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A B S T R A C T

The surface urban heat island (SUHI) effect, assessed through remotely sensed land surface temperature (LST), 
remains a focal point in urban climate research. Conventional indicators like SUHI intensity (SUHII) and foot
print (SUHIF) capture peak values and spatial extent but fail to account for the cumulative thermal load—a 
critical dimension reflecting the total heat exposure imposed by spatially continuous warming, which directly 
limits a holistic assessment of ecological and societal impacts of the SUHI effect. Therefore, this study introduces 
an indicator termed SUHI capacity (SUHIC), designed to quantify the aggregated SUHI effect by integrating the 
magnitude of the warming signal across all affected areas, thereby enabling a more comprehensive evaluation of 
urban thermal environments. Furthermore, a direction-enhanced adaptive synchronous extraction (DEASE) 
method is proposed for the quantification of SUHIC. This method can dynamically identify the optimal back
ground reference area based on the urban-rural LST gradients in various directions within the city, without 
relying on predefined mathematical models as previously. The results from 102 European cities first confirm that 
the directional variations in urban-rural LST gradients, and the DEASE method can effectively capture these 
distinctions for the simultaneous estimation of SUHII, SUHIF, and SUHIC. Secondly, the spatial patterns of ab
solute SUHIC values show strong associations with those of SUHIF (R2 > 0.86), while its relative values 
(normalized by the area of urban) align more closely with SUHII (R2 

> 0.64). More importantly, SUHIC can serve 
as a crucial reference for assessing the urban thermal signal when SUHII and SUHIF diverge. The proposed 
method and framework contribute to standardizing the quantification of the SUHI effect.

1. Introduction

The process of urbanization is often accompanied by alterations in 
land cover and the population concentration, resulting in localized 
temperature increases and the formation of the urban heat island (UHI) 
effect (Li et al., 2023; Liu et al., 2022; Rizwan et al., 2008; Zhou et al., 
2022). The UHI effect represents the most well-known local-scale impact 
of urbanization on climate (Wang et al., 2025). Consequently, there is a 
growing emphasis on conducting dedicated research aimed at better 

quantifying this effect and its potential impacts (Rajagopal et al., 2023; 
Wong et al., 2021). Remotely sensed land surface temperature (LST) has 
become a critical tool in quantifying the surface UHI (SUHI) effect 
(Voogt and Oke, 2003; Weng, 2009; Zhou et al., 2018). Its advantages, 
such as large-scale coverage, continuous monitoring, and cost- 
effectiveness, make it logistically easier for intra-urban and inter- 
urban assessments of the SUHI effect over traditional in-situ measure
ments (Chakraborty et al., 2020; Chang et al., 2023). Existing studies 
have extensively explored the SUHI effect, addressing various aspects 
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including quantitative methods, spatiotemporal variations, driving fac
tors, and potential impacts (Chang et al., 2025; Guo et al., 2025; Li et al., 
2018; Si et al., 2022; Yao et al., 2018; Zhou et al., 2018).

The SUHI intensity (SUHII) and the SUHI footprint (SUHIF) are two 
widely recognized and commonly used quantitative indicators for 
evaluating the city-scale heat island effects (Yang et al., 2023b; Zhou 
et al., 2018). The SUHII indicator is typically calculated as the average 
LST difference between the urban area and its background reference 
area (BRA), offering insights into the magnitude of the SUHI effect 
within the urban area (Li et al., 2022; Peng et al., 2012; Zhou et al., 
2014). On the other hand, the SUHIF indicator characterizes the spatial 
extent or coverage of the SUHI effect, representing the maximum reach 
or area influenced by the effect (Yang et al., 2023a; Yang et al., 2019; 
Zhou et al., 2015). These two metrics together form the basis for un
derstanding the spatial characteristics of the urban thermal environment 
and have been widely applied in the monitoring, assessment, and 
comparative studies of the SUHI effect (Yang et al., 2023b; Zhou et al., 
2015).

However, the SUHII and SUHIF indicators exhibit some limitations. 
First, they only capture the peak value (one-dimensional) and spatial 
extent (two-dimensional) characteristics of the thermal field, failing to 
effectively reflect the continuous three-dimensional variation of the 
SUHI effect along the urban-rural gradient (Yao et al., 2022). Second, 
since the SUHII and SUHIF indicators possess distinct physical meanings 
and numerical manifestations, there is no inherent strong correlation 
between them (Yang et al., 2023b). This implies that a city with a higher 
SUHII does not necessarily have a larger SUHIF, and vice versa (Yang 
et al., 2023b; Yao et al., 2022). This decoupling, or even contradiction, 
between the two indicators makes it difficult to objectively compare the 
severity of the SUHI effect experienced by different cities (Yang et al., 
2023b). For example, when comparing a city with high SUHII but small 
SUHIF with a city with low SUHII but large SUHIF, relying solely on 
either SUHII or SUHIF can lead to partial or even opposing conclusions 
(Fig. 1). This evaluation dilemma remains a significant practical gap in 
existing SUHI evaluation frameworks, directly hindering the scientific 
and precise allocation of cooling resources to cities most severely 
affected by the heat island effect (Fig. 1). Therefore, there is an urgent 
need to develop a composite indicator capable of integrating informa
tion from both SUHII and SUHIF, aiming to achieve a more 

comprehensive and systematic assessment of the SUHI effect and pro
vide critical support for scientific decision-making.

Based on the Gaussian fitting technique, Yao et al. (2022) introduced 
an indicator, termed SUHI capacity (SUHIC), to capture the spatial 
continuity and cumulative nature of the SUHI effect. The SUHIC indi
cator quantifies the total thermal load in three-dimensional space by 
integrating the heat island intensity (i.e. SUHII) across all affected areas 
(i.e. SUHIF) (Fig. 1). This integration makes SUHIC a unified benchmark 
for inter-city comparison of SUHI severity. Hence, a key direct appli
cation of this indicator is to identify the critical cities that require 
prioritized allocation of cooling resources and policy interventions. 
Furthermore, the SUHIC-derived thermal load offers a foundation for 
indirect applications, including the estimation of urban cooling energy 
demand and the assessment of population heat exposure risks. Conse
quently, SUHIC represents not only a theoretical advancement but also a 
vital tool bridging scientific research with urban planning and climate 
adaptation practice.

