in Fig. 4, and the specific
implementation process is as follows.

For a given city, we first calculated the mean LST within its urban
area and within each buffer subdivision obtained in the previous step.
Then, we employed cubic smoothing splines on the mean LSTs in
different directions independently. This approach helps reduce the
impact of local fluctuations on the overall pattern of urban-rural LST
variations (Yang et al., 2023b). We denoted the dataset of mean LSTs in
the mth direction as T, = {To, Tm,1, Tm,2, ---» Tmn} (Me{1, 2, ..., M}),
where Ty is the mean LST of the urban area, and Ty, 1, T2, ..., Tmn are

LST

A
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the smoothed mean LSTs from the Ist to the Nth buffer subdivision in the
mth direction, and M and N represent the total number of directions and
buffers, respectively. Next, we calculated the difference (the latter minus
the former) between two neighboring elements in Ty, to generate a new
., ATy, N}. Obviously, according to the
general patterns observed in the urban-rural LST gradients, the absolute
value of the element in ATy, (i.e., |ATy,|) gradually decrease with the
increase of i (ic{1, 2, ..., N}) until it levels off. Thus, the TP of the mth
direction can be identified by comparing |A T}, ;| with a certain threshold
AT;. As i gradually increases to k, and when it first satisfies the below

dataset, ATy, = {ATim 1, AT 2, -

conditions,
|ATpk| > AT & |ATmi+1| < AT: (Scenarios 2&3 in Fig. 4).
or
|[ATmi| > AT & |ATmk| x |ATmi+1] < O (Scenarios 1&4 in Fig. 4).

the TP of the mth direction shall be located in the kth buffer subdi-
vision away from its urban area. Given the difference in the range and
magnitude of LST variability, the threshold is defined as AT, = Per; x
(Trimax - Toomin)- Tmmax and Ty min are the maximum and minimum
values in Tp, respectively. The scaling factor, Per;, is set to 2 %. The
rationale for choosing this value and the associated uncertainty have

been extensively discussed in our earlier study (Yang et al., 2023b).

3.3. Calculation of SUHI indicators

As shown in Fig. 5, for a given city, we assumed that the area and
mean LST of the urban area were Sy and Ty, respectively. There is a total
of N buffers outside the urban area, and each buffer has M subdivisions
(corresponding to M directions). Suppose the area of the nth (ne{1, 2,
..., N}) buffer subdivision in the mth (me{1, 2, ..., M}) direction is Sy, »
and its smoothed mean LST is Ty, ,. Within this direction, the TP is sit-
uated at the position of the kth buffer subdivision (ke{1, 2, ..., N}),
having an area denoted as Sy, x and an smoothed mean LST of Ty, x. Then,

the computation of each SUHI indicator can be achieved as follows.

T,

m,

AT = Tk — Toger

AT jr1= Togers — Tk

e

IAT, | > AT, &
AT, X AT, 1 SO

Alwi TPy Al T, Smoothed mean LST

; et of the kth  buffer
AT, > AT,& subdivision in the mth
AT, 1l < AT, 4 direction

AT, | > AT, & AT, | > AT,& TP,,: Turning point of the
Al X Al = 0 AT issl < AT urban-rural LST gradient
}_M_/ ......... R in the mth direction
AT, TP, AT, AT, TP, AT, 4y
__________________________________ AT,: Threshold of AT
® _ pS—

e _ e i Smoothed mean LST

g of buffer subdivision

Turning point located at the k¢4 buffer subdivision

v

e Turning point

—— Scenario 1 Scenario 2

—— Scenario 3 —— Scenario 4

Fig. 4. A diagram illustrating the method for extracting the turning point along the urban-rural LST gradient in a specific direction. Four distinct scenarios are

presented to demonstrate possible cases for locating turning points.
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Integrating directional components to estimate
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Calculating directional components of

SUHI indicators for the entire city
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Fig. 5. Schematic representation of the direction-enhanced methodology for calculating the intensity, footprint, and capacity of the SUHI effect.

