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A. Supplementary Notes 

Note S1: More details on the study area and data  

We chose a total of 5586 cities (each with an urban area in 2000 larger than 10 km2) 

worldwide (Fig. S1). These cities are distributed in all the four typical climates 

according to the Köppen Climate Classification [1], including equatorial (458 cities), 

arid (897 cities), warm (2502 cities), and snow climates (1729 cities).  

 

We employed Moderate Resolution Imaging Spectroradiometer (MODIS) data, 

reanalysis data, and auxiliary data to assist analysis. The Aqua and Terra MODIS data 

include daily land surface temperature (LST; the MYD11A1 and MOD11A1 products), 

yearly land cover type (MCD12Q1), and 16-day composite enhanced vegetation index 



 

 

(EVI; MOD13A2). Most studies that use satellites to examine thermal anisotropy rely 

on instantaneous multi-angle LST observations obtained from geostationary 

meteorological satellites [2, 3]. However, the spatial resolution of the thermal images 

acquired from geostationary satellites is usually too coarse (~5 km) to isolate urban 

surfaces; and sensors from geostationary satellites cannot adequately detect the thermal 

status of polar regions. By contrast, thermal images acquired from polar orbiters (e.g., 

Aqua and Terra MODIS thermal data) are characterized by a relatively higher 

resolution (1 km) and they sample the Earth’s surface more uniformly. For the same 

area, the MODIS viewing zenith angle (VZA) varies by day, but with a VZA repetition 

period of 16 days [4]. Therefore, the Aqua and Terra MODIS multi-angle LST 

observations (−65° ~ 65°) serve as unique sources for investigating urban thermal 

anisotropy (UTA) across global cities. The transit times for Aqua are around 13:30 and 

01:30 local solar time, while those for Terra are around 10:30 and 22:30 local solar time. 

The MODIS land cover type data were employed to eliminate the water pixels as well 

as to examine the uncertainties related to the residual atmospheric effect from MODIS 

LST products. The land cover type data hold a spatial resolution of 500 m [5] and were 

resampled to 1 km to match the resolution of the LST products. The EVI data with a 

spatial resolution of 1 km were applied to analyze the relationships between UTA 

intensity (UTAI) and urban vegetation coverage.  

 

The ERA5-land reanalysis data used here include the hourly surface air temperature 

(SAT) and downward shortwave radiation (RAD). These two types of data possess a 

grid of approximately 0.1 arc degree [6], and they were used to investigate the 

relationships between UTAI and air temperature and shortwave radiation across global 

cities. We converted the reanalysis SAT and RAD products, which are in Coordinated 



 

 

Universal Time (UTC), to local solar time to match the MODIS LST products [4]. 

 

The auxiliary data involve global urban boundary (GUB), global impervious surface 

percentage (ISP), and building height information across Europe, the United States, and 

China. To reduce the impacts of urbanization-induced land cover changes on the UTAI 

characterization, we only kept the urban surfaces within the GUB data of 2000 [7]. The 

ISP data were obtained from Global Human Settlement Layers (GHSL) Built-Up Grid 

dataset and were also aggregated to 1 km from their original 38 m resolution [8]. The 

building height data at 1 km resolution were provided by ref. [9]. Both the ISP and 

building height data were used to analyze the relationship between UTAI and urban 

surface properties across global cities. 

 

Note S2: More details on the calculation of UTAI across global cities and 

uncertainties related to UTAI calculation 

We developed a systematic approach to quantify the UTAI across global cities. First, we 

selected clear-sky pixels by removing pixels with a missing data rate exceeding 90% 

due to cloud contamination [10]. Second, we binned the MODIS VZAs (−65° ~ 65°) 

into 13 groups with an interval of 10° for each group. The LST observations for each 

VZA bin were all averaged to reduce uncertainties arising from retrieval errors of 

satellite-derived LSTs [11]. We kept only the VZA groups with less than 85% missing 

pixels, because an extremely high missing rate may drastically bias the UTAI 

quantification. Third, we employed a quadratic curve with the quadratic coefficient less 

than 0 to fit the LST variations with sensor VZAs once the number of valid VZA groups 

exceeded 10 after data screening to reduce the LST fluctuations and to obtain a more 

representative UTA curve at the city scale. Finally, we represented the UTAI as the 



 

 

maximum difference between the nadir and off-nadir LSTs [12].  

