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A B S T R A C T   

Although nature-based solutions for urban heat mitigation have gained momentum, it is important to quanti-
tatively assess the feasibility of such strategies to utilize space efficiently and prioritize lower-income commu-
nities, who have fewer options for climate change adaptation. Here we combine data from US census estimates, 
satellites, and satellite-derived products to develop a framework to target potentially suitable areas for urban 
afforestation to mitigate urban heat and minimize tree cover disparity. We test this framework for California and 
show that space exists for an additional 36 million (1.28 million acres of) trees in the state’s urban areas. This 
would reduce the average urban land surface temperature by 1.8◦C and provide multiple co-benefits totaling 
$1.1 billion annually, including reduction in heat-related medical visits (almost 4000 over 10 years) and 4.5 
million metric tons of annual CO2 sequestration. Because funding is limited, we provide suitability scores for 
urban afforestation at the census block group (CBG) scale based on multiple considerations. In California, 
afforestation in CBGs with positive suitability scores will lead to $712 million of net annual benefits (against an 
annual investment of $467 million) and will serve 89% of the ≈9 million urban residents in the lowest income 
quartile for their cities. This method can guide equitable urban afforestation efforts and be scaled to other North 
American cities.   

1. Introduction 

Modern cities are centers of social, economic, and cultural activities 
and house over half the global population (Lewis and Maslin, 2015; 
Nations, 2018). The higher temperature in cities compared to sur-
rounding areas, usually a consequence of the replacement of natural 
surfaces with built-up areas, is associated with increases in heat-related 
mortality and morbidity and higher cooling energy demand at the urban 
scale (McMichael et al., 2008; Oke, 1982; Santamouris, 2014). With 
both the proportion of humans residing in cities and urban temperatures 
expected to increase in the future, urban areas have to be at the forefront 
of climate change adaptation and mitigation (“Cities must protect peo-
ple from extreme heat,” 2021). These adaptation and mitigation stra-
tegies must be deployed at the sub-urban scale because urban areas have 
large spatial heterogeneity, with the potential for disproportionately 

higher heat-related impacts on vulnerable communities (Chakraborty 
et al., 2019; Harlan et al., 2006). For instance, in the US, urban land 
surface temperature (LST) is generally higher in lower income neigh-
borhoods and is strongly associated with disparities in urban tree cover 
(Benz and Burney, 2021; Chakraborty et al., 2020; Hoffman et al., 2020; 
Hsu et al., 2021; McDonald et al., 2021; Nesbitt et al., 2019). These 
vulnerable populations have fewer options for dealing with heat ex-
tremes that contribute to over 5 million deaths a year globally (Zhao 
et al., 2021). Of the many urban heat mitigation strategies proposed, 
afforestation (defined as the planting of trees and creation of forest 
where it was historically absent) is a nature-based solution with multiple 
co-benefits, and if implemented strategically, would sequester carbon, 
moderate air pollution, reduce energy demand, moderate health impacts 
during hot summer months, and address additional environmental dis-
parities (Dorst et al., 2019; Fargione et al., 2018; McDonald et al., 2020; 
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McPherson et al., 2017; Remme et al., 2021). 
Recent studies have increasingly examined the efficacy and viability 

of green infrastructure to improve the livability within cities (Marando 
et al., 2022; Puchol-Salort et al., 2021), with numerous studies on as-
sociations between vegetation cover and local temperatures (Augusto 
et al., 2020; Chakraborty and Lee, 2019; Zhou et al., 2016; Ziter et al., 
2019). However, we know less about the physical and logistic viability 
of using afforestation to simultaneously mitigate urban heat and address 
disparities in urban green space (Drescher, 2019; Ziter et al., 2019). 
Without an intentional effort to reduce urban heat in the most impacted 
communities, we would leave these vulnerable populations exposed to 
the dire consequences of high urban temperatures, which will be further 
exacerbated by global and regional climate change (Sharifi et al., 2021). 
About 85% of Americans live in metropolitan areas. High population 
densities, presence of built-up areas, and the necessity for critical 
infrastructure all limit the plantable area for new trees within urban 
areas. This component is critical to consider for future urban planning 
and is missing in the existing literature. Many multi-city studies are 
based on model simulations, which have simplified or no representation 
of urban vegetation, and cannot sufficiently resolve intra-urban vari-
ability due to computational bottlenecks and scale limitations of phys-
ical parameterizations (Grimmond et al., 2011; Qian et al., 2022; Zhao 
et al., 2017; Zheng et al., 2021). The availability of spatially continuous 
satellite observations provides an opportunity to develop a scalable 
framework to examine heat mitigation and other benefits of urban 
afforestation. 

Here we combine medium to high-resolution satellite-derived esti-
mates of LST and tree cover with several ancillary inputs, including US 
census estimates, to develop a suitability algorithm that frames the ef-
ficiency of urban afforestation as an equitable nature-based solution to 
address urban-scale climate change. Our conceptual framework is 
applied over more than 200 urban areas in California, the most popu-
lated state in the US and the 5th largest economy (by GDP) in the world, 
which has seen increased susceptibility to heatwaves due to climate 
change (Hulley et al., 2020). This method, developed at the census block 
group (CBG) level, uses publicly available data and is designed to be 
scaled up across other North American cities. Leveraging the wealth of 
data and literature on the benefits of tree cover in California, we 
quantify some of the potential co-benefits of urban afforestation, as 
measured through reductions in heat-related health outcomes, energy 
used for cooling, and increases in carbon sequestration. 

2. Materials and methods 

In the present study, we first calculate the surface urban heat island 
(SUHI) intensity and the current tree canopy for urban areas in Cali-
fornia from satellite measurements and satellite-derived products. These 
estimates are combined with socioeconomic data from the US Census 
Bureau to describe income-based gaps in tree cover and SUHI. We then 
use a statistical method to estimate reduction in SUHI due to urban 
afforestation for different scenarios. Finally, published estimates of 
benefits and co-benefits of afforestation as well as ancillary health data 
are used to quantify potential carbon sequestration, changes in elec-
tricity demand, and reductions in heat-related health outcomes due to 
this afforestation. The subsections below further expand upon the data 
sources and methodology used for each step. 