(1) SUHII

For the mth direction, the average difference in LST between the
urban area and the BRA in this direction, denoted as I,, is expressed as:

In=To — Tk
Subsequently, the directional components are weighted and aver-

aged using the area of the BRA as weights. This process yields the SUHII
for the entire city:

Zl\n/llzl (Im X S"Lk)

SUHII = -
Zm:l vak

(2) SUHIF

The area of transition regions under the influence of the SUHI effect
in the mth direction, donated as Fp,, can be calculated by:

0 k=1
F = _
" o 1<k<N

n=1

Then, the SUHIF of the entire city can be obtained by summing the
areas of the urban area and transition regions for all directions:

SUHIFA =So+ . Fn

SUHIF, represents the absolute value of the footprint, indicating the
spatial extent of the SUHI effect. Considering variations in the size of the
city itself, we derived the relative value of the footprint, SUHIFR, by
normalizing the size of the urban area:

SUHIFR = SUHIF, /S,

(3) SUHIC

The cumulative thermal load of transition regions in the mth direc-
tion, denoted as Cy,, can be calculated as the following equation:

0 k=1
Cn = _
S (T — Toi) X S k> 1

Then, the SUHIC for the entire city can be obtained by integrating the
thermal loads in the urban area and transition regions in all directions:

SUHICA = (To — Trx) % So + ZLCm

SUHIC,4 represents the absolute value of the SUHI capacity, and it is
normalized by the size of the urban area to get its relative value, denoted
as SUHICg:

SUHICg = SUHIC, /S,

Note that if TP cannot be obtained in a certain direction due to
missing LST data, we substitute it with the TP derived from LST gradi-
ents averaged across other available directions.

4. Results
4.1. Directional variations of urban-rural LST gradients

As depicted in Fig. 6, LST generally exhibits a pattern of rapid change
along urban-rural gradients, followed by relative stability after the
turning point (i.e. TP). However, there exists variation in the rate of
change and the distribution pattern of LST across urban-rural gradients.
This discrepancy is evident not only between different cities but also
within the same city across different directions (Fig. 6a). Directional
changes in urban-rural LST gradients can result in significant variations
in the location of TPs and their average LSTs. Overall, the annual day-
time and nighttime TPs are situated between the 1st and 14th buffer
subdivisions outside of the urban area, with an average positioning
around the 5th buffer subdivision (Fig. 6b). The above results under-
score the directional discrepancies in the spatial distribution of the
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Fig. 6. Directional differences in urban-rural LST gradients and turning points. (a) An example of six typical cities. (b) Boxplots of the location of turning points in

various directions across 102 European cities.

urban thermal environment and emphasize the importance of direc-
tional refinement while quantifying the SUHI effect.

4.2. Spatiotemporal discrepancies between SUHII and SUHIF

Differences between SUHII and SUHIF are evident in terms of day-
night contrasts and seasonal variations. Annual daytime SUHII is pre-
dominantly concentrated in the range of 1 °C to 3 °C, with a mean value
(£ 95 % confidence interval) of 1.86 + 0.16 °C, significantly (p < 0.001,

Table 2

Annual daytime and nighttime averages (& 95 % confidence interval) of SUHI
indicators for 102 European cities. The significance level (p-value) of day-night
contrast is determined by t-tests. SUHII, SUHIF, and SUHIC denote the intensity,
footprint, and capacity of the SUHI effect, respectively. The subscripts A and R
indicate the absolute value and relative value of SUHI indicators, respectively.

SUHII SUHIFR SUHICR SUHIF SUHIC, (°C
QO 9 (km?) km?)
Annual 1.86 + 4.43 + 453 + 1563.3 + 1862.9 +
day 0.16 0.28 0.51 308.8 500.5
Annual 1.14 + 413 + 2.57 + 1533.8 + 1046.5 +
night 0.08 0.26 0.25 323.2 270.2
p-value < 0.001 0.093 < 0.001 0.896 <0.01