However, the current estimation of SUHIC typically relies on the 
Gaussian surface fitting method (Yao et al., 2022), a predefined math
ematical model that has notable limitations in practical applications. 
First, the Gaussian model assumes a sing-peak distribution of input LST 
data, which limits its applicability in some polycentric cities where LST 
values typically exhibit a multi-peak distribution pattern (Yang et al., 
2019; Yang et al., 2023b). Second, the Gaussian model presupposes that 
LST follows a radially symmetric decay along the urban-rural gradient 
(Anniballe et al., 2014; Yang et al., 2019; Yao et al., 2022). In fact, due to 
spatially heterogeneous land cover and human activities, urban-rural 
LST patterns often demonstrate strong directional variations (Yang 
et al., 2023a). Incorporating directional variability is scientifically 
critical when quantifying the SUHI indicators.

In summary, although existing research has made considerable ef
forts and achievements in quantifying the SUHI effect, two major 
research gaps remain: 

(1) SUHII and SUHIF capture only peak intensity and spatial extent, 
but fail to represent cumulative thermal load, limiting compre
hensive assessment and objective cross-city comparisons.

(2) Existing Gaussian models assume single-peaked, symmetric LST 
distributions, which cannot adequately describe multi-peaked or 

Fig. 1. The conceptual diagram illustrating the definition and potential application of the SUHIC indicator. SUHII, SUHIF, and SUHIC denote the intensity, footprint, 
and capacity of the SUHI effect, respectively.
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asymmetric urban thermal patterns, thereby limiting their 
broader applicability.

To address these issues, this study innovatively proposes a direction- 
enhanced adaptive synchronous extraction (DEASE) method, which can 
synchronously extract all three SUHI indicators (SUHII, SUHIF, and 
SUHIC) in a more flexible manner. This new method builds upon our 
previously proposed ASE method, which involves identifying the 
turning point (TP) along the urban-rural gradient where LST shifts from 
“rapid change” to “relative stability”, thereby adaptively selecting the 
optimal BRA for SUHI indicator estimation (Yang et al., 2023b). The 
DEASE method enhances ASE by critically incorporating directional 
variations in LST along urban-rural gradients. Specifically, it detects TPs 
along multiple radial directions to derive directional SUHIF (influenced 
extent per direction) and directional SUHII (LST difference per direc
tion), and then computes SUHIC by integrating the product of direc
tional SUHII and SUHIF across all directions. In this way, without 
relying on restrictive assumptions about LST distributions (e.g., 
Gaussian models), the DEASE method facilitates the consistent and 
synchronous extraction of all three SUHI indicators.

Overall, the proposed DEASE method offers a unified framework for 
defining and estimating multiple SUHI indicators without relying on 
predefined mathematical models. By incorporating directional urban- 
rural LST variations, the DEASE method can be effectively applied to 
cities with complex urban thermal environments. Using this method, we 
quantified SUHII, SUHIF, and SUHIC across 102 European cities. The 
results demonstrate its strong universality and robustness, and under
score the critical importance of the SUHIC indicator for large-scale SUHI 
assessments and cross-city comparisons.

2. Data and study area

2.1. Data

As shown in Table 1, this study used five main datasets covering the 
following attributes: urban boundaries, surface temperature, water, 
elevation and climate zones. A detailed description of these datasets is 
provided below.

Considering the influence of missing data on the quantitative ana
lyses of the SUHI effect (Lai et al., 2018; Li et al., 2022; Yang et al., 
2023b), this study employed the seamless LST data produced by Zhang 
et al. (2022). This dataset was generated by filling the original LST ob
servations obtained by the Moderate Resolution Imaging 

Spectroradiometer (MODIS) aboard the Aqua satellite. The validation 
results indicate that the seamless LST data exhibit good accuracy, with a 
global average root mean squared error below than 2 degrees Celsius 
(◦C) (Zhang et al., 2022). This dataset has been widely utilized both 
globally and regionally because of its robust performance (Mashhoodi 
and Unceta, 2024; Yang and Zhao, 2023; Yang et al., 2023b; Yuan et al., 
2023). In line with the original MODIS LST data, the seamless LST data 
have daily observations for both daytime (~ 13:30) and nighttime (~ 
1:30), with a spatial resolution of 1 km. To facilitate analysis, the daily 
LST observations were seasonally and annually averaged, with June
–August designated as the summer season and December–February as 
the winter season.

The global urban boundary (GUB) data produced by Li et al. (2020)
was used for delineating urban areas. The GUB data provide global 
urban polygons based on a 30-m resolution image and has been widely 
used in SUHI studies (Deng et al., 2024; Li et al., 2023; Liu et al., 2022; 
Yang et al., 2023b). The surface elevation information was sourced from 
the 1-km digital elevation model (DEM) produced by the Shuttle Radar 
Topography Mission (SRTM). This dataset was employed to mitigate the 
impact of topographic relief on the quantification of SUHI effect. The 
distribution of surface water was detected using the global surface water 
(GSW) data created by Pekel et al. (2016). The GSW dataset gives the 
annual maximum extent of global surface water at a spatial resolution of 
30 m. This dataset was used for removing the influence of surface water 
on the SUHI indicator estimation. The climate zones were derived from 
the major climate classes of the Köppen–Geiger climate classification 
map (Beck et al., 2018). This dataset was used to identify the back
ground climatic conditions of each city.

2.2. Study area

Building on previous studies, the GUB polygons situated within a 2 
km proximity were merged into the same urban cluster (Lai et al., 2021; 
Yang and Zhao, 2023; Yang et al., 2023b; Zhou et al., 2014). Subse
quently, a total of 102 urban clusters, varying in size and shape, were 
randomly selected across Europe to represent the urban areas of the 
target cities. We focus on European cities because they have well- 
documented urban development patterns and are frequently affected 
by severe heat waves (Shreevastava et al., 2021; García-León et al., 
2021). As shown in Fig. 2, the selected 102 European cities are 
distributed across three climate zones: arid (7), temperate (52), and cold 
(43).

3. Methods

In this study, we present a novel DEASE method that enables the 
simultaneous estimation of SUHII, SUHIF, and SUHIC. This method 
began by extracting the optimal BRA in each direction based on 
continuous characteristics of urban-rural LST gradients. Building upon 
this foundation, the directional components of each SUHI indicator were 
computed based on their respective definitions. Ultimately, the SUHII 
indicators for the entire city were obtained by integrating all these 
directional components. In terms of implementation, the DEASE method 
comprises three main components: construction and division of buffers, 
search for turning points by directions, and calculation of SUHI 
indicators.