2.1. Regions of interest and summarizing physical and socioeconomic 
data 

We develop the conceptual suitability framework for urban areas in 
California (Fig. S1a), where high temperature is a significant public 
health concern. The urban boundaries are based on the US Census Bu-
reau’s urbanized area dataset, which includes 211 boundaries that 
intersect with the state border (“2010 Census Urban and Rural Classi-
fication and Urban Area Criteria”). Of these, some of the boundaries are 

primarily in Nevada and Arizona, and since the EarthDefine data 
(“EarthDefine”), used to estimate current canopy cover, were not 
available outside California, these were removed from the calculations. 
We also remove the city of Paradise from our analysis since the city was 
burned in a wildfire in 2018. The final selection of 202 boundaries is 
intersected with CBG polygons. We use CBGs since they are the finest 
level of geographic aggregation for which median household income is 
publicly available. CBG level population, income, and number of hous-
ing units for 2018 from the American Community Survey (Mather et al., 
2005) are extracted using the census API package for the R programming 
language. 

For each CBG, we also calculate the area of each kind of land cover 
type based on the 30 m National Land Cover Database (NLCD) for 2016 
(Wickham et al., 2021). The fraction of land that is urban is based on the 
sum of the area of low, medium, and high intensity urban classes in the 
NLCD dataset. The current tree cover for each CBG is calculated from the 
1 m EarthDefine product for the year 2018, which uses deep learning 
algorithms to map urban tree cover (“EarthDefine”). Since EarthDefine 
data are only available within the urban boundaries, the portion of any 
CBG crossing the boundaries is masked out for all analyses. 

2.2. Estimating land surface temperature and surface urban heat island 
intensity 

Satellite observations can provide spatially continuous estimates of 
LST, which is important for studying intra-urban variability (Benz et al., 
2021; Duguay-Tetzlaff et al., 2015; Gallo et al., 1995). Although this 
radiometric surface temperature is not physically identical to 
near-surface air temperature, urban areas rarely have dense meteoro-
logical networks to estimate spatial variability of air temperature 
(Muller et al., 2013). Here we use daytime (at roughly ≈10:20 am local 
time) LST derived from the Landsat 8 satellite (Loveland and Dwyer, 
2012), which provides observations in the thermal band at a native 
resolution of 100 m. This resolution is sufficient to disaggregate the LST 
signal from CBGs, with none of the 21358 CBGs considered in the study 
smaller than the native Landsat resolution (100 m; Fig. S1b). Landsat 8 
measures top of the atmosphere thermal radiance, which needs to be 
converted into LST. This conversion is done here using the Statistical 
Mono-Window algorithm based on the linearization of the radiative 
transfer equation (Malakar et al., 2018). The equation can be formulated 
as: 

LST = Ai
Lsen

ε + Bi
1
ε + Ci (1)  

Here Lsen is the top of the atmosphere thermal radiance measured by the 
sensor in a particular thermal band (in this case, between 10.6 and 11.19 
micron) and ε is the surface emissivity for the same wavelength band. Ai, 
Bi, and Ci are empirical coefficients determined from radiative transfer 
calculations for 10 classes of columnar water vapor content in the at-
mosphere. The value of ε is estimated for each pixel based on mea-
surements by the Advanced Spaceborne Thermal Emission and 
Reflection Radiometer (ASTER) (Abrams, 2000), which is then adjusted 
using thresholds of Normalized Difference Vegetation Index (NDVI), a 
proxy for surface vegetation (Rouse et al., 1974). Using the version of 
the Statistical Mono-Window algorithm implemented on the Google 
Earth Engine cloud computing platform (Gorelick et al., 2017) by 
Ermida et al. (2020), the 5-year mean annual, summertime (June-Ju-
ly-August), and wintertime (December-January-February) LST are 
calculated from all available Landsat 8 images from 2015 to 2020 
(exclusive) over California. In total, after cloud-screening, 4807 Landsat 
8 scenes were processed (1304 and 1048 for summer and winter, 
respectively) with ~100 overlapping observations (~28 for summer and 
~23 for winter). 

We calculate the SUHI intensity for each of the 202 selected urban 
areas at both the urban scale and at the CBG scale. For both scales, the 
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rural reference is identical and is developed using an iterative buffering 
procedure around the urban boundary (Chakraborty et al., 2021a) using 
a step size of 30 m. The final buffered area is approximately equal to the 
area of the urban area it surrounds. 

The urban scale SUHI is calculated as the difference in mean LST (Eq. 
2) between the urban pixels (medium + high intensity urban classes 
from the NLCD dataset) in the urban boundary (LSTurb) and the non- 
urban and non-water (and water-adjacent) pixels in the reference 
buffer (LSTrur).  

SUHI = LSTurb - LSTrur                                                                   (2) 

On the other hand, the CBG scale SUHI (SUHIi), where i represents an 
individual CBG, is calculated as the difference in the mean urban LST of 
the pixels intersecting the CBG (LSTurb,i) and the earlier computed LST of 
the reference buffer for the whole urban boundary. Since elevation 
strongly controls temperature, for the rural reference, care is taken to 
account for this by only selecting pixels that are within 50 m of the 
median elevation of the urban boundary based on the Global Multi- 
resolution Terrain Elevation Data (GMTED) (Danielson and Gesch, 
2011). The analysis is done after resampling using nearest-neighbor 
interpolation to match the native resolution of the NLCD data (~30 
m). The urban scale and CBG scale summaries are based on 
area-weighted spatial means, which is commonly used to get regional 
summaries from satellite data (Chakraborty et al., 2020). 

Because SUHI is the difference in LST between a city and its rural 
background, by focusing on SUHI instead of actual LST, we can isolate 
the urban contribution to LST and thus determine how effective urban- 
scale nature-based policies can be at addressing and resolving this local 
climatic impact of urbanization. 

2.3. Computing plantable area for urban afforestation 

We refer to the tree planting within Californian cities as afforestation 
and not reforestation since a lot of these regions did not originally have 
forests. We estimated the potential area for this afforestation (or the 
plantable area) for each CBG from the total empty space (area that is not 
built up, not impervious, and not vegetated) within a Landsat pixel. This 
was done by removing the total area of NLCD 2016’s low, medium and 
high-intensity developed pixels and as well as the total EarthDefine tree- 
covered area from the total area of each CBG. Areas extending beyond 
census-block tracts, exurban areas and impervious surfaces (such as 

buildings or parking lots) were also excluded. The area of afforestation is 
converted into number of trees using the mean tree density for low 
density residential areas in Los Angeles and Sacramento (70 per hectare 
or 28.33 per acre) found in McPherson et al. (McPherson et al., 2013). 