t-test) higher than annual nighttime SUHII (1.14 + 0.08 °C) (Table 2).
Conversely, SUHIF exhibits comparable values between annual daytime
and annual nighttime, both in absolute terms (SUHIF,, 1563.3 4+ 308.8
vs. 1533.8 + 323.2 krnz, p = 0.896) and relative terms (SUHIFR, 4.43 +
0.28 vs. 4.13 + 0.26, p = 0.093) (Table 2). In terms of seasonal variation,
SUHII demonstrates a significant (p < 0.001) difference between sum-
mer and winter, with summertime averages over European cities nearly
2.5 times higher than those during wintertime (Table 3). Conversely, the
seasonal difference in SUHIF appears to be much smaller, although it
still tends to be higher in summer than in winter for European cities
(Table 3). These results suggest that SUHII is more sensitive to diurnal
and seasonal variations due to solar heating and urban-rural thermal
contrasts, whereas SUHIF remains relatively stable because it is pri-
marily governed by urban morphology and surface properties that
remain relatively stable over time.

Spatially, annual daytime SUHII is higher in central European cities,
while nighttime SUHII shows the opposite pattern (Fig. 7). This indicates
pronounced daytime urban-rural thermal contrasts in these cities,
driven by strong solar absorption in dense urban areas and cooling ef-
fects from surrounding vegetation, while the lower nighttime SUHII
reflects more efficient urban heat release after sunset. In contrast, high
SUHIF values are consistently concentrated in central European cities
both day and night (Fig. 7), likely due to stable urban morphology and
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Table 3

Seasonal averages (& 95 % confidence interval) of SUHI indicators for 102 Eu-
ropean cities. The significant level (p-value) of summer-winter contrast is
revealed by t-tests. SUHII, SUHIF, and SUHIC denote the intensity, footprint, and
capacity of the SUHI effect, respectively. The subscripts A and R indicate the
absolute value and relative value of SUHI indicators, respectively.

SUHII
e

SUHIFg

SUHICg
€9

SUHIF
(km?)

SUHIC,
(°C km?)

Day

Night

Summer

Winter

P-value
Summer

Winter

P-value

2.89 +
0.26
1.21 +
0.12

< 0.001
1.59 +
0.10
0.64 +
0.08
<0.001

4.70 +
0.32
4.45 +
0.29
0.253
4.46 +
0.23
3.83 +
0.27

< 0.001

7.45 +
0.86
3.04 +
0.35

< 0.001
3.62 +
0.26
1.47 £
0.29

< 0.001

1634.8 +
316.8
1560.4 £
306.9
0.738
1602.5 +
322.1
1368.8 +
274.0
0.272

2992.8 &
786.9
1200.9 +
336.9

< 0.001
1418.0 +
333.1
596.3 +
166.1

< 0.001
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extensive impervious surfaces that continuously sustain the heat island
effect. The spatial discrepancy between SUHII and SUHIF is further
underscored by their weak linear relationships (Fig. 8). As a result, cities
with stronger SUHII do not necessarily exhibit higher SUHIF, and vice
versa (Figs. 9-10). These discrepancies in SUHII and SUHIF complicate
the assessment of the severity of the SUHI effect.

4.3. Performance of SUHIC in characterizing the SUHII effect

SUHIC inherits the advantage of SUHII in highlighting the spatio-
temporal variations of the SUHI effect. A significant day-night difference
is observed for both the absolute values of annual averages (SUHICy,
1862.9 + 500.5 °C km? vs. 1046.5 + 270.2 °C km?, p < 0.01) and the
relative values of annual averages (SUHICg, 4.53 + 0.51 °C vs. 2.57 +
0.25 °C, p < 0.001) (Table 2). Additionally, SUHIC demonstrates a sig-
nificant summer-winter difference, with the summertime averages of
SUHIC, and SUHICR over European cities being 2-3 times higher than
those during wintertime (Table 3). This pronounced diurnal and
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Fig. 7. Spatial variations of SUHII, SUHIF, and SUHIC across 102 European cities. SUHII, SUHIF, and SUHIC denote the intensity, footprint, and capacity of the SUHI
effect, respectively. The subscripts A and R indicate the absolute value and relative value of SUHI indicators, respectively.
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Fig. 10. Same as Fig. 9, but for annual nighttime SUHI effect.