3.1. Construction and division of buffers

As shown in Fig. 3, this part consists of three main steps: 

(1) Construction of buffers

For each city, we created twenty buffer rings around its urban area, 
with each buffer’s area being half of the central urban area (Yang et al., 
2023b). This design enables the outermost buffer and its inner regions to 

Table 1 
Descriptions of data used in this study.

Type Resolution Period Usage Reference

Seamless land 
surface 
temperature 
(LST)

1 km 2014–2016 Estimation of SUHI 
indicators

Zhang 
et al. 
(2022)

Global urban 
boundary 
(GUB)

30 m 2015 Extraction of urban 
boundaries of 
selected cities and 
removal of the 
influence of 
surrounding urban 
areas

Li et al. 
(2020)

Global surface 
water (GSW)

30 m 2015 Removal of the 
influence of water 
bodies

Pekel et al. 
(2016)

Digital 
elevation 
model (DEM)

1 km \ Removal of the 
influence of 
topographic reliefs

Van and 
Jakob 
(2001)

Köppen-Geiger 
climate 
classification 
map

1 km \ Determination of 
the climate zone of 
cities

Beck et al. 
(2018)
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cover an area far exceeding the maximum extent influenced by the SUHI 
effect reported in existing studies (Yang et al., 2023b; Zhou et al., 2015). 
Moreover, we specified that the width of the constructed buffer rings 
should not be less than the spatial resolution of the LST image (1 km), 
ensuring that each buffer contains LST pixels. The setting of twenty 
buffer rings has been demonstrated to be sufficient for encompassing all 
turning points across the 102 European cities (see Results). 

(2) Removal of disturbed areas

Adhering to established practices in previous research (Du et al., 
2023; Li et al., 2022; Yang et al., 2023b; Zhou et al., 2014; Zhou et al., 
2015), we excluded areas within the buffers containing water bodies and 
exhibiting abnormal elevation. Besides, we also removed areas within 
the buffers covered by other urban areas and their extensions that have 

Fig. 2. The spatial distribution of 102 selected European cities and their urban areas.

Fig. 3. The flow diagram illustrating the process of constructing and dividing buffers.
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tripled in size (Yang et al., 2023b; Yao et al., 2019). The above strategies 
contribute to minimizing influence caused by disturbing factors, thereby 
enhancing the reliability of the estimated SUHI indicators (Yang et al., 
2023b). 

(3) Division by directions

We divided the constructed buffers equally in an angular manner, 
radiating outward from the center of mass of the urban area. The buffers 
were divided into twelve sectors at 30-degree intervals (the divisions of 
other angles were also attempted). Consequently, each sector consists of 
twenty buffer subdivisions, and their areas gradually increase in the 
direction away from the central urban (Fig. 3).

3.2. Search for turning points by directions

Based on previous studies (Li et al., 2019; Yang et al., 2023b), LST 
typically experiences an initial rapid change followed by a stabilization 
process when transitioning from urban to rural areas. There should be a 
turning point (TP) along the urban-rural LST gradients, and the regions 
where this TP is located represent the most optimal BRA (Yang et al., 
2023b). Considering the directional differences in LST distributions, we 
identified TPs in various directions of the city based on the continuous 
characteristics of urban-rural LST gradients. In each direction, the 
principle of extracting the TP is depicted in Fig. 4, and the specific 
implementation process is as follows.

For a given city, we first calculated the mean LST within its urban 
area and within each buffer subdivision obtained in the previous step. 
Then, we employed cubic smoothing splines on the mean LSTs in 
different directions independently. This approach helps reduce the 
impact of local fluctuations on the overall pattern of urban-rural LST 
variations (Yang et al., 2023b). We denoted the dataset of mean LSTs in 
the mth direction as Tm = {T0, Tm,1, Tm,2, …, Tm,N} (m∈{1, 2, …, M}), 
where T0 is the mean LST of the urban area, and Tm,1, Tm,2, …, Tm,N are 

the smoothed mean LSTs from the 1st to the Nth buffer subdivision in the 
mth direction, and M and N represent the total number of directions and 
buffers, respectively. Next, we calculated the difference (the latter minus 
the former) between two neighboring elements in Tm to generate a new 
dataset, ΔTm = {ΔTm,1, ΔTm,2, …, ΔTm,N}. Obviously, according to the 
general patterns observed in the urban-rural LST gradients, the absolute 
value of the element in ΔTm (i.e., |ΔTm,i|) gradually decrease with the 
increase of i (i∈{1, 2, …, N}) until it levels off. Thus, the TP of the mth 
direction can be identified by comparing |ΔTm,i| with a certain threshold 
ΔTt. As i gradually increases to k, and when it first satisfies the below 
conditions,

|ΔTm,k| > ΔTt & |ΔTm,k+1| ≤ ΔTt (Scenarios 2&3 in Fig. 4).
or
|ΔTm,k| > ΔTt & |ΔTm,k| × |ΔTm,k+1| ≤ 0 (Scenarios 1&4 in Fig. 4).
the TP of the mth direction shall be located in the kth buffer subdi

vision away from its urban area. Given the difference in the range and 
magnitude of LST variability, the threshold is defined as ΔTt = Pert ×

(Tm_max - Tm_min). Tm_max and Tm_min are the maximum and minimum 
values in Tm, respectively. The scaling factor, Pert, is set to 2 %. The 
rationale for choosing this value and the associated uncertainty have 
been extensively discussed in our earlier study (Yang et al., 2023b).

3.3. Calculation of SUHI indicators

As shown in Fig. 5, for a given city, we assumed that the area and 
mean LST of the urban area were S0 and T0, respectively. There is a total 
of N buffers outside the urban area, and each buffer has M subdivisions 
(corresponding to M directions). Suppose the area of the nth (n∈{1, 2, 
…, N}) buffer subdivision in the mth (m∈{1, 2, …, M}) direction is Sm,n 
and its smoothed mean LST is Tm,n. Within this direction, the TP is sit
uated at the position of the kth buffer subdivision (k∈{1, 2, …, N}), 
having an area denoted as Sm,k and an smoothed mean LST of Tm,k. Then, 
the computation of each SUHI indicator can be achieved as follows. 