2.4. Estimating surface urban heat island mitigation potential 

A multivariate linear regression was developed for each urban area 
to quantify the relationship between percentage tree canopy cover (Can) 
and SUHI. Although this relationship was the primary focus of the 
regression, physical characteristics other than tree cover - from building 
density and height to overall urban form to the distribution of vegetation 
- also influence SUHI (Liu et al., 2021; Zeng et al., 2021; Zhou et al., 
2016). We did not have these relevant uniform California-wide datasets 
available. Therefore, we incorporated ancillary information to serve as a 
proxy for some of the desired information about the physical environ-
ment. The additional variables we chose to use include: distance from 
the coast (DistCoa), distance from the centroid of the urban area (DistUrb), 
population density (Pop), income (Inc), and the percentage of the area 
covered by NLCD high intensity developed (NLCDHigh), medium in-
tensity developed (NLCDMed), low intensity developed (NLCDLow), open 
space developed (NLCDOpen), and all other NLCD classes (NLCDOther). 
These additional factors serve as simplified proxies for mechanisms that 
can modulate the SUHI such as coastal advection (DistCo), degree of 
urbanization (DistUrb, NLCDHigh, NLCDMed, NLCDLow, NLCDOpen, 
NLCDOthe), and anthropogenic activity (Pop, Inc). The linear model can 
be formulated as:  

y = β0Can + β1DistCoa + β2DistUrb + β3Pop + β4Inc + β5NLCDHigh +

β6NLCDMed + β7NLCDLow + β8NLCDOpen + β9NLCDOther + β10          (3) 

where β0 to β10 are the coefficients and y is the daytime summer SUHI 
intensity. 

Since these additional variables are assumed not to change with the 
addition of tree canopy cover, we can use this equation to estimate the 
sensitivity of SUHI to Can from the slope of the first term in the 
regression (β0). This slope was used to calculate the SUHI change (ΔUHI) 
for the three tree canopy cover scenarios (MPUA, TREEGAP, and UHI-
GAP) outlined in the next subsection. See an example of this multi- 
variate linear model in Fig. 1 below. 

The r2 for each city’s regression ranged from 0.23 to 1. 88 cities have 
r2 greater than or equal to 0.5. Of these, 77 cities have a slope (β0) less 

Fig. 1. An example of the linear model used to represent SUHI as a function of census and satellite-derived data for the urban cluster encompassing Los Angeles, Long 
Beach, and Anaheim. The SUHI reduction is calculated for the different scenarios using this model and estimates of plantable area within CBGs. The mean canopy 
cover percentage and SUHI corresponding to the highest and lowest income quartile CBGs in the urban cluster are also shown. 

T. Chakraborty et al.                                                                                                                                                                                                                           



Sustainable Cities and Society 81 (2022) 103826

4

than 0 in the multi-variate linear model, ranging from -30.61 to -0.01. 
Cities with r2 less than 0.3 and fewer than 15 CBGs were disregarded for 
regression-related analysis in this paper. Only in 94 of 21358 CBGs 
(0.4%) is SUHI after afforestation greater than current SUHI due to 
statistical artifacts, which include uncertainty in the input data and not 
being able to fully resolve the coastal influence on SUHI. These are also 
ignored when summarizing the results. 

2.5. Defining urban afforestation scenarios 

We define multiple scenarios for urban afforestation at the CBG level 
by combining the NLCD (Wickham et al., 2021) and EarthDefine 
(“EarthDefine”) tree canopy cover data with census-derived estimates of 
income (Mather et al., 2005). These scenarios are:  

• Maximum Potential Urban Afforestation or MPUA: This scenario 
assumes complete afforestation in all of the plantable space within 
each urban CBG. This does not include converting parking lots or 
existing built-up areas to urban forests.  

• TREEGAP: The scenario aims to close the disparity in tree cover 
while factoring in the distribution of plantable area.  

• UHIGAP: The scenario targets the plantable area to close the daytime 
disparity in SUHI between the highest income quartile and the urban 
CBGs. 

Unlike the MPUA scenario, which represents an upper bound for 
potential urban afforestation, the TREEGAP and UHIGAP scenarios are 
intended to minimize disparities in urban tree cover and daytime SUHI, 
respectively, by selectively targeting CBGs with vulnerable populations. 
For the UHIGAP scenario, the sensitivity of SUHI to tree cover per-
centage is computed for each city using Eq. 3. For the TREEGAP and 
UHIGAP scenarios, if the potential area was less than required to close 
the tree canopy cover gap and SUHI gap, respectively, the potential area 
(for MPUA scenario) was used instead of the area needed to close the 
gaps. 

2.6. Examining benefits and co-benefits of urban afforestation 

We estimate potential benefits and co-benefits (see following sub-
sections) of urban afforestation to better quantify the importance of such 
nature-based solutions beyond SUHI mitigation. For this analysis, Cali-
fornia is an ideal location due to widespread data availability, the state’s 
susceptibility to heatwaves, and a rich scientific literature on the impact 
of urban afforestation (Chen et al., 2020; Hulley et al., 2020; McPherson 
et al., 2017; Shonkoff et al., 2011). While there are additional potential 
co-benefits, we primarily focused on addressing tree cover inequality 
while benefiting the vulnerable populations exposed to excess urban 
heat and climate change16. 