seasonal variability is understandable because SUHIC is a composite
indicator that integrates SUHII and SUHIF: with SUHIF remaining
relatively stable while SUHII varies substantially, SUHIC ultimately
exhibits diurnal and seasonal patterns resembling those of SUHIL In
terms of spatial patterns, SUHIC shows strong associations with both
SUHII and SUHIF (Fig. 8). Notably, SUHIC demonstrates a significant
resemblance to SUHII when considering its relative values (SUHICR),
while more closely matching SUHIF in terms of its absolute values
(SUHIC,) (Fig. 7). As a more comprehensive indicator, SUHIC can pro-
vide a standard basis for evaluating the SUHI effect in a city when its
SUHII and SUHIF diverge (Figs. 9-10).

5. Discussion
5.1. Implications of the SUHIC indicator

Quantifying the SUHI effect is foundational to research on urban
thermal environments (Schwarz et al., 2011; Zhou et al., 2018).
Numerous SUHI indicators have been proposed, with intensity and
footprint being the most typical ones (Zhou et al., 2018). Different in-
dicators vary in terms of their physical definitions and estimation
methods, capturing distinct aspects of the SUHI effect (Yang et al.,
2023b). Hence, the synergistic combination of multiple indicators aids
in providing a more comprehensive evaluation of the SUHI effect
(Schwarz et al., 2011). In this context, the SUHIC, which characterizes
the SUHI effect from a three-dimensional perspective, provides a valu-
able supplement to conventional indicators.

It is worth noting that the simultaneous use of multiple indicators
can also introduce challenges (Schwarz et al., 2011). When comparing
the SUHI effect between cities, discrepancies may emerge because
different indicators capture distinct aspects of the phenomenon. As
demonstrated in our study, a city may exhibit a high SUHII but a low
SUHIF, or vice versa (Figs. 9-10). For instance, Barcelona and Naples
display very high SUHII values (> 3.5 °C) but relatively low SUHIFg (<
4.0) during annual daytime, whereas Cagliari and Gubkin show the
opposite pattern, with low SUHII (~1.0 °C) but high SUHIFg (> 6.0)
(Fig. 9). Such inconsistencies complicate evaluation, as it becomes
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difficult to determine which city experiences a more severe SUHI effect.
Furthermore, the weak correlations between SUHII and SUHIF (Fig. 8)
also hinder efforts to disentangle the underlying drivers and assess the
broader environmental and societal impacts of the SUHI effect (Yang
et al., 2023b).

As a composite indicator, the SUHIC integrates both intensity and
footprint, thereby providing a more holistic measure of the urban
thermal effect. When inconsistencies arise between intensity- and
footprint-based evaluations, the SUHIC can serve as a more standardized
and reliable indicator (Figs. 9-10), which makes it particularly useful for
cross-city comparisons and for linking SUHI characteristics to socio-
environmental drivers and impacts.

5.2. Benefits of the DEASE method

(1) The DEASE method demonstrates superior performance in BRA
selection

It is well recognized that accurate quantification of the SUHI effect
depends on selecting an appropriate BRA (i.e. background reference
area) (Chakraborty and Lee, 2019; Li et al.,, 2018; Li et al., 2022;
Schwarz et al., 2011; Yang et al., 2023b; Yao et al., 2024). However,
existing methods differ in their BRA selection strategies, introducing
substantial uncertainties in SUHI estimation (Liu et al., 2023; Yang et al.,
2023Db). In this study, we compared the proposed DEASE method with
five existing methods (Table 4), including two area-based methods
(BRAsub1, BRAgub2), two distance-based methods (BRARur1, BRARur2),
and the ASE method.

The BRAs selected by area-based methods are located adjacent to the
urban core (Fig. 11), where they may still be influenced by the SUHI
effect, leading to systematically lower SUHII estimates compared with
other methods (Li et al., 2022; Yang et al., 2023b). In contrast, distance-
based methods place BRAs farther from the urban core to reduce the
potential urban influence (Yang et al., 2023b). However, because tem-
perature varies markedly along the urban-rural gradient, the mean LST
values of BRAs at different distances can differ greatly (Fig. 11a), making
BRA selection strategies with fixed-distance unsuitable for cross-city
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Table 4

Descriptions of background reference areas (BRAs) extracted by different
methods.