Fig. 4. A diagram illustrating the method for extracting the turning point along the urban-rural LST gradient in a specific direction. Four distinct scenarios are 
presented to demonstrate possible cases for locating turning points.
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(1) SUHII

For the mth direction, the average difference in LST between the 
urban area and the BRA in this direction, denoted as Im, is expressed as: 

Im = T0 − Tm,k 

Subsequently, the directional components are weighted and aver
aged using the area of the BRA as weights. This process yields the SUHII 
for the entire city: 

SUHII =
∑M

m=1
(
Im × Sm,k

)

∑M
m=1Sm,k 

(2) SUHIF

The area of transition regions under the influence of the SUHI effect 
in the mth direction, donated as Fm, can be calculated by: 

Fm =

⎧
⎪⎨

⎪⎩

0 k = 1
∑k− 1

n=1
Sm,n 1 < k ≤ N 

Then, the SUHIF of the entire city can be obtained by summing the 
areas of the urban area and transition regions for all directions: 

SUHIFA = S0 +
∑M

m=1
Fm 

SUHIFA represents the absolute value of the footprint, indicating the 
spatial extent of the SUHI effect. Considering variations in the size of the 
city itself, we derived the relative value of the footprint, SUHIFR, by 
normalizing the size of the urban area: 

SUHIFR = SUHIFA/S0 

(3) SUHIC

The cumulative thermal load of transition regions in the mth direc
tion, denoted as Cm, can be calculated as the following equation: 

Cm =

⎧
⎪⎨

⎪⎩

0 k = 1
∑k− 1

n=1
(Tmn − Tmk) × Smn k > 1 

Then, the SUHIC for the entire city can be obtained by integrating the 
thermal loads in the urban area and transition regions in all directions: 

SUHICA = (T0 − Tmk)× S0 +
∑M

m=1
Cm 

SUHICA represents the absolute value of the SUHI capacity, and it is 
normalized by the size of the urban area to get its relative value, denoted 
as SUHICR: 

SUHICR = SUHICA/S0 

Note that if TP cannot be obtained in a certain direction due to 
missing LST data, we substitute it with the TP derived from LST gradi
ents averaged across other available directions.

4. Results

4.1. Directional variations of urban-rural LST gradients

As depicted in Fig. 6, LST generally exhibits a pattern of rapid change 
along urban-rural gradients, followed by relative stability after the 
turning point (i.e. TP). However, there exists variation in the rate of 
change and the distribution pattern of LST across urban-rural gradients. 
This discrepancy is evident not only between different cities but also 
within the same city across different directions (Fig. 6a). Directional 
changes in urban-rural LST gradients can result in significant variations 
in the location of TPs and their average LSTs. Overall, the annual day
time and nighttime TPs are situated between the 1st and 14th buffer 
subdivisions outside of the urban area, with an average positioning 
around the 5th buffer subdivision (Fig. 6b). The above results under
score the directional discrepancies in the spatial distribution of the 

Fig. 5. Schematic representation of the direction-enhanced methodology for calculating the intensity, footprint, and capacity of the SUHI effect.
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urban thermal environment and emphasize the importance of direc
tional refinement while quantifying the SUHI effect.

4.2. Spatiotemporal discrepancies between SUHII and SUHIF

Differences between SUHII and SUHIF are evident in terms of day- 
night contrasts and seasonal variations. Annual daytime SUHII is pre
dominantly concentrated in the range of 1 ◦C to 3 ◦C, with a mean value 
(± 95 % confidence interval) of 1.86 ± 0.16 ◦C, significantly (p < 0.001, 

t-test) higher than annual nighttime SUHII (1.14 ± 0.08 ◦C) (Table 2). 
Conversely, SUHIF exhibits comparable values between annual daytime 
and annual nighttime, both in absolute terms (SUHIFA, 1563.3 ± 308.8 
vs. 1533.8 ± 323.2 km2, p = 0.896) and relative terms (SUHIFR, 4.43 ±
0.28 vs. 4.13 ± 0.26, p = 0.093) (Table 2). In terms of seasonal variation, 
SUHII demonstrates a significant (p < 0.001) difference between sum
mer and winter, with summertime averages over European cities nearly 
2.5 times higher than those during wintertime (Table 3). Conversely, the 
seasonal difference in SUHIF appears to be much smaller, although it 
still tends to be higher in summer than in winter for European cities 
(Table 3). These results suggest that SUHII is more sensitive to diurnal 
and seasonal variations due to solar heating and urban-rural thermal 
contrasts, whereas SUHIF remains relatively stable because it is pri
marily governed by urban morphology and surface properties that 
remain relatively stable over time.

Spatially, annual daytime SUHII is higher in central European cities, 
while nighttime SUHII shows the opposite pattern (Fig. 7). This indicates 
pronounced daytime urban-rural thermal contrasts in these cities, 
driven by strong solar absorption in dense urban areas and cooling ef
fects from surrounding vegetation, while the lower nighttime SUHII 
reflects more efficient urban heat release after sunset. In contrast, high 
SUHIF values are consistently concentrated in central European cities 
both day and night (Fig. 7), likely due to stable urban morphology and 

Fig. 6. Directional differences in urban-rural LST gradients and turning points. (a) An example of six typical cities. (b) Boxplots of the location of turning points in 
various directions across 102 European cities.

Table 2 
Annual daytime and nighttime averages (± 95 % confidence interval) of SUHI 
indicators for 102 European cities. The significance level (p-value) of day-night 
contrast is determined by t-tests. SUHII, SUHIF, and SUHIC denote the intensity, 
footprint, and capacity of the SUHI effect, respectively. The subscripts A and R 
indicate the absolute value and relative value of SUHI indicators, respectively.

SUHII 
(◦C)

SUHIFR SUHICR 

(◦C)
SUHIFA 

(km2)
SUHICA (◦C 
km2)

Annual 
day

1.86 ±
0.16

4.43 ±
0.28

4.53 ±
0.51

1563.3 ±
308.8

1862.9 ±
500.5

Annual 
night

1.14 ±
0.08

4.13 ±
0.26

2.57 ±
0.25

1533.8 ±
323.2

1046.5 ±
270.2

p-value < 0.001 0.093 < 0.001 0.896 < 0.01

Q. Yang et al.                                                                                                                                                                                                                                    Remote Sensing of Environment 333 (2026) 115118 

7 



extensive impervious surfaces that continuously sustain the heat island 
effect. The spatial discrepancy between SUHII and SUHIF is further 
underscored by their weak linear relationships (Fig. 8). As a result, cities 
with stronger SUHII do not necessarily exhibit higher SUHIF, and vice 
versa (Figs. 9–10). These discrepancies in SUHII and SUHIF complicate 
the assessment of the severity of the SUHI effect.

