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• The estimated SUHII is largely influ-
enced by urban and rural definitions

• Daytime SUHII shows a sign reversal in
nearly half of arid cities

• The SUHII uncertainty is related to the
discrepancy in the surface properties
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A B S T R A C T

The urban heat island (UHI) effect in arid cities can be small or even negative, the latter known as the urban cool
island (UCI) effect. Differences in defining urban and rural areas can introduce uncertainties in detecting UHI or
UCI, especially when the UHI signal is small. Here, we compared the surface UHI intensity (SUHII) estimated by a
dozen different methods (with multiple urban and/or rural definitions) across 104 arid cities globally, providing
a comprehensive evaluation of the uncertainty in SUHII estimates. Results show that the absolute difference in
annual average SUHII (ΔSUHII) among methods exceeded 1 ◦C in about half of the arid cities during both
daytime and nighttime. The overall annual mean ΔSUHII for all arid cities was 1.35 ◦C during daytime and
1.03 ◦C at night. The uncertainty arising from simultaneous variations in urban and rural definitions was
generally higher than that resulting from their individual changes. It was observed that, with varying definitions
of urban and rural areas, nearly 50 % of arid cities experienced a sign reversal in daytime SUHII estimates, while
approximately 15 % exhibited a sign reversal in nighttime SUHII. Variations in urban-rural differences in surface
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properties, such as vegetation index and albedo, due to differing urban and rural definitions, contributed strongly
to the observed SUHII uncertainties. Overall, our results offer new insights into the ongoing debate on heat and
cold islands in arid cities, emphasizing a critical need to standardize SUHII estimation frameworks.

1. Introduction

The process of urbanization involves changes in land cover and
intensive anthropogenic activities, often resulting in local temperature
increases and giving rise to the urban heat island (UHI) effect. The UHI
effect has received growing attention because of its impact on urban
microclimate, energy consumption, and the health of urban residents
(Mavrogianni et al., 2011; Ward et al., 2016; Zhong et al., 2017). In
recent years, with the development of remote sensing technology,
satellite-derived land surface temperature (LST) has been widely used to
estimate the surface UHI (SUHI) effect. Existing studies have compre-
hensively analyzed the SUHI effect from various aspects, including
quantification methods (Liu et al., 2023; Chakraborty et al., 2021; Yang
et al., 2023b; Li et al., 2019), spatiotemporal variations (Chakraborty
and Lee, 2019; Li et al., 2019; Wang et al., 2015; Siddiqui et al., 2021),
driving factors (Li et al., 2020a; Geng et al., 2023; Zhou et al., 2014), and
potential impacts (Luo and Asproudi, 2015; Dihkan et al., 2015). Ac-
curate quantification of the SUHI effect is of fundamental importance for
better constraining its variability and impacts.

The SUHI intensity (SUHII) is the quantitative magnitude of this ef-
fect, and is typically defined as the average difference in LST between
urban and rural areas. The prerequisite for accurate estimation of SUHII
thus relies on the delineation of urban and rural areas. Numerous
methods have been developed to quantify SUHII, with differences in the
definitions of urban and rural areas (Table 1). These differences can lead
to discrepancies in the mean LST with urban and rural areas, thereby
altering the quantified SUHII values. Multiple studies have focused on
the influence of rural definition on the estimation of SUHII (Schwarz
et al., 2011; Yao et al., 2018; Li et al., 2019; Li et al., 2022; Yang et al.,
2023b; Liu et al., 2023). For example, Yao et al. (2018) and Li et al.
(2022) found that using the rural area near the urban area would un-
derestimate SUHII in summer daytime, and it was more advisable to use
rural areas far away from the urban area for estimating SUHII. Li et al.
(2019) and Yang et al. (2023b) found that SUHII varied greatly along the
urban-rural gradients, especially during the daytime, and the difference
in rural definition led to large uncertainties in estimated SUHII. Liu et al.
(2023) found that the magnitude and direction of the SUHII trend were
significantly influenced by the selection of various rural references. In
addition to the rural area, the variability in urban area can also pose a
non-negligible impact on SUHII estimations given that changes in urban
extent can directly alter its inner mean LST (Yang et al., 2023a).
Currently, there are numerous publicly available products delineating
global urban areas, and several (e.g., the Moderate Resolution Imaging
Spectroradiometer (MODIS) land cover product) have been widely used
in SUHI-related studies (Chakraborty and Lee, 2019; Du et al., 2021; Hu
et al., 2022; Tuholske et al., 2021; Liu et al., 2022a; Yao et al., 2019).
However, inconsistencies persist among current urban products due to
differences in data sources and extraction methods (Yang et al., 2023a).
In summary, current studies exhibit variations in the definition of urban
and rural areas, introducing potential uncertainties in quantifying the
SUHI effect. However, there is still a gap in large-scale studies that
synthesize the combined effects of urban and rural definitions on SUHI
estimates.

The SUHII in arid cities has always shown atypical signals, and thus
has attracted great interest from researchers (Gaur and Squires, 2018;
Shen and Chen, 2010; Dialesandro et al., 2019; Abulibdeh, 2021;
Bakarman and Chang, 2015). Existing research has not yet reached a
consensus on the spatial distribution, magnitude, and temporal pattern
of SUHII in arid cities, particularly for daytime (Zhang et al., 2022;
Shafieiyoun et al., 2023; Rasul et al., 2016; Mohammad et al., 2019).