Method

BRA BRA definition Reference
name
Area-based BRAgub1 The neighboring buffer ring with Yang et al.,
methods equal size as the central urban 2017; Zhou
area et al., 2014
BRAsub2 The neighboring buffer ring 1.5 Peng et al., 2012
times the size of the central urban
area
Distance- BRARyr1 The 20 km wide buffer ring Yao et al., 2019
based located between 10 and 30 km
methods away from the central urban area
BRARyr2 The 5 km wide buffer ring located Imbhoff et al.,
between 45 and 50 km away from 2010
the central urban area
ASE method BRAAsg The buffer ring located at the Yang et al.,
turning point of the urban-rural 2023a

LST gradients

applications (Li et al., 2022). The ASE method can adaptively select
BRAs based on urban-rural LST curves, thereby avoiding the arbitrari-
ness of traditional distance-based methods (Yang et al., 2023b). How-
ever, the ASE method assumes uniform LST variation outside urban
areas and therefore overlooks directional differences in urban-rural LST
gradients (Fig. 11b). To address this limitation, our proposed DEASE
method adaptively captures the most suitable BRAs in different di-
rections around urban areas (Fig. 11a), thereby improving SUHI esti-
mation, particularly in cities with strong directional difference in urban-
rural LST variations (see Section 5.3 for details).

(2) The DEASE method provides a unified framework for the
consistent definition and synergistic estimation of multiple SUHI
indicators

Remote Sensing of Environment 333 (2026) 115118

As previously noted, quantifying the SUHI effect requires consider-
ation of multiple indicators, including the traditional SUHII and SUHIF,
as well as the more recently developed SUHIC. These indicators describe
different dimensions of the urban thermal environment. Conventional
area-based or distance-based methods are generally restricted to
measuring the LST difference between urban and rural areas, namely
SUHII (Imhoff et al., 2010; Peng et al., 2012; Zhou et al., 2014). Some
studies identified that urban temperature profiles approximately follow
a Gaussian distribution, and this property has been used to delineate the
spatial extents of the SUHI effect, i.e., SUHIF (Streutker, 2003; Yang
etal., 2019). More recently, methods based on urban-rural LST gradients
have been proposed to jointly quantify SUHII and SUHIF, thus enabling
their simultaneous assessment (Yang et al., 2023b; Wang et al., 2024).

Building on above developments, this study proposes the DEASE
method, which enables the consistent definition and synergistic esti-
mation of SUHII, SUHIF, and SUHIC. By integrating intensity, footprint,
and capacity within a unified framework, the DEASE method provides a
more comprehensive representation of the SUHI effect. This integrated
approach offers a standardized foundation for cross-city comparisons
and long-term monitoring of urban thermal environments.

(3) The DEASE method avoids the restrictions of predefined mathe-
matical models

Based on the assumption that urban LST follow a Gaussian distri-
bution, Yao et al. (2022) employed the Gaussian surface fitting (GSF)
method to simultaneously quantify multiple SUHI indicators. However,
the GSF method requires urban LST to strictly exhibit a single-peak
pattern, which greatly limits its applicability, particularly in poly-
centric cities (Yang et al., 2023b). As shown in Fig. 12, several European
cities contain multiple urban cores, leading to multi-peak LST patterns
that deviate markedly from the Gaussian assumption. In such cases, the
GSF method fails because its mathematical assumption is not satisfied.

In contrast, the DEASE method imposes no requirement for the urban
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Fig. 11. The background reference areas (BRAs) and SUHI intensity (SUHII) estimates for different methods, using London as an example. (a) The spatial extents of

BRAs extracted by different methods. (b) The directional urban-rural LST gradients
different methods. Please refer to Table 4 for details of all the methods.
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and the corresponding mean LST of the BRAs. (c) SUHII estimates obtained from
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LST distribution to conform to any predefined mathematical model.
Consequently, it is applicable to cities with diverse morphologies,
encompassing both monocentric and polycentric structures. Further-
more, the GSF method fundamentally assumes a radially symmetric
decay pattern of LST within cities, which results in a symmetric elliptical
cross-section in its Gaussian fitting surface (Anniballe et al., 2014).
However, urban-rural LST patterns are significantly shaped by land
cover heterogeneity and human activities, resulting in marked direc-
tional asymmetry (Yang et al., 2023b). These anisotropic variations are
challenging to capture using Gaussian-based models but are effectively
addressed by our proposed DEASE method (Fig. 12).