4.3. Performance of SUHIC in characterizing the SUHII effect

SUHIC inherits the advantage of SUHII in highlighting the spatio
temporal variations of the SUHI effect. A significant day-night difference 
is observed for both the absolute values of annual averages (SUHICA, 
1862.9 ± 500.5 ◦C km2 vs. 1046.5 ± 270.2 ◦C km2, p < 0.01) and the 
relative values of annual averages (SUHICR, 4.53 ± 0.51 ◦C vs. 2.57 ±
0.25 ◦C, p < 0.001) (Table 2). Additionally, SUHIC demonstrates a sig
nificant summer-winter difference, with the summertime averages of 
SUHICA and SUHICR over European cities being 2–3 times higher than 
those during wintertime (Table 3). This pronounced diurnal and 

Table 3 
Seasonal averages (± 95 % confidence interval) of SUHI indicators for 102 Eu
ropean cities. The significant level (p-value) of summer-winter contrast is 
revealed by t-tests. SUHII, SUHIF, and SUHIC denote the intensity, footprint, and 
capacity of the SUHI effect, respectively. The subscripts A and R indicate the 
absolute value and relative value of SUHI indicators, respectively.

SUHII 
(◦C)

SUHIFR SUHICR 

(◦C)
SUHIFA 

(km2)
SUHICA 

(◦C km2)

Day Summer 2.89 ±
0.26

4.70 ±
0.32

7.45 ±
0.86

1634.8 ±
316.8

2992.8 ±
786.9

Winter 1.21 ±
0.12

4.45 ±
0.29

3.04 ±
0.35

1560.4 ±
306.9

1200.9 ±
336.9

P-value < 0.001 0.253 < 0.001 0.738 < 0.001
Night Summer 1.59 ±

0.10
4.46 ±
0.23

3.62 ±
0.26

1602.5 ±
322.1

1418.0 ±
333.1

Winter 0.64 ±
0.08

3.83 ±
0.27

1.47 ±
0.29

1368.8 ±
274.0

596.3 ±
166.1

P-value < 0.001 < 0.001 < 0.001 0.272 < 0.001

Fig. 7. Spatial variations of SUHII, SUHIF, and SUHIC across 102 European cities. SUHII, SUHIF, and SUHIC denote the intensity, footprint, and capacity of the SUHI 
effect, respectively. The subscripts A and R indicate the absolute value and relative value of SUHI indicators, respectively.
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Fig. 8. Associations between SUHII, SUHIF, and SUHIC across 102 European cities. SUHII, SUHIF, and SUHIC represent the intensity, footprint, and capacity of the 
SUHI effect, respectively. The subscripts A and R refer to the absolute value and relative value of SUHI indicators, respectively.

Fig. 9. Variations in rankings of annual daytime SUHI effect for 102 European cities based on different indicators. SUHII, SUHIF, and SUHIC represent the intensity, 
footprint, and capacity of the SUHI effect, respectively. The subscript R refer to the relative value of SUHI indicators.
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seasonal variability is understandable because SUHIC is a composite 
indicator that integrates SUHII and SUHIF: with SUHIF remaining 
relatively stable while SUHII varies substantially, SUHIC ultimately 
exhibits diurnal and seasonal patterns resembling those of SUHII. In 
terms of spatial patterns, SUHIC shows strong associations with both 
SUHII and SUHIF (Fig. 8). Notably, SUHIC demonstrates a significant 
resemblance to SUHII when considering its relative values (SUHICR), 
while more closely matching SUHIF in terms of its absolute values 
(SUHICA) (Fig. 7). As a more comprehensive indicator, SUHIC can pro
vide a standard basis for evaluating the SUHI effect in a city when its 
SUHII and SUHIF diverge (Figs. 9–10).

5. Discussion

5.1. Implications of the SUHIC indicator

Quantifying the SUHI effect is foundational to research on urban 
thermal environments (Schwarz et al., 2011; Zhou et al., 2018). 
Numerous SUHI indicators have been proposed, with intensity and 
footprint being the most typical ones (Zhou et al., 2018). Different in
dicators vary in terms of their physical definitions and estimation 
methods, capturing distinct aspects of the SUHI effect (Yang et al., 
2023b). Hence, the synergistic combination of multiple indicators aids 
in providing a more comprehensive evaluation of the SUHI effect 
(Schwarz et al., 2011). In this context, the SUHIC, which characterizes 
the SUHI effect from a three-dimensional perspective, provides a valu
able supplement to conventional indicators.

It is worth noting that the simultaneous use of multiple indicators 
can also introduce challenges (Schwarz et al., 2011). When comparing 
the SUHI effect between cities, discrepancies may emerge because 
different indicators capture distinct aspects of the phenomenon. As 
demonstrated in our study, a city may exhibit a high SUHII but a low 
SUHIF, or vice versa (Figs. 9–10). For instance, Barcelona and Naples 
display very high SUHII values (> 3.5 ◦C) but relatively low SUHIFR (<
4.0) during annual daytime, whereas Cagliari and Gubkin show the 
opposite pattern, with low SUHII (~1.0 ◦C) but high SUHIFR (> 6.0) 
(Fig. 9). Such inconsistencies complicate evaluation, as it becomes 

difficult to determine which city experiences a more severe SUHI effect. 
Furthermore, the weak correlations between SUHII and SUHIF (Fig. 8) 
also hinder efforts to disentangle the underlying drivers and assess the 
broader environmental and societal impacts of the SUHI effect (Yang 
et al., 2023b).

As a composite indicator, the SUHIC integrates both intensity and 
footprint, thereby providing a more holistic measure of the urban 
thermal effect. When inconsistencies arise between intensity- and 
footprint-based evaluations, the SUHIC can serve as a more standardized 
and reliable indicator (Figs. 9–10), which makes it particularly useful for 
cross-city comparisons and for linking SUHI characteristics to socio- 
environmental drivers and impacts.