2.6.1. Avoided heat-related health outcomes 
We calculate baseline values for the expected avoidance of heat- 

related health outcomes for a group of select urban areas in California 
by combining multiple health outcome datasets with summertime LST 
estimates (Fig. S2). The health outcome data include Emergency 
Department and Patient Discharge Datasets from the State of California, 
Office of Statewide Health Planning and Development (OSHPD), Mul-
tiple Cause of Death Files from the State of California, Department of 
Public Health, Office of Vital Statistics, and the Death Statistical Master 
File from Department of Public Health, Office of Vital Statistics. These 
data sources are combined to provide heat-related emergency depart-
ment visits, hospitalizations, and deaths for 2009-2018 by patient zip 
code. For zip codes with less than 12 cases, the data are suppressed due 
to Health Insurance Portability and Accountability Act (HIPAA) privacy 
regulations. For these zip codes, we make a conservative estimate that 
the number is the minimum possible, i.e. 1 during the entire period. In 
parallel, we calculate the mean summertime LST during the study period 

(2015 - 2020) for each of those zip codes. Using this database, we 
calculate the sensitivity of heat-related health outcome (HO) per capita 
to summertime LST for all cities where the number of available zip codes 
exceed 10 using a linear model. This sensitivity (∂HO

∂LST) represents the 
number of heat-related health outcomes per capita for a unit change in 
LST. This includes 9 urban areas, namely Concord, Fresno, Los Angeles, 
Mission Viejo, Riverside, Sacramento, San Diego, San Francisco, and San 
Jose. We use this sensitivity, the daytime summer SUHI reduction for the 
MPUA scenario (ΔUHIMPUA), and census population estimates (Pop) to 
calculate the avoided heat-related health visit (HOav) during a similar 
period using the equation: 

HOav =
∂HO
∂LST

PopΔUHIMPUA (4) 

A few caveats to note here. HO depends not only on LST (with air 
temperature being more relevant for heat-related health outcomes), but 
also on behavioral effects. We assume that the HO are primarily due to 
mean summertime temperature even though the HO dataset is available 
as a multi-annual mean. In reality, a large fraction of these outcomes 
would be during extreme events, which are harder to predict from 
Landsat satellite observations. However, we assume that these extreme 
events add to already existing spatial variability in baseline LST, which 
is captured by our analysis. We would also not expect the sensitivity to 
HO to LST to be linear, meaning our estimates are mainly conservative. 
Given all these uncertainties, we stress that the estimates provided here 
should not be overanalyzed and are intended to support the importance 
of urban heat reduction on avoided heat-related health outcomes, which 
is also well established in cohort-based and physiological studies 
(Christidis et al., 2010; Hajat and Kosatky, 2010). 

2.6.2. Enhanced net carbon sequestration and afforestation cost-benefit 
We estimate the net carbon sequestration due to urban afforestation 

by taking the average of the values calculated by Nowak et al. (Nowak 
et al., 2013) for Los Angeles (0.327 kg carbon m− 2 yr− 1), Sacramento 
(0.221 kg carbon m− 2 yr− 1), and San Francisco (0.107 kg carbon m− 2 

yr− 1). We combine the average carbon sequestration rate of 0.218 kg 
carbon m− 2 yr− 1 or 3.24 kg CO2 acre− 1 yr− 1 with our estimated total 
urban afforestation potential to get the net carbon sequestration for each 
city. Note that this is a counterfactual analysis that assumes fully grown 
trees in the urban area. Moreover, we would assume a large degree of 
variability in this sequestration estimate based on the species of tree 
planted and other considerations like nutrient and water availability. 
This is a topic of continued research and given the scale we are working 
at, is beyond the scope of the present study. 

To get bulk estimates for the cost and benefit for each afforestation 
scenario, we combine estimates of maximum tree density for urban areas 
in California with the mean annual cost and benefit per tree ($19 for 
management and $47.83 for benefit) for California’s urban forests 
(McPherson et al., 2017). 

2.6.3. Reduced urban energy consumption 
The decrease in energy consumption during summer due to SUHI 

mitigation is primarily through reduced air conditioning needs. Here we 
estimate this decrease in energy consumption by combining estimates of 
urban AC saturation rate by California’s Building Climate zones (ACp,z), 
with the sensitivities of electricity consumption (E) to ambient tem-
perature (T) and estimates of number of housing units (Hi) from the 
census data. The AC saturation rate is from Chen et al. (2020) based on 
reported utility data throughout California. This includes central air 
conditioning, room AC, and evaporative coolers. The data are available 
for all but Climate zone 6. For this climate zone, we take the mean AC 
saturation for the whole state, which is 0.77. Since Chen et al. (2020) 
provided sensitivity values for various poverty percentiles, we take 
upper and lower bound estimates for the highest and lowest percentile 
bins in that study. For each CBG, the total energy consumption reduction 
is formulated as: 
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Fig. 2. Evaluation of calculated daytime SUHI for summer, winter, and entire year derived from Landsat data for the present study for the 57 urbanized areas in 
California against a previous nationwide dataset (Chakraborty et al., 2020) derived from MODIS satellite observations. 

Fig. 3. Summary of daytime Surface Urban Heat Island (SUHI) intensity for California. Sub-figure (a) shows the statistical distribution of city-level mean annual, 
summertime, and wintertime SUHI in California during daytime based on satellite measurements from 2015 to 2020. Sub-figure (b) shows the statewide spatial 
distribution of city-level summer daytime SUHI, while sub-figures (c) and (d) show the intra-urban variability of SUHI for Greater Los Angeles and the San Francisco 
Bay area, respectively, at the CBG level. 
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Ered,i =
∂E
∂T

HiACp,z (5) 

The energy saving values for individual cities are in Fig. S3. 

3. Results 

3.1. Evaluating surface urban heat island estimates 

A subset of our SUHI estimates – for the urbanized areas (n=57) 
within California - are first evaluated against a recent nationwide 
dataset (Chakraborty et al., 2020) to check the accuracy of our methods 
before further analysis. Overall, for all cases (annual, summertime, and 
wintertime), the variability in SUHI is captured well by our analysis 
(Fig. 2). The difference in magnitude is expected since the nationwide 
dataset uses the Simplified Urban Extent algorithm (Chakraborty and 
Lee, 2019), which provides more conservative estimates of SUHI than 
buffer-based methods and because Landsat-derived urban LST tends to 
be higher than those calculated from Moderate Resolution Imaging 
Spectroradiometer (MODIS) observations due to multiple factors 
(Chakraborty et al., 2021b). 