In summary, the DEASE method avoids the strict assumptions of
parametric models such as the GSF method. This enhances its adapt-
ability and applicability, enabling effective quantification of the SUHI
effect in cities with diverse and complex spatial structures.

5.3. Necessity of considering directional variations

Compared to the ASE method developed in our earlier study (Yang
et al., 2023b), the DEASE method further advances SUHI quantification
by explicitly accounting for directional effects. As depicted in Fig. 13,
cities such as Milan, Madrid, and Budapest exhibit marked discrepancies
in urban-rural LST gradients across different directions. For these cities,
the presence or absence of directional enhancement has a significant
impact on the estimated SUHI indicators. Taken Madrid as an example,
the SUHII, SUHIFg, and SUHICR obtained by the DEASE method are
1.17 °C, 3.85, and 4.34 °C, respectively, which are notably larger than
those derived from the ASE method (0.63 °C, 3.58, and 1.45 °C). This
demonstrates that neglecting directional differences in urban-rural LST
patterns can introduce substantial uncertainty in the quantification of
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the SUHI effect in some cities.

Such discrepancies are not unexpected, as urban thermal environ-
ments are shaped by heterogeneous land cover and human activities,
both of which exhibit directional variations (Yang et al., 2023a). For
instance, one side of a city may border dense forests or agricultural fields
that facilitate cooling, while another side may be adjacent to industrial
zones or dense built-up areas that exacerbate heating (Yang et al.,
2023a). Consequently, the assumption of radial symmetry, underpin-
ning both the ASE method and many others, oversimplifies the urban
thermal landscape and obscures critical directional heterogeneity.

In conclusion, the DEASE method achieves more accurate estimation
of SUHI indicators by explicitly accounting for directional variations in
urban-rural LST gradients. This makes the DEASE method particularly
valuable for use in complex urban environments where asymmetric heat
patterns are predominant.

5.4. Sensitivity analysis of the DEASE method
(1) Sensitivity to direction division parameters

As shown in Figs. 14-15, directional division involves two parame-
ters: the division angle and the rotation angle. The division angle de-
termines the number of directions and the size of buffer subdivisions
within each direction, while the rotation angle influences the specific
orientation of each direction. Changes to these parameters affect how
directions are partitioned, which may impact the shape of directional
LST curves and the estimated SUHI indicators. To assess their impacts,
we compared the estimated values of SUHI indicators obtained under
different parameter settings, with the results summarized below.

While adjustments in the division angle and rotation angle result in
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12



Q. Yang et al.

Remote Sensing of Environment 333 (2026) 115118

(a) 215
2.94 SUHII (°C) 2.28 L
S 426 SUHIF, 3.94 205 5,
s =
= 7.02 SUHIC, (°C) 491 —20 ~
7] O
—= L T 7642.5 | SUHIF,(km?) | 7078.9 195~
14— © <
Millan 12933.6 | SUHIC, (°C km?) | 8805.2 Millan |
S B I O O B N O B B B O R
(b) 27
1.17 SUHII (°C) 0.63
o 3.85 SUHIF, 3.58 %88
< —
& 434 SUHIC, (°C) 1.45 i
NS \S
5167.5 SUHIF, (km?) | 4808.1 | o
5830.7 | SUHIC, (°C km?) | 1950.6 Madrid ~
rrTr 111111112
(C) 19
2.10 SUHII (°C) 1.80 | s
=
%) > 7 3.54 SUHIF, 3.16 2
S Welo T 3| | 444 SUHIC, (°C) | 3.33 s 2
[75) =N © N
- 15— S 2 17
\ A e 1829.1 SUHIF,, (km?) 1631.1 », i
" Budapest 2294.4 | SUHIC, (°C km?) | 1719.2 Budapest |
L O O B B B r T T 1T 1 T 11711
0 2 4 6 8 10 12 14 16 18 20 0 2 4 6 8 10 12 14 16 18 20
No. of buffer DEASE «—— vs. —— ASE No. of buffer
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SUHI effect.