5.2. Benefits of the DEASE method

(1) The DEASE method demonstrates superior performance in BRA 
selection

It is well recognized that accurate quantification of the SUHI effect 
depends on selecting an appropriate BRA (i.e. background reference 
area) (Chakraborty and Lee, 2019; Li et al., 2018; Li et al., 2022; 
Schwarz et al., 2011; Yang et al., 2023b; Yao et al., 2024). However, 
existing methods differ in their BRA selection strategies, introducing 
substantial uncertainties in SUHI estimation (Liu et al., 2023; Yang et al., 
2023b). In this study, we compared the proposed DEASE method with 
five existing methods (Table 4), including two area-based methods 
(BRASub1, BRASub2), two distance-based methods (BRARur1, BRARur2), 
and the ASE method.

The BRAs selected by area-based methods are located adjacent to the 
urban core (Fig. 11), where they may still be influenced by the SUHI 
effect, leading to systematically lower SUHII estimates compared with 
other methods (Li et al., 2022; Yang et al., 2023b). In contrast, distance- 
based methods place BRAs farther from the urban core to reduce the 
potential urban influence (Yang et al., 2023b). However, because tem
perature varies markedly along the urban-rural gradient, the mean LST 
values of BRAs at different distances can differ greatly (Fig. 11a), making 
BRA selection strategies with fixed-distance unsuitable for cross-city 

Fig. 10. Same as Fig. 9, but for annual nighttime SUHI effect.
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applications (Li et al., 2022). The ASE method can adaptively select 
BRAs based on urban-rural LST curves, thereby avoiding the arbitrari
ness of traditional distance-based methods (Yang et al., 2023b). How
ever, the ASE method assumes uniform LST variation outside urban 
areas and therefore overlooks directional differences in urban-rural LST 
gradients (Fig. 11b). To address this limitation, our proposed DEASE 
method adaptively captures the most suitable BRAs in different di
rections around urban areas (Fig. 11a), thereby improving SUHI esti
mation, particularly in cities with strong directional difference in urban- 
rural LST variations (see Section 5.3 for details). 

(2) The DEASE method provides a unified framework for the 
consistent definition and synergistic estimation of multiple SUHI 
indicators

As previously noted, quantifying the SUHI effect requires consider
ation of multiple indicators, including the traditional SUHII and SUHIF, 
as well as the more recently developed SUHIC. These indicators describe 
different dimensions of the urban thermal environment. Conventional 
area-based or distance-based methods are generally restricted to 
measuring the LST difference between urban and rural areas, namely 
SUHII (Imhoff et al., 2010; Peng et al., 2012; Zhou et al., 2014). Some 
studies identified that urban temperature profiles approximately follow 
a Gaussian distribution, and this property has been used to delineate the 
spatial extents of the SUHI effect, i.e., SUHIF (Streutker, 2003; Yang 
et al., 2019). More recently, methods based on urban-rural LST gradients 
have been proposed to jointly quantify SUHII and SUHIF, thus enabling 
their simultaneous assessment (Yang et al., 2023b; Wang et al., 2024).

Building on above developments, this study proposes the DEASE 
method, which enables the consistent definition and synergistic esti
mation of SUHII, SUHIF, and SUHIC. By integrating intensity, footprint, 
and capacity within a unified framework, the DEASE method provides a 
more comprehensive representation of the SUHI effect. This integrated 
approach offers a standardized foundation for cross-city comparisons 
and long-term monitoring of urban thermal environments. 

(3) The DEASE method avoids the restrictions of predefined mathe
matical models

Based on the assumption that urban LST follow a Gaussian distri
bution, Yao et al. (2022) employed the Gaussian surface fitting (GSF) 
method to simultaneously quantify multiple SUHI indicators. However, 
the GSF method requires urban LST to strictly exhibit a single-peak 
pattern, which greatly limits its applicability, particularly in poly
centric cities (Yang et al., 2023b). As shown in Fig. 12, several European 
cities contain multiple urban cores, leading to multi-peak LST patterns 
that deviate markedly from the Gaussian assumption. In such cases, the 
GSF method fails because its mathematical assumption is not satisfied.

In contrast, the DEASE method imposes no requirement for the urban 

Table 4 
Descriptions of background reference areas (BRAs) extracted by different 
methods.

Method BRA 
name

BRA definition Reference

Area-based 
methods

BRASub1 The neighboring buffer ring with 
equal size as the central urban 
area

Yang et al., 
2017; Zhou 
et al., 2014

BRASub2 The neighboring buffer ring 1.5 
times the size of the central urban 
area

Peng et al., 2012

Distance- 
based 
methods

BRARur1 The 20 km wide buffer ring 
located between 10 and 30 km 
away from the central urban area

Yao et al., 2019

BRARur2 The 5 km wide buffer ring located 
between 45 and 50 km away from 
the central urban area

Imhoff et al., 
2010

ASE method BRAASE The buffer ring located at the 
turning point of the urban-rural 
LST gradients

Yang et al., 
2023a

Fig. 11. The background reference areas (BRAs) and SUHI intensity (SUHII) estimates for different methods, using London as an example. (a) The spatial extents of 
BRAs extracted by different methods. (b) The directional urban-rural LST gradients and the corresponding mean LST of the BRAs. (c) SUHII estimates obtained from 
different methods. Please refer to Table 4 for details of all the methods.
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LST distribution to conform to any predefined mathematical model. 
Consequently, it is applicable to cities with diverse morphologies, 
encompassing both monocentric and polycentric structures. Further
more, the GSF method fundamentally assumes a radially symmetric 
decay pattern of LST within cities, which results in a symmetric elliptical 
cross-section in its Gaussian fitting surface (Anniballe et al., 2014). 
However, urban-rural LST patterns are significantly shaped by land 
cover heterogeneity and human activities, resulting in marked direc
tional asymmetry (Yang et al., 2023b). These anisotropic variations are 
challenging to capture using Gaussian-based models but are effectively 
addressed by our proposed DEASE method (Fig. 12).

In summary, the DEASE method avoids the strict assumptions of 
parametric models such as the GSF method. This enhances its adapt
ability and applicability, enabling effective quantification of the SUHI 
effect in cities with diverse and complex spatial structures.