3.2. Disparities in surface urban heat islands and tree cover in California 

Consistent with previous studies (Chakraborty et al., 2020; Imhoff 
et al., 2010), the daytime SUHI for cities in California is highest during 
summer (area-weighted mean and standard deviation across clusters of 
2.95◦C and 2.96◦C) and lowest in the winter (1.43 ± 1.04◦C; Figs 3a, 3b, 
and 4). Because summer has the highest potential for heat-related 
mortality and morbidity, we focus on mitigating urban LST during this 
season. The city-mean summer daytime SUHI is positive for 165 of the 
202 selected cities (higher than 5◦C in 34 cities) and negative, i.e. the 
rural background is relatively warmer, in 37 primarily arid cities 
(Fig. 4b). A negative SUHI (or urban cool island) over arid cities is 
generally due to additional tree cover and vegetation within the urban 
area versus its surroundings and is consistent with previous observa-
tional estimates (Chakraborty et al., 2020; Chakraborty and Lee, 2019; 
Imhoff et al., 2010). 

The intra-urban variability in the daytime SUHI is large and can 
disproportionately impact lower income communities (Benz and Bur-
ney, 2021; Chakraborty et al., 2020, 2019; Hoffman et al., 2020; Hsu 
et al., 2021; Voelkel et al., 2018). We represent this variability by esti-
mating SUHI at the CBG level, demonstrated for the Greater Los Angeles 

and San Francisco Bay areas (Figs 3c and 3d). We use a sample size 
threshold of at least 10 CBGs per city to test for linear relationships 
between variables (Fig. 5a) and find that over 89% of these cities (84 of 
94) show negative associations between daytime SUHI and median in-
come. Thus, in most cases, lower income populations live in regions with 
higher SUHI (and thus, LST), with the composite mean correlation co-
efficient (r) of -0.35 ± 0.3 after Fisher’s z transformation and 
back-transformation (Chakraborty et al., 2020). This pattern is strongly 
controlled by availability of tree cover at the CBG scale (Fig. 6), because 
the presence of vegetation strongly controls the SUHI intensity (Fig. 5a) 
(Chakraborty and Lee, 2019; Zhou et al., 2016). Lower income CBGs 
have a lower percentage of tree cover in ≈69% (65 of 94) of cases (r =
0.17 ± 0.3). 

To illustrate further, we also calculate the difference in tree cover 
percentage and summer SUHI for the CBGs in the highest and lowest 
income quartile for each city. These can only be calculated for cities with 
at least 4 CBGs. Of the 166 cities that fulfill this criterion, 126 cities have 
a negative gap in summer daytime SUHI (i.e., CBGs in the highest 
quartile of income have a lower SUHI than those in the lowest quartile) 
Fig. 6b shows the 20 cities in California with the highest daytime sum-
mer SUHI and canopy cover gap, as well as their current city-wide mean 
SUHI and percentage tree cover. Overall, the multi-city mean daytime 
summer SUHI is 1.84◦C for the highest income quartile CBGs and 3.58◦C 
for the lowest income quartile CBGs. Similarly, the multi-city mean 
canopy cover is 20.7% and 14.8% in the highest and lowest quartile of 
CBGs, respectively. 

3.3. Surface urban heat island mitigation through equitable urban 
afforestation scenarios 

Overall, Californian cities have space for 1.38 million acres of trees 
(MPUA scenario). To close the tree gap as much as possible (TREEGAP 
scenario), we would require 0.24 million acres of urban afforestation or 
6.8 million additional trees. For cities that satisfy the statistical con-
straints for the UHIGAP scenario, the MPUA, TREEGAP, and UHIGAP 
scenarios yield 1.28 million, 0.22 million, and 0.56 million acres, 
respectively. The relatively small difference between this subset and the 
overall superset is caused by cities with CBGs less than or equal to 15 or 
the r2 of the correlation between SUHI and tree cover percentage being 
less than 0.30. These cover less than 8% of the total area of cities 
considered (only 4.3% of the urban population). For the 81 cities that 
fulfill the criteria for inclusion, the MPUA scenario would reduce the 
summer daytime SUHI, and thus urban LST, by an average of 1.8◦C, 

Fig. 4. Spatial distribution of city-level daytime SUHI. Sub-figures (a) and (b) show the spatial distribution of city-level annual and winter daytime SUHI, 
respectively. 
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while the TREEGAP scenario would reduce it by an average of 0.3◦C 
Fig. 7. shows both the available area for potential afforestation for the 
three scenarios for a subset of cities with the highest respective values, as 
well as the SUHI intensity for the different cases. Note that the daytime 
SUHI gap does not disappear for the corresponding scenario since most 
CBGs do not have enough plantable area to accommodate that acreage 
of afforestation. This potential lack of space availability is particularly 
an issue in poorer CBGs with more urban density and is an issue that is 
rarely focused on while discussing nature-based heat mitigation strate-
gies in cities. Among the urban clusters shown in Fig. 7b, there are also 
cases (for instance, Sacramento, Riverside, etc.) where the daytime SUHI 
would be negative for the MPUA scenario. This suggests a large amount 
of plantable area for urban afforestation in those clusters or a large 

sensitivity of SUHI to canopy cover percentage (or both). 

3.4. Examining additional benefits and co-benefits 

The reduction in SUHI is a direct benefit of urban afforestation from 
our statistical analysis and allows one to partially address disparities in 
potential heat exposure in cities. Urban tree cover however has several 
other direct and indirect benefits, ranging from increased carbon 
sequestration to reducing stormwater runoff to reducing heat-related 
mortality and morbidity. Drawing from estimates by McPherson et al. 
(McPherson et al., 2017, 2013), annual net carbon sequestration 
through afforestation would be 4.5, 0.8, and 2 million metric tons of 
CO2, respectively, under the MPUA, TREEGAP, and UHIGAP scenarios in 

Fig. 5. Disparities in tree cover and urban heat islands across income groups. Sub-figure (a) shows the distribution of the correlation coefficient (r) between CBG- 
level percentage tree canopy and median income, summer daytime surface urban heat island (SUHI) and percentage tree canopy, and SUHI and median income, 
respectively, across the cities with > 10 CBGs. The composite mean correlations after Fisher’s z transformation and back-transformation are also annotated. Random 
horizontal jitter is used to minimize overlap between points. Sub-figure (b) shows the 20 cities with the highest gap in summer daytime SUHI between the CBGs in the 
highest and lowest income quartiles, as well as the corresponding mean and standard deviation of the current SUHI intensity. Sub-figure (c) shows bar plots of the 20 
cities with the highest gap in percentage tree canopy cover between the CBGs in the highest and lowest income quartiles, as well as the corresponding city-level 
percentage tree canopy. 
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California. This corresponds to net annual benefits ranging from $198 
million to $1.1 billion (“Carbon Footprint Calculator Assumptions”). 
Furthermore, afforestation in cities has added local-scale benefits of 
green space, including urban heat mitigation, moderating air pollution 
concentrations, and reducing heat-related mortality and morbidity 
(Fargione et al., 2018; McDonald et al., 2020; Zhao et al., 2021) Fig. 8. 
summarizes the multiple co-benefits that were examined during this 
study for multiple subsets of cities. 