variations in the SUHI indicator estimates, their overall impacts remain
minimal. Typically, transitions in the division angle from 20 degrees to
60 degrees result in variations in SUHII, SUHIF, and SUHIC of less than
3 % for their annual averages (Fig. 14). Likewise, the alterations in
SUHIL, SUHIF, and SUHIC induced by different values of the rotation
angle are also negligible, averaging less than 3 % overall (Fig. 15). This
demonstrates, to some extent, the robustness of our proposed DEASE
method against variations in direction division parameters.

(2) Sensitivity to LST data errors

The globally seamless LST dataset produced by Zhang et al. (2022)
was used in this study because it can avoid the influence of missing data
(Mashhoodi and Unceta, 2024; Yang and Zhao, 2023; Yang et al., 2023b;
Yuan et al., 2023). Though global validation has demonstrated its
relatively good accuracy (RMSE < 2 °C), the errors in LST data may
impact the estimated values of SUHI indicators. Since ground-truth
values of spatial continuous LST are unavailable, we assessed the po-
tential influence of LST data errors through following simulation
experiments.

For each city, we generated simulated error data with the same
spatial resolution as the original LST data, setting the RMSE to 2 °C
(consistent with the LST data). This simulated error was added to the
original LST to create error-containing LST (denoted LST®"). Using
LST®™, we recalculated SUHI indicators (SUHII®", SUHIF®™, SUHIC®™)
for each city with the same methods. We then compared these to the
original LST-derived SUHI indicators to evaluate the impact of LST er-
rors. As shown in Fig. 16, LST®" exhibits increased spatial noise and local
fluctuations along urban-rural gradients compared to the original LST.
However, due to the inherent noise resistance of the DEASE method (via
spatial smoothing), these noise-induced LST changes had minimal
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impact on the extraction of the turning points and the estimation of
SUHI indicators. As shown in Fig. 17, comparisons across 102 European
cities reveal high consistency (near a 1:1 line) between SUHI indicators
derived from original LST and LST®". The RMSE between SUHII and
SUHII®" is approximately 0.2 °C, about 10-20 % of the mean SUHII for
all European cities. The impact of LST data errors on SUHIF and SUHIC is
even smaller, with RMSEs below 10 % of their respective means. As our
simulation assumes errors across all LST pixels, whereas errors in real-
world scenarios shall be less widespread, the actual impact of LST
data errors is expected to be smaller than that indicated by our simu-
lation experiments. The above analysis underscores the robust noise
resistance of the DEASE method and further demonstrates its reliability.

5.5. Limitations and future works

There are still some limitations of this study that need to be
addressed by further research. The first issue is about the computational
efficiency. Compared with traditional methods, the DEASE method in-
volves obviously higher complexity. For example, quantifying the SUHI
effect for a medium-sized city may take several minutes, which could
hinder its applicability in large-scale studies to some extent. In the
future, efforts can be made to enable its large-scale analysis of the global
SUHI effect with the assistance of cloud computing platforms such as
Google Earth Engine (Gorelick et al., 2017).

Second, attention should be given to the uncertainties inherent in
LST data, including retrieval errors and spatial heterogeneity, which
may influence the accuracy of SUHI quantification. Although the pro-
posed DEASE method demonstrates robustness to such uncertainties
(Figs. 16-17), their potential impacts cannot be ignored. For example,
factors such as complex topography or interference from surrounding
urban areas may lead to substantial LST data gaps in certain directions,
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making it challenging to reliably identify the turning point along urban-
rural LST gradients. These challenges are further exacerbated in densely
urbanized regions due to the prevalence of clustered cities and intricate
urban morphologies. The resulting LST data gaps amplify directional
uncertainty and compromise the interpretation of urban-rural LST gra-
dients. In such cases, missing values are replaced with mean LST values
from other directions; however, such substitution may introduce bias in
SUHI estimation, particularly in cities with strong directional differ-
ences in urban-rural LST gradients. Future work should place greater
emphasis on evaluating and correcting such uncertainties to improve the
reliability and generalizability of the framework.