 

One may question that the selection of thresholds in abovementioned procedures could 

lead to uncertainties on the UTAI calculation. In addition, we have incorporated all 

valid MODIS multi-angle LST records during the period from 2003 to 2021. One may 

additionally argue that urbanization during this period may change urban surface 

properties and consequently affect the UTAI calculation. To examine the potential 

uncertainties, we further analyzed the UTAI variations with different thresholds, 

including filtering clear-sky pixels (termed threshold-1; ranging from 0.95 to 0.60), 

selecting usable sensor VZA intervals (termed threshold-2; ranging from 0.95 to 0.60), 

and choosing eligible cities (termed threshold-3; ranging from 6 to 13). We also 

examined the urbanization-induced impacts on UTAI calculation using different 

lengths of the study period (from 5 to 18 years). The sensitivity analysis reveals that the 

UTAI rarely changes under different thresholds and study periods, with the UTAI 

varying by less than 3% referenced to the original baseline (Fig. S15).  

 

Note S3: Uncertainties related to daily weather variability and residual atmospheric 

effects in MODIS LST products 

Daily weather variations caused by non-synchronous MODIS LST observations in 

different VZAs, together with the residual atmospheric effect from MODIS LST 

products, may introduce uncertainties to the UTAI quantification. We therefore further 

discussed these two potential uncertainties and we also performed cross-validations of 

the proposed method with previous methods [13, 14]. 

 

1. Possible uncertainties related to daily weather variability caused by 



 

 

non-synchronous satellite LST observations in different view zenith angles 

This study employed MODIS multi-angle LST observations to investigate the UTA 

across global cities. Unlike the instantaneous LSTs obtained from airborne 

observations, geostationary satellites, or model simulations, the MODIS multi-angle 

instantaneous LSTs are usually non-synchronous and obtained on different days [11, 

13]. Daily variations in weather conditions may therefore introduce uncertainties in 

the investigation of UTA intensity (UTAI). Nevertheless, we consider such 

uncertainties would barely invalidate our main findings, mainly due to the following 

three reasons. First, we have filtered clear-sky pixels and removed the sensor VZA 

groups with extremely high data missing rate to reduce the impacts of daily weather 

variabilities on UTAI quantification (refer to Supplementary Note S2). Second, we 

have averaged the valid LSTs of the same VZA for all available days within a specific 

season throughout an 18-year period, obtaining an adequate number (> 100 for this 

study) of LST observations for each VZA group. This temporal averaging process can 

substantially reduce the uncertainties induced by daily weather variabilities. Third, our 

study has been focused on the statistical UTAI features for thousands of cities 

worldwide or within a specific climate zone. The large-scale spatial averaging 

procedure could further suppress the possible uncertainties induced by daily weather 

variabilities according to the Bessel formula in error theory [15].  

 

2. Uncertainties related to residual atmospheric effects in MODIS LST products 

The residual atmospheric effect in MODIS LST products indicates that the MODIS 

multi-angle LSTs may have been retrieved ‘imperfectly’ due to the less accurate 

correction or parameterization of the atmospheric path thermal radiance for different 

sensor VZAs [13, 16]. The residual atmospheric effect may impact the UTAI 



 

 

investigation. We therefore further investigated the uncertainties induced by the 

residual atmospheric effect by examining the surface thermal anisotropy over 256 lakes 

larger than 30 km2, as water bodies are usually considered to possess relatively low 

thermal anisotropy [13]. The results demonstrate that the thermal anisotropy intensity 

over water bodies is less than 2.0 K both during the day and at night (Fig. S16). This 

indeed suggests a slight impact from the residual atmospheric effects on UTAI 

quantification, yet such an intensity is substantially lower than the UTAI quantified in 

this study, especially during summer daytime (i.e., 5.1 K). This therefore supports that 

the residual atmospheric effect would not largely bias the main results of this study. 

Future endeavors may consider elimination of the residual atmospheric effect to better 

assess the UTAI across global cities.  

 

3. Cross-validation of the proposed method with previous methods 

Previous studies have made substantial progresses in suppressing or eliminating the 

uncertainties related to daily weather variabilities and residual atmospheric effects in 

UTAI quantification [13, 14]. For example, a pioneering attempt performed by ref. [13] 

eliminated these two uncertainties by means of high-quality measurements from 

weather stations within cities and large water bodies adjacent to cities. This approach is 

well accepted, but it is extremely difficult and even impossible to be extended to 

thousands of cities at a large scale, especially for cities over rugged terrain without large 

water bodies nearby. Recently, an innovative modification of this approach was made 

by removing the impacts from daily weather variabilities based on strong temporal 

correlations between LST and SAT, and by ignoring the impacts from residual 

atmospheric effects [14]. This modification overcame the necessity of adjacent water 

bodies required in ref. [13] and allowed the satellite-based examination of UTAI to be 



 

 

applicable to inland cities worldwide. 