For 35 cities in southern California, where we had data on air- 
conditioning penetration rates and sensitivity of electricity consump-
tion to ambient temperature (Chen et al., 2020), we also estimated 
reduction in cooling load due to urban afforestation. For the MPUA, 
TREEGAP, and UHIGAP scenarios, this translates to mean annual sav-
ings of 770 GWh, 95 GWh, and 327 GWh, respectively (Fig. S3). These 
energy savings would reduce annual GHG emissions by approximately 
183, 23, and 78 thousand metric tons (Bureau of Labor Statistics, US 
Department of Labor, 2019) (Fig. 9 shows a subset of results). The 
associated cost savings to residential users, assuming an average rate of 
$0.19 per kWh (BLS reference), ranges from approximately $1.2 to 
$10.1 million per year, corresponding to the TREEGAP and MPUA sce-
narios, respectively (Table S1). These values are much higher than the 
monetary value of the GHG emissions reduction as reflected by the social 
cost of carbon (SCC), which would be valued at between $1.2 million 
and $9.1 million per year using the central estimate of $50 per ton 
(Bureau of Labor Statistics, U.S. Department of Labor, 2019). Assuming 
a discount rate of 3%, consistent with the central rate used by the US 
Interagency Working Group (Interagency Working Group, 2016), and 
linear canopy growth until reaching maturity in year 35, the net benefits 
over 40 years add up to approximately $202 million for the TREEGAP 
and over 8 times more, approximately $1636 million, for the MPUA 
scenario (Table S2). In the absence of any intervention to reduce SUHI, 
the net present value of the social cost of carbon from residential elec-
tricity use ranges from $13.9 million to $112.8 million. 

Finally, for a smaller subset of cities for which we had heat-related 
health outcome data, we estimate the avoidance of almost 4000 
similar health outcomes for a corresponding 10-year period for the 
MPUA scenario (Fig. S2). Publicly available health related datasets are 
limited. Our health-related outcomes are summarized from heat-related 
mortality and morbidity data at zip code level for CA with more than 10 
observations, which only included six cities. Overall, our analyses show 
that urban afforestation in California, while not having a strong impact 
on large-scale climate change mitigation and emission reduction goals 
(for instance, less than 0.2% of the US nationally determined contribu-
tion goals for 2030), would contribute to climate adaptation through 

urban heat mitigation and its associated local-scale benefits. 

3.5. Suitability scores for urban afforestation efforts 

Since funding and resources for tree planting and maintenance are 
limited, we developed a spatial prioritization algorithm that provides 
suitability scores at the CBG level using two pathways - A1 and A2 - to 
close the gap in tree canopy cover and summer daytime SUHI between 
the highest income quartile CBGs and the CBGs of interest. This priori-
tization approach follows a stepwise analysis, depicted in Fig. 9, that 
determines: 

i) How many acres of trees are needed to close the tree gap (dif-
ference in tree cover between the highest income quartile CBGs 
and the CBG of interest; TREEGAP) and SUHI gap (difference in 
daytime summer SUHI between the highest income quartile CBGs 
and the CBG of interest; UHIGAP)?  

ii) How much plantable area is available for urban afforestation?  
iii) What is the maximum SUHI reduction potential if we maximized 

canopy (MPUA scenario; ΔUHIMPUA)?  
iv) What is the SUHI reduction potential if we only closed the tree 

gap and SUHI gap (TREEGAP and UHIGAP scenarios, 
respectively)?  

v) Optimize the benefit towards high population density and low 
household income blocks through implementation of suitability 
scores. 

Both A1 and A2 include a sensitivity index (SI) that identifies the 
high priority CBGs with high population and low income:  

SI = Population / Income                                                                  (6) 

The A1 score, which focuses on identifying CBGs with a high UHI-
GAP, high TREEGAP, and sufficient potential area to meet the TREEGAP 
goals, is calculated for all CBGs with a positive TREEGAP (e.g. have a 
lower tree canopy cover than the highest income quartile) using the 
equation:  

A1=UHIGAP * TREEGAP * SI /CANrat, TREEGAP                               (7) 

Here CANrat, TREEGAP is the ratio of additional canopy cover needed to 
meet the TREEGAP scenario vs. the amount of available space. 

The A2 score, which identifies CBGs with the most potential area for 
afforestation and the most need of additional canopy cover to close the 
UHIGAP, is calculated for all CBGs with a positive UHIGAP (e.g. have a 

Fig. 6. Intra-urban variability in canopy cover. Sub-figures (a) and (b) show the intra-urban variability in canopy cover for San Francisco and Los Angeles, 
respectively, at the CBG level. 
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higher SUHI than the highest income quartile) as:  

A2=ΔUHIMPUA * TREEGAPUHIGAP * SI /CANrat, UHIGAP                     (8) 

where ΔUHIMPUA is the expected change in daytime summer SUHI for 
the MPUA scenario, TREEGAPUHIGAP is the theoretical tree cover change 
needed to close the UHIGAP, and CANrat, UHIGAP is the ratio of canopy 
cover for the UHIGAP and MPUA scenarios. Following these formula-
tions, all CBGs included in the calculation for each urban area are then 
ranked from 0 - 100 for both A1 and A2, with 100 being the most 
suitable for afforestation. 

CBGs with higher A1 scores have more available area to close the tree 
canopy gap through afforestation, and are densely populated with lower 
income residents, thus benefiting a higher proportion of vulnerable 
people. A lower A1 score means that these blocks do not have enough 
space to completely close the disparity in tree cover from the highest 
quartile but will still benefit from closing the gap. Likewise, high A2 
scores mean that these CBGs have enough space to reduce the disparity 
in summer daytime SUHI from high income CBGs of the city, which 
positively impacts vulnerable populations. 