Third, while this study provides preliminary theoretical and experi-
mental evidence of the benefits of the DEASE method and the SUHIC
indicator, there remains a need for a more comprehensive examination
of their application potential in future research. For example, the SUHIC
indicator could be utilized to analyze the spatiotemporal variations of
the SUHI effect and underlying driving factors by integrating large-scale,
long time-series, and multi-source remote sensing data. Building upon
this foundation, a more thorough assessment of SUHIC could be ach-
ieved by comparing and analyzing it alongside existing research find-
ings. Furthermore, since air temperature UHI (AUHI) is more relevant to
urbanization-induced local heat exposure than SUHI, with air temper-
ature generally showing somewhat distinct distributions from those for
LST (Chakraborty et al., 2022), it is worth investigating whether the
DEASE method can be extended to quantify AUHI. This may involve
shifting from an area-normalized to a population-normalized framework
to better capture impacts on human thermal exposure.

Finally, the DEASE method and the SUHIC indicator introduced in
this study are suitable for quantitatively assessing the SUHI effect at the
city scale. While this city-scale analysis aids in understanding the overall
impact of urbanization on the thermal environment, it lacks a detailed
assessment of the fine distribution of the SUHI effect within urban areas.
This fine-scale analysis is essential for understanding urban environ-
mental equity and guiding urban planning decisions (Chakraborty et al.,
2023; Chang et al., 2021; Hsu et al., 2021). Future studies should
therefore aim to refine the framework for fine-scale applications and
develop new indicators tailored to neighborhood- or district-level ther-
mal environment analysis.

6. Conclusion

Research on urban thermal dynamics has focused on the SUHI effect,
yet accurately measuring it with remotely sensed LST remains chal-
lenging. This study is concentrated on the development of improved
methods for quantifying the SUHI effect, with key innovations and
findings summarized as follows:

(1) To more comprehensively quantify the SUHI effect, this study
introduces the SUHI capacity (SUHIC) indicator, which addresses
the limitations of conventional indicators (SUHII and SUHIF) that
characterize the SUHI effect only from a peak perspective, by
incorporating cumulative thermal signals from both urban and
surrounding areas. When assessing the SUHI effect, especially in
cases where SUHII and SUHIF conflicts, SUHIC serves as a more
holistic indicator and provides critical reference value. It can
therefore be regarded as a valuable supplement to the existing
SUHI indicator system.

Considering the directional differences in LST changes from
urban to rural areas, this study proposes a DEASE method that
simultaneously quantifies the effects of SUHII, SUHIF and SUHIC,
without requiring predefined mathematical model. Experimental
results demonstrate that considering directional differences can
affect the estimated SUHI indicators, particularly in cities with
substantial directional variations in urban-rural LST gradients.
This highlights the crucial importance of our DEASE method,
which incorporates directional enhancement.

(2

—
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(3) The analysis of 102 European cities reveals that SUHII displays
significant diurnal and seasonal variations, while SUHIF remains
consistent across different periods. Interestingly, absolute values
of SUHIC exhibit similarities to those of SUHIF, while its relative
values (normalized by the urban area) show a closer alignment
with SUHII. Moreover, SUHIC exhibits strong diurnal and sea-
sonal variability in both absolute and relative values, thereby
inheriting the advantage of SUHII in highlighting the spatio-
temporal variations of the SUHI effect.

In summary, this study proposes a novel DEASE method for quanti-
fying the SUHI effect by accounting for directional differences in urban-
rural LST gradients. This approach enables estimation of both conven-
tional indicators (SUHII and SUHIF) and a composite indicator, SUHIC,
which captures cumulative thermal signals from urbanization for a more
comprehensive assessment. The proposed method and indicator provide
valuable tools for evaluating the urban thermal environment.
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