 

To validate our method, we first compared the UTAI of Chicago and New York 

retrieved by our proposed method with that retrieved by ref. [13]. The results show that 

these two approaches unveil consistent UTAI patterns in Chicago and New York when 

ISP is less than 80% (Fig. S17). Nevertheless, our quantified UTAI (around 6.0 K) is 

slightly lower than that of ref. [13] (around 8.0 K) over highly urbanized surfaces (i.e., 

ISP > 80%) in New York. By employing a more stringent threshold for filtering 

clear-sky pixels, we found that the UTAI retrieved with our approach can increase to 

7.6 K (Fig. S17b), which is very close to the UTAI given by ref. [13]. This strongly 

suggests that the discrepancy between these two approaches may be related to the 

different filtering criteria of clear-sky pixels, with the UTAI generally more pronounced 

under clearer sky conditions due to the stronger solar radiation (Fig. S6; ref. [11]). This 

also indirectly shows the validity of our proposed method for deriving UTAI. To 

involve as many cities as possible, this study retains a threshold of 0.9 for filtering 

clear-sky pixels. 

 

We further compared the UTA curves and intensities between the current study and ref. 

[14] across 25 global cities during summer and winter daytime (Fig. S9). The results 

show that the UTAI quantified by this study are slightly larger than those by ref. [14] 

during both summer and winter. The patterns of UTA curves display a relatively good 

consistency between our study and ref. [14] during summer, while they become quite 

different during winter. The UTA curves of ref. [14] display a hotspot effect when the 

sensor VZA is large, while the hotspot occurs between +5° and +15° in the morning and 

between −25° and −15° in the afternoon in our study. These differences may be largely 



 

 

attributed to the different methods used to remove the impacts from daily weather 

variabilities in each study. Our study eliminated such impacts through substantial 

temporal averaging processes based on the Bessel formula in error theory [15]; while 

ref. [14] removed such impacts by incorporating in-situ SAT measurements within 

cities. Additionally, the small magnitude of UTAI and the relatively low quality of LST 

observations during winter may also introduce potential uncertainties into UTAI 

quantification, leading to observational differences between the two studies during 

wintertime. Further investigations of global UTA patterns during winter through 

extensive cost-efficient and easily operable means (e.g., unmanned aerial vehicles) 

remain necessary [17]. 

 

Note S4: More details on the quantification of UTA-induced biases in typical urban 

climate variables across global cities  

The calculations of percentage biases in urban surface-emitted longwave radiation (E), 

latent heat flux (LE), sensible heat flux (H), and Bowen ratio (BR) are detailed as 

follows according to ref. [18]:  

 

The percentage bias of E was calculated by the following formula:  
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where εs denotes the urban surface emissivity; σ represents the Stefan-Boltzmann 

constant (5.67×10−8 W·m−2·K−4); Ts_nadir and Ts_offnadir denote the LST (K) observed 

from nadir and off-nadir directions, respectively. 



 

 

 

The percentage bias of LE was calculated by the following formula:  
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where λ(Ta) represents the latent heat of vaporization (J kg−1) and is a function of 

near-surface air temperature (Ta). Ta was calculated based on the ERA5 reanalysis 

data; gc represents the vegetation coverage of urban surfaces; β represents the water 

stress factor; ρ is the mean air density (kg m−3); ra and rc represent the aerodynamic 

resistance (s m−1) and vegetation canopy resistance (s m−1), respectively; qsat(Ts) 

denotes the specific humidity at saturation (kg kg−1) and was calculated as 
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humidity of air (kg kg−1) calculated based on reanalysis product. 

 

By simplifying the 3D geometry of urban surfaces, the percentage bias of H was 

calculated as:  
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where cp(Ta) represents the specific heat of dry air at constant pressure (J kg−1 K−1) 

and is a function of Ta; and rah denotes the radiometric excess resistance [19].  

 

The percentage bias of BR (i.e., the ratio of H to LE) was therefore given by:  
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Is was calculated by the following formula:  
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where Is(θ) signifies the surface UHI intensity at the sensor VZA of θ; and Ts_urban(θ) 

represents the urban mean LST while Ts_rural(θ) represents the rural mean LST when 

the sensor VZA is θ.  

 

B. Supplementary Figures 

 



 

 

 

Fig. S1. Distribution of the chosen 5586 cities worldwide. 

 



 

 

 

Fig. S2. The intra-city elevation variation across global cities (a) and the global 

UTAI pattern calculated based only on pixels with elevation within ± 50 m of the 

median elevation of urban pixels during summer daytime (b). 

 



 

 

 

Fig. S3. Relative representations of cities used for UTAI investigation across 

various continents at different observation time nodes | The city representability 

was calculated as the ratio of the number of the final selected cities used for the UTAI 

investigation to the number of the original chosen cities. 

 



 

 

 

Fig. S4. Spatiotemporal patterns of UTAI across global cities | The global UTAI 

pattern during the day (a to d) and at night (e to h), with the values in each subgraph 

denoting the global mean UTAI at different time nodes. The first and second columns 

denote summer and winter, respectively.  