Out of 20461 CBGs (21358 CBGs for Californian cities) for which 

suitability scores could be calculated, 11460 CBGs are suitable for 
afforestation through the A1 pathway while 3553 of the rest are suitable 
for afforestation through pathway A2. The remaining CBGs are not 
suitable for afforestation within this framework because they either do 
not have enough available space to meet the tree cover needed to reduce 
SUHI intensity and/or do not benefit the lower income populations. The 
A1 CBGs equates to a total of 2.4 million acres, which is home to 20.7 
million people, or about 58% of the urban population in California, and 
the A2 CBGs are home to almost 26 million people, accounting for an 
additional 15% of the population. If urban afforestation efforts are 
carried out across CBGs using both A1 and A2 pathways, we have an 
additional 867439, 187236, and 564885 acres of urban trees for the 
MPUA, TREEGAP, and UHIGAP scenarios, respectively. This would 
reduce the current land area weighted mean daytime summer SUHI in 
these CBGs from 3.62◦C to 1.85, 2.6, and 3.25◦C, respectively, for the 
three scenarios. Moreover, the CBGs targeted by this afforestation 
strategy contain almost 89% of the ≈9 million urban residents in Cali-
fornia in the lowest income quartile for their cities. We have summarized 
the CBG level results for easy visualization through a Google Earth En-
gine web app, which we named CUTI (Closing Urban Tree cover 

Fig. 7. Urban afforestation and associated SUHI mitigation. Sub-figure (a) shows the area available for urban afforestation for the MPUA, TREEGAP, and UHIGAP 
scenarios for the 20 cities with the largest current canopy area and at least 4 CBGs. The carbon sequestration for each scenario is on the top x axis. Sub-figure (b) 
shows the current average summer daytime SUHI, as well as the SUHI for the different afforestation scenarios for the 20 cities with the highest current SUHI intensity, 
number of CBGs greater than 15. 
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Inequity). It can be accessed here: https://tnc-cuti.earthengine.app/vie 
w/tnc-ca-closing-urban-treeinequity. 

4. Discussion and limitations 

Several past studies have shown that across the US, low-income 
neighborhoods are hotter and have less tree cover than high income 
neighborhoods (Benz and Burney, 2021; Chakraborty et al., 2020; 
Hoffman et al., 2020; Hsu et al., 2021; McDonald et al., 2021; Nesbitt 
et al., 2019). In parallel, urban greening has been increasingly studied 
and proposed as a nature-based solution for the local-scale climate im-
pacts of urbanization (Ziter et al. 2019; Marando et al., 2022; Puchol--
Salort et al., 2021). However, cities have limited space for street trees 
due to urban development, which is an even bigger issue for 
high-density neighborhoods that house poorer populations (Drescher, 
2019). Thus, it is critical that we systematically examine the feasibility 
of urban greening within cities, both to constrain the space available for 
planting trees and to focus on poorer neighborhoods, since the vulner-
able populations living there have less resources to adapt to environ-
mental stressors like heat (Nesbitt et al., 2019; Drescher, 2019; 
Chakraborty et al., 2019). In the present study, we develop a scalable 
bottom-up approach using satellite remote sensing, tree canopy cover 
data, and census estimates to study disparities in SUHI and tree cover 
and provide a tool to strategically prioritize urban afforestation within a 
city by simultaneously closing the tree gap and reducing the SUHI. We 
implement our approach for California, which is experiencing a climate 
crisis with extensive heat waves during the summer with low income 
and vulnerable communities being disproportionately impacted 
(Shonkoff et al., 2011). In Los Angeles, for example, we find that the 
lowest income quartile has 9.5% less canopy cover and 2.7◦C higher LST 
than the highest income quartile based on our analysis. Although we 
find that closing urban tree cover gap cannot completely address the 
disparities in urban LST, we still see substantial benefits and co-benefits 
of planting trees within cities. Our method of prioritizing CBGs for urban 
afforestation is intended to inform policymakers and city planners with a 

suite of intentional options to logistically support future afforestation 
efforts within cities. Depending on the availability of funds and the costs 
of tree planting and maintenance, each city and local community can 
initiate a climate mitigation plan by first meeting the needs of the most 
impacted communities by closing the tree gap in A1 CBGs, and follow 
this with additional intervention in the CBGs that can support further 
afforestation and potentially reduce the SUHI further (A2 CBGs). 
Furthermore, our quantification of the benefits and co-benefits for each 
urban afforestation scenario provides decision makers data-driven evi-
dence to secure resources through the public and private sector to realize 
these additional benefits. There are however limitations due to both the 
datasets used and the methodological approach (see subsequent para-
graphs) that should be carefully considered to contextualize the results 
of this study. 

First, our focus on satellite-derived LST allows for a spatially-explicit 
multi-city perspective that is difficult with ground-based observations of 
air temperature (Muller et al., 2013). We note that air temperature is 
more directly relevant to public health (Anderson et al., 2013; Venter 
et al., 2021; Turner et al., 2022) than satellite-derived LST. However, 
while the relationship between air temperature and tree canopy 
coverage may be somewhat different in strength than that between LST 
and tree cover, we expect the direction of these relationships to be 
similar (Novick and Katul, 2020). Second, tree cover can also reduce 
heat exposure and improve pedestrian comfort through its shading effect 
(Middel et al., 2021; Zhao et al., 2018), which is difficult to estimate 
using satellite observations. Although our focus here was to derive sta-
tistical estimates of potential cooling due to local-scale afforestation, 
there is modeling evidence that increases in tree cover in the urban 
periphery can also cool down the urban core (Stone Jr et al., 2013). 
Regardless of these added potential cooling pathways through increased 
vegetation cover, it is important to note that multiple strategies need to 
be combined for maximum local-scale heat mitigation. For cities, this 
also includes surface albedo-based interventions such as reflective 
pavements and white roofs (Zhao et al., 2017). There are advantages and 
disadvantages of each. Although white roofs and reflective pavements 

Fig. 8. Summarized benefits and co-benefits for MPUA scenario. Summary of the MPUA afforestation scenario, including total plantable area in cities, number of 
trees that can be planted, and total populations served, and its benefits and co-benefits, including carbon sequestration, net economic benefits, reduction in daytime 
summer SUHI intensity, summer energy saving, and avoided heat-related health outcomes. Summaries are shown for different subsets of cities with different levels of 
ancillary information available to calculate co-benefits. 