5.3. Necessity of considering directional variations

Compared to the ASE method developed in our earlier study (Yang 
et al., 2023b), the DEASE method further advances SUHI quantification 
by explicitly accounting for directional effects. As depicted in Fig. 13, 
cities such as Milan, Madrid, and Budapest exhibit marked discrepancies 
in urban-rural LST gradients across different directions. For these cities, 
the presence or absence of directional enhancement has a significant 
impact on the estimated SUHI indicators. Taken Madrid as an example, 
the SUHII, SUHIFR, and SUHICR obtained by the DEASE method are 
1.17 ◦C, 3.85, and 4.34 ◦C, respectively, which are notably larger than 
those derived from the ASE method (0.63 ◦C, 3.58, and 1.45 ◦C). This 
demonstrates that neglecting directional differences in urban-rural LST 
patterns can introduce substantial uncertainty in the quantification of 

the SUHI effect in some cities.
Such discrepancies are not unexpected, as urban thermal environ

ments are shaped by heterogeneous land cover and human activities, 
both of which exhibit directional variations (Yang et al., 2023a). For 
instance, one side of a city may border dense forests or agricultural fields 
that facilitate cooling, while another side may be adjacent to industrial 
zones or dense built-up areas that exacerbate heating (Yang et al., 
2023a). Consequently, the assumption of radial symmetry, underpin
ning both the ASE method and many others, oversimplifies the urban 
thermal landscape and obscures critical directional heterogeneity.

In conclusion, the DEASE method achieves more accurate estimation 
of SUHI indicators by explicitly accounting for directional variations in 
urban-rural LST gradients. This makes the DEASE method particularly 
valuable for use in complex urban environments where asymmetric heat 
patterns are predominant.

5.4. Sensitivity analysis of the DEASE method

(1) Sensitivity to direction division parameters

As shown in Figs. 14–15, directional division involves two parame
ters: the division angle and the rotation angle. The division angle de
termines the number of directions and the size of buffer subdivisions 
within each direction, while the rotation angle influences the specific 
orientation of each direction. Changes to these parameters affect how 
directions are partitioned, which may impact the shape of directional 
LST curves and the estimated SUHI indicators. To assess their impacts, 
we compared the estimated values of SUHI indicators obtained under 
different parameter settings, with the results summarized below.

While adjustments in the division angle and rotation angle result in 

Fig. 12. Examples of LST distributions deviating from the Gaussian model. (a, c) Spatial patterns of annual daytime LST in Lille and Metz. (b, d) Urban-rural LST 
gradients and the corresponding SUHI indicators estimated by the DEASE method for Lille and Metz.
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variations in the SUHI indicator estimates, their overall impacts remain 
minimal. Typically, transitions in the division angle from 20 degrees to 
60 degrees result in variations in SUHII, SUHIF, and SUHIC of less than 
3 % for their annual averages (Fig. 14). Likewise, the alterations in 
SUHII, SUHIF, and SUHIC induced by different values of the rotation 
angle are also negligible, averaging less than 3 % overall (Fig. 15). This 
demonstrates, to some extent, the robustness of our proposed DEASE 
method against variations in direction division parameters. 

(2) Sensitivity to LST data errors

The globally seamless LST dataset produced by Zhang et al. (2022)
was used in this study because it can avoid the influence of missing data 
(Mashhoodi and Unceta, 2024; Yang and Zhao, 2023; Yang et al., 2023b; 
Yuan et al., 2023). Though global validation has demonstrated its 
relatively good accuracy (RMSE < 2 ◦C), the errors in LST data may 
impact the estimated values of SUHI indicators. Since ground-truth 
values of spatial continuous LST are unavailable, we assessed the po
tential influence of LST data errors through following simulation 
experiments.

For each city, we generated simulated error data with the same 
spatial resolution as the original LST data, setting the RMSE to 2 ◦C 
(consistent with the LST data). This simulated error was added to the 
original LST to create error-containing LST (denoted LSTerr). Using 
LSTerr, we recalculated SUHI indicators (SUHIIerr, SUHIFerr, SUHICerr) 
for each city with the same methods. We then compared these to the 
original LST-derived SUHI indicators to evaluate the impact of LST er
rors. As shown in Fig. 16, LSTerr exhibits increased spatial noise and local 
fluctuations along urban-rural gradients compared to the original LST. 
However, due to the inherent noise resistance of the DEASE method (via 
spatial smoothing), these noise-induced LST changes had minimal 

impact on the extraction of the turning points and the estimation of 
SUHI indicators. As shown in Fig. 17, comparisons across 102 European 
cities reveal high consistency (near a 1:1 line) between SUHI indicators 
derived from original LST and LSTerr. The RMSE between SUHII and 
SUHIIerr is approximately 0.2 ◦C, about 10–20 % of the mean SUHII for 
all European cities. The impact of LST data errors on SUHIF and SUHIC is 
even smaller, with RMSEs below 10 % of their respective means. As our 
simulation assumes errors across all LST pixels, whereas errors in real- 
world scenarios shall be less widespread, the actual impact of LST 
data errors is expected to be smaller than that indicated by our simu
lation experiments. The above analysis underscores the robust noise 
resistance of the DEASE method and further demonstrates its reliability.

5.5. Limitations and future works

There are still some limitations of this study that need to be 
addressed by further research. The first issue is about the computational 
efficiency. Compared with traditional methods, the DEASE method in
volves obviously higher complexity. For example, quantifying the SUHI 
effect for a medium-sized city may take several minutes, which could 
hinder its applicability in large-scale studies to some extent. In the 
future, efforts can be made to enable its large-scale analysis of the global 
SUHI effect with the assistance of cloud computing platforms such as 
Google Earth Engine (Gorelick et al., 2017).

Second, attention should be given to the uncertainties inherent in 
LST data, including retrieval errors and spatial heterogeneity, which 
may influence the accuracy of SUHI quantification. Although the pro
posed DEASE method demonstrates robustness to such uncertainties 
(Figs. 16–17), their potential impacts cannot be ignored. For example, 
factors such as complex topography or interference from surrounding 
urban areas may lead to substantial LST data gaps in certain directions, 

Fig. 13. The influence of directional differences in urban-rural LST variations on quantifying the SUHI effect, taking three typical cities to illustrate. The DEASE 
method represents a directional refinement of the ASE method, designed to account for the directional variability in urban-rural LST variations when quantifying the 
SUHI effect.
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Fig. 14. The sensitivity of SUHI indicators to the division angle parameter of the DEASE method. The division angle determines the number of directions and the size 
of buffer subdivisions within each direction. SUHII, SUHIF, and SUHIC represent the intensity, footprint, and capacity of the SUHI effect, respectively. The subscripts 
A and R refer to the absolute value and relative value of SUHI indicators, respectively.