 



 

 

 

Fig. S5. Illustration of the urban area (red color) and rural area (blue color) | The 

rural area is delineated as the ring area between 10-km and 50-km buffer zone outside 

the corresponding urban area). The pixels beyond ± 50 m of the median elevation of 

each city and those identified as ‘urban and built-up’ were further discarded to more 

reasonably delineate rural surfaces. 

 



 

 

 

Fig. S6. The variations of UTAI along with the downward solar radiation (RAD; 

unit: W/m2) across global cities | The shadings represent the standard errors of the 

UTAI. The relatively large variation of RAD arises from both latitudinal and 

intra-seasonal variations of RAD. 

 



 

 

 

Fig. S7. Upper (a) and lower (b) limits of the transit time range (termed Tmax and 

Tmin, respectively) for Aqua satellite during summer daytime across global cities | 

The transit time is retrieved from the ‘Day_view_time’ band of MYD11A1 product. 

 



 

 

 

Fig. S8. Global mean urban thermal anisotropy (UTA) curves for the four seasons 

| The UTAITerra and UTAIAqua denote the Terra- and Aqua- based UTA intensity (UTAI), 

respectively, and the δLST represents the difference between off-nadir and nadir LST. 

For cities in the northern hemisphere, spring, summer, autumn, and winter were defined 

as March to May, June to August, September to November, and December to February, 

respectively; and vice versa for cities in the southern hemisphere. 

 



 

 

 

Fig. S9. Comparisons of urban thermal anisotropy (UTA) curves and intensities 

(UTAI) across 25 global cities obtained by this study and by Wang et al. (2022) 

(termed UTAIGEE and UTAIW, respectively) | The subplots (a), (b), (c), and (d) 

denote the Aqua-based summer daytime UTAI, Terra-based summer daytime UTAI, 

Aqua-based winter daytime UTAI, and Terra-based winter daytime UTAI, respectively. 

The δLST denotes the difference between off-nadir and nadir LST, and the VZA 

denotes the sensor viewing zenith angles (VZAs). 

 



 

 

 

Fig. S10. The latitudinal variations of UTAI across all climate zones during 

summer daytime.  

 

 



 

 

Fig. S11. The thermal anisotropy (TA) patterns during summer daytime over 

urban surfaces (red curves) and rural surfaces (blue curves) across global cities, 

as well as the TA impacts on surface UHI intensity (Is, green curves) for Terra Day 

(a) and Aqua Day (b) | TAIurban and TAIrural denote the TA intensity (TAI) over urban 

and rural surfaces, respectively; and Ts and VZA are the land surface temperature and 

viewing zenith angle, respectively.  

 

 

Fig. S12. Variations of summer daytime Is (a, c, e, and g) and the associated 

UTA-induced Is biases with different sensor VZAs (b, d, f, and h) in different 



 

 

climate zones | The red and blue curves denote the Aqua- and Terra-based results, 

respectively. 

 

 

Fig. S13. Variations of summer daytime Is and the associated UTA-induced Is 

biases with different sensor VZAs over arid (a and b) and humid cities (c and d) 

of North America | The red and blue curves denote the Aqua- and Terra-based results, 

respectively. 

 



 

 

 

Fig. S14. The summer daytime UTAI variations with different impervious surface 

percentages (ISPs; a and b) and surface air temperatures (SATs; c and d) across 

various climate zones.  

 



 

 

 

Fig. S15. Quantified impacts from threshold setting and urbanization on the UTAI 

quantification across global cities | The case for the threshold for filtering clear-sky 

pixels (denoted by threshold-1; a), for selecting usable sensor VZA intervals 

(threshold-2; b), and for choosing usable cities (threshold-3; c); the 

urbanization-induced impacts on the UTAI quantification using MODIS LST 

observations from 5 to 18 years (d).  

 



 

 

 

Fig. S16. The thermal anisotropy patterns over urban surfaces and water bodies 

in the day (a and b) and at night (c and d) | TAIurban and TAIwater denote the TAI over 

urban surfaces and water bodies respectively; and the shades represent the standard 

errors.  

 



 

 

 

Fig. S17. The UTAI over surfaces with different ISPs in New York (a and b) and 

Chicago (c) using different thresholds for filtering clear-sky pixels. 

 

C. Supplementary Table 

 

Table S1. Number of cities for the UTA investigation.  

Time node city number 

summer Terra day 5374 

summer Aqua day 5400 

summer Terra night 5287 



 

 

summer Aqua night 5261 

winter Terra day 4143 

winter Aqua day 4312 

winter Terra night 4872 

winter Aqua night 4590 
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