T. Chakraborty et al.                                                                                                                                                                                                                           

https://tnc-cuti.earthengine.app/view/tnc-ca-closing-urban-treeinequity
https://tnc-cuti.earthengine.app/view/tnc-ca-closing-urban-treeinequity


Sustainable Cities and Society 81 (2022) 103826

11

may be more efficient at heat mitigation than urban green space (Zhao 
et al., 2017), reflective pavements have also been found to increase 
radiant heat exposure for pedestrians (Taleghani et al., 2016). Third, 
with urban afforestation, a reduction in temperature would also be 
associated with increases in humidity, which may hinder the total 
impact on heat stress (Hass et al., 2016). Finally, our analysis only ac-
counts for ground-level vegetation but several other forms of urban 

vegetation cover are possible (Wong et al., 2021). As such, our method 
for identifying potential areas for urban afforestation is intended to be 
used as a starting point for the planning, not as a siting tool. 

Our suitability framework can be applied throughout the US and can 
be expanded to the rest of the world with the availability of high- 
resolution tree cover datasets (Hansen et al., 2013). Although 
satellite-derived products are generally spatially continuous after 

Fig. 9. Summary of workflow to calculate A1 and A2 suitability scores for each urban CBG in California to close tree cover and urban heat island disparity between 
low-and high-income communities. Intermediate results for Los Angeles are shown I sub-figures (a) to (f) for illustrative purposes. SI (sub-figure (g)) is the sensitivity 
index for the CBG calculated by dividing the population by income. A1 (sub-figure (h)) is the suitability score to reduce urban tree cover disparity. Here CANrat, 

TREEGAP (sub-figure (c)) is the ratio of additional canopy cover needed to meet the TREEGAP scenario (sub-figure (a)) vs. the amount of available space. A2 (sub-figure 
(i)) is the suitability score to close the UHIGAP (sub-figure (b)) or urban heat island disparity. It identifies CBGs with the most potential area for afforestation and the 
most need of additional canopy cover to close the UHIGAP, where (e) ΔUHIMPUA is the expected change in daytime summer SUHI for the MPUA scenario, (d) 
TREEGAPUHIGAP is the theoretical tree cover change needed to close the UHIGAP, and (f) CANrat, UHIGAP is the ratio of canopy cover for the UHIGAP and 
MPUA scenarios. 
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temporal compositing, our primary limitation when expanding these 
estimates to every single city would be the ground-based socioeconomic 
data needed to better estimate the disparities. For example, income data 
from the US census bureau are not publicly available below the CBG 
scale, thus precluding the estimation of income quartiles, and thus the 
tree and SUHI gaps, in small cities with fewer than 4 CBGs. These so-
cioeconomic data are even more difficult to consistently acquire in other 
countries (Hsu et al., 2020). Similarly, if health related datasets are more 
readily available, our approach can help us more accurately quantify the 
number of lives that can be saved and improved across the nation 
through strategic intervention for each scenario. Although the adverse 
physiological impacts of heat on human health is well established in the 
epidemiological literature, behavioral factors can also play an important 
role (Christidis et al., 2010; Hajat and Kosatky, 2010). These broad es-
timates of reductions in heat-related health outcomes due to urban 
afforestation are meant to be indicative of the potential benefits of urban 
heat mitigation to further support climate action. For other co-benefits 
of afforestation, including the economic and carbon capture ones, it is 
important to stress that the numbers we draw from are based on 
broad-scale, sometimes idealistic, assumptions; an issue that has been 
discussed extensively for global estimates (Bastin et al., 2019; Grainger 
et al., 2019; Skidmore et al., 2019; Veldman et al., 2019). When using 
this suitability framework as a guideline to undertake more localized 
focused action, it is important to collaborate with experts across mul-
tiple fields and ground partners to acquire more relevant data, including 
more current estimates for co-benefits, more accurate socioeconomic 
information, and in situ weather measurements where available. 

Overall, our results indicate the necessity to establish more cross- 
sector collaborations and engagement between public health, urban 
forestry, and utilities to meet resources needed to mitigate climate im-
pacts within cities that impact people disproportionately (Carter et al., 
2015). With the recent popularity of tree planting projects such as 
Plant-for-the-Planet and the Trillion Tree Campaign (Goymer, 2018), 
cities have the opportunity to participate and secure funding for urban 
afforestation, which can benefit vulnerable populations. Our study 
quantifies several of these benefits, as well as co-benefits, and can be 
important for implementing equitable nature-based solutions in cities 
for climate change adaptation and mitigation. 

Conclusions 

It is becoming increasingly clear that climate change requires multi- 
pronged mitigation strategies that can be applied across scales. Because 
urban areas suffer from local-scale environmental concerns that affect a 
large proportion of residents, strategic and novel urban policies have the 
potential to re-design urban areas for climate change resilience while 
simultaneously sequestering carbon and furthering a more equitable 
distribution of environmental resources. Here we combine medium to 
high resolution satellite-derived estimates with census data to calculate 
the potential area available for urban afforestation for over 200 urban 
clusters in California at the census block group scale. Being the most 
populated state in the United States, 3rd most impacted by heat waves, 
and the 5th largest economy in the world, California provides an 
excellent location to demonstrate our approach to strategically reduce 
urban temperatures, impact millions of lives, and specifically benefit 
populations vulnerable to heat risk. We find that poor neighborhoods in 
California have 5.9% less tree cover and have 1.7◦C higher summer 
SUHI intensity than the affluent neighborhoods. This gap in tree cover 
can be partially reduced through targeted urban afforestation, which, in 
an ideal scenario, would reduce the mean summertime SUHI intensity by 
1.8◦C. We also utilize the wealth of data available for cities in California 
to calculate co-benefits of several urban afforestation scenarios and 
score census block groups in terms of their suitability for equitable urban 
afforestation (the scores can also be visualized through this web appli-
cation: https://tnc-cuti.earthengine.app/view/tnc-ca-closing-urban-t 
reeinequity). The results of this study can provide policymakers a tool 

to implement nature-based solutions to urban-scale climate change 
while strategically benefitting low-income and frontline communities. 
While our current work only focuses on California and is conceptual 
rather than prescriptive, in the future, the framework developed here 
can be improved and expanded upon across North American cities, 
counties, and states to spatially assess optimal locations for urban 
afforestation. 
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