Fig. 15. The sensitivity of SUHI indicators to the rotation angle parameter of the DEASE method. The rotation angle influences the specific orientation of each 
direction. SUHII, SUHIF, and SUHIC represent the intensity, footprint, and capacity of the SUHI effect, respectively. The subscripts A and R refer to the absolute value 
and relative value of SUHI indicators, respectively.
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Fig. 16. The influence of LST data errors on the quantification of the SUHI effect, using Paris as an example. (a-b) The original LST and the corresponding estimated 
SUHI indicator values. (c-d) The LST with simulated errors (LSTerr) and the corresponding estimated SUHI indicator values. The LSTerr is derived by adding simulated 
random errors (RMSE = 2 ◦C) to the original LST. SUHII, SUHIF, and SUHIC represent the intensity, footprint, and capacity of the SUHI effect, respectively. The 
subscripts “A” and “R” refer to the absolute value and relative values of the SUHI indicators, respectively. The superscript “err” denotes the SUHI indicators estimated 
using the LSTerr.

Fig. 17. The comparisons between the SUHI indicators estimated using the original LST and those estimated using the LST with simulated errors (LSTerr). The LSTerr 

is derived by adding simulated random errors (RMSE = 2 ◦C) to the original LST. SUHII, SUHIF, and SUHIC represent the intensity, footprint, and capacity of the 
SUHI effect, respectively. The subscripts “A” and “R” refer to the absolute value and relative values of the SUHI indicators, respectively. The superscript “err” denotes 
the SUHI indicators estimated using the LSTerr.
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making it challenging to reliably identify the turning point along urban- 
rural LST gradients. These challenges are further exacerbated in densely 
urbanized regions due to the prevalence of clustered cities and intricate 
urban morphologies. The resulting LST data gaps amplify directional 
uncertainty and compromise the interpretation of urban-rural LST gra
dients. In such cases, missing values are replaced with mean LST values 
from other directions; however, such substitution may introduce bias in 
SUHI estimation, particularly in cities with strong directional differ
ences in urban-rural LST gradients. Future work should place greater 
emphasis on evaluating and correcting such uncertainties to improve the 
reliability and generalizability of the framework.

Third, while this study provides preliminary theoretical and experi
mental evidence of the benefits of the DEASE method and the SUHIC 
indicator, there remains a need for a more comprehensive examination 
of their application potential in future research. For example, the SUHIC 
indicator could be utilized to analyze the spatiotemporal variations of 
the SUHI effect and underlying driving factors by integrating large-scale, 
long time-series, and multi-source remote sensing data. Building upon 
this foundation, a more thorough assessment of SUHIC could be ach
ieved by comparing and analyzing it alongside existing research find
ings. Furthermore, since air temperature UHI (AUHI) is more relevant to 
urbanization-induced local heat exposure than SUHI, with air temper
ature generally showing somewhat distinct distributions from those for 
LST (Chakraborty et al., 2022), it is worth investigating whether the 
DEASE method can be extended to quantify AUHI. This may involve 
shifting from an area-normalized to a population-normalized framework 
to better capture impacts on human thermal exposure.

Finally, the DEASE method and the SUHIC indicator introduced in 
this study are suitable for quantitatively assessing the SUHI effect at the 
city scale. While this city-scale analysis aids in understanding the overall 
impact of urbanization on the thermal environment, it lacks a detailed 
assessment of the fine distribution of the SUHI effect within urban areas. 
This fine-scale analysis is essential for understanding urban environ
mental equity and guiding urban planning decisions (Chakraborty et al., 
2023; Chang et al., 2021; Hsu et al., 2021). Future studies should 
therefore aim to refine the framework for fine-scale applications and 
develop new indicators tailored to neighborhood- or district-level ther
mal environment analysis.

6. Conclusion

Research on urban thermal dynamics has focused on the SUHI effect, 
yet accurately measuring it with remotely sensed LST remains chal
lenging. This study is concentrated on the development of improved 
methods for quantifying the SUHI effect, with key innovations and 
findings summarized as follows: 

(1) To more comprehensively quantify the SUHI effect, this study 
introduces the SUHI capacity (SUHIC) indicator, which addresses 
the limitations of conventional indicators (SUHII and SUHIF) that 
characterize the SUHI effect only from a peak perspective, by 
incorporating cumulative thermal signals from both urban and 
surrounding areas. When assessing the SUHI effect, especially in 
cases where SUHII and SUHIF conflicts, SUHIC serves as a more 
holistic indicator and provides critical reference value. It can 
therefore be regarded as a valuable supplement to the existing 
SUHI indicator system.

(2) Considering the directional differences in LST changes from 
urban to rural areas, this study proposes a DEASE method that 
simultaneously quantifies the effects of SUHII, SUHIF and SUHIC, 
without requiring predefined mathematical model. Experimental 
results demonstrate that considering directional differences can 
affect the estimated SUHI indicators, particularly in cities with 
substantial directional variations in urban-rural LST gradients. 
This highlights the crucial importance of our DEASE method, 
which incorporates directional enhancement.

(3) The analysis of 102 European cities reveals that SUHII displays 
significant diurnal and seasonal variations, while SUHIF remains 
consistent across different periods. Interestingly, absolute values 
of SUHIC exhibit similarities to those of SUHIF, while its relative 
values (normalized by the urban area) show a closer alignment 
with SUHII. Moreover, SUHIC exhibits strong diurnal and sea
sonal variability in both absolute and relative values, thereby 
inheriting the advantage of SUHII in highlighting the spatio
temporal variations of the SUHI effect.

In summary, this study proposes a novel DEASE method for quanti
fying the SUHI effect by accounting for directional differences in urban- 
rural LST gradients. This approach enables estimation of both conven
tional indicators (SUHII and SUHIF) and a composite indicator, SUHIC, 
which captures cumulative thermal signals from urbanization for a more 
comprehensive assessment. The proposed method and indicator provide 
valuable tools for evaluating the urban thermal environment.
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