Many studies have indicated that urban areas in arid cities often display
lower temperatures compared to its peripheral areas, a phenomenon
characterized as the urban cold island (UCI) effect (e.g., Li and Chen,
2023; Rasul et al., 2017; Mohammad and Goswami, 2021; Lazzarini
et al., 2015). Nonetheless, other large-scale satellite-based estimates
have shown small but positive SUHII in arid zones (Chakraborty and Lee,
2019; Chakraborty et al., 2020). Even for the same city (e.g., Isfahan,
Iran), there may be different conclusions regarding the magnitude of the
UHI (Shirani-Bidabadi et al., 2019) or UCI (Zandi, R, et al., 2023). This
study hypothesizes that this ongoing controversy may be related to the
uncertainty caused by the estimation method, especially the delineation
method of urban and rural boundaries. Arid cities are surrounded not
only by typical desert vegetation but also by barren areas which have
very different LST (Campos and Brito, 2018; Wang et al., 2021; Liu et al.,
2021). Changing the urban-rural extent can alter their inner land cover
composition and LST, thereby increasing the spatial variability and
sensitivity of SUHII. Hitherto, there is still a lack of large-scale quanti-
tative analyses regarding the influence of urban and rural definitions on
identifying the UHI and UCI for arid cities.

Here, we select 104 cities across global arid regions and estimate
their SUHIIs using 12 distinct methods with distinct urban and rural
definitions. The absolute difference in SUHII (ΔSUHII) among these
methods is considered as the potential SUHII uncertainty induced by
urban and rural definitions. We conduct a comprehensive analysis of the
spatial and temporal patterns of ΔSUHII across arid cities globally. The
purpose of this study is to: (1) explore the impact of quantification
methods on SUHII estimates integrating both urban and rural defini-
tions; and (2) contribute to the ongoing debate regarding heat and cold
islands in arid cities.

2. Data

2.1. Global urban area data

Three widely used datasets, including the Global Urban Boundary
(GUB) dataset, the Global Human Settlement Layer (GHSL) dataset, and
a MODIS land cover product (MCD12Q1, shorted as MCD), were used for
delineating urban area in this study. The GUB and MCD data were ob-
tained from 2018, while the GHSL data were derived from 2020, the
closest available year to the other two data. These datasets enabled the
extraction of global coverage for urban areas and have been employed in
numerous studies related to the SUHI effect. The urban areas delineated
by different datasets vary greatly (Yang et al., 2023a), providing a
valuable opportunity for analyzing the uncertainty in SUHII induced by
urban area definitions. Details of these datasets are provided below.

The extraction of the GUB relied on the 30-m resolution global
artificial impervious area product released by Gong et al. (2020). These
data were first converted into a kernel density map using a kernel
density estimation method. Pixels with kernel density values exceeding
20 % were categorized as urban pixels. Subsequently, the urban pixels
were transformed into vectors and subjected to additional processing
through morphological operations to define the boundaries of the urban
area (Li et al., 2020b). The GUB has shown advantages in spatial reso-
lution and has been widely used in recent SUHI studies (e.g., Du et al.,
2021; Hu et al., 2022; Liu et al., 2022b; Yang et al., 2021).

The delineation of the GHSL urban area involved identifying a
concentrated grouping of spatially generalized adjacent grid squares
(Florczyk et al., 2019). This grouping should have an area of 1 km2, a
population density of no <1500 inhabitants per km2, or at least 50 % of
the built-up surface covered per km2 of surface, along with a requisite
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population of at least 50,000 (Florczyk et al., 2019). The GHSL dataset
includes >10,000 global urban centers with a spatial resolution of 1 km,
providing important data for large-scale studies on the SUHI effect
(Tuholske et al., 2021; Venter et al., 2021).

The MCD was obtained through a decision tree classification with a
supervised learning approach, containing five different land cover

Table 1
A summary of classical methods for estimating the SUHII.

Methods Descriptions Strength &
Weakness

Indicators References

Distance-
based
methods

The difference
in mean LST
between the
urban area
and the ring
buffer with a
specific width
at a certain
distance from
the urban area

Distance-based
methods have
the advantages
of simple
construction and
efficient buffer
creation, but
they are
constrained by
the inability to
apply a single
fixed buffer to
cities of varying
sizes (Lai et al.,
2018)

Urban areas
are identified
using the
MODIS land
cover
product,
while rural
areas are
defined as a
20 km wide
ring buffer
starting 10
km from the
urban area.

Yao et al.,
2019

Urban areas
are defined as
regions with a
high density
of impervious
surfaces,
while rural
areas are
defined as a 5
km ring
buffer
starting 45
km from the
urban area.

Imhoff
et al., 2010

Urban areas
are extracted
from the
Global
Human
Settlement
Layer (GHSL)
dataset, while
rural areas
are defined as
a 10 km ring
buffer
adjacent the
urban area.

Venter
et al., 2021

Urban areas
are extracted
from the
Landscan
population
dataset, while
rural areas
are defined as
a 10 km ring
buffer
adjacent the
urban area.

Clinton
and Gong,
2013

Area-based
methods

The difference
in mean LST
between the
urban area
and the
nearby buffer
area of several
times the size
of the urban
area.

Area-based
methods
consider the size
of the urban area
when selecting
the rural area,
making them
more suitable for
SUHI analysis
across different
cities. However,
they may
underestimate
SUHII due to the
close proximity
of rural areas to
urban areas (Li
et al., 2022,

Urban areas
are identified
by the MODIS
land cover
product,
while rural
areas are
defined as an
equal-sized
buffer
adjacent to
the urban
area.

Peng et al.,
2012; Liu
et al.,
2022b

Urban areas
are defined as
regions with a
high density
of impervious
surfaces,

Yang et al.,
2017;
Zhou et al.,
2014

Table 1 (continued )

Methods Descriptions Strength &
Weakness

Indicators References

Yang et al.,
2023b).

while rural
areas are
defined as an
equal-sized
buffer
adjacent to
the urban
area.
Urban areas
are extracted
from the
Global Urban
Boundary
(GUB)
dataset, while
rural areas
are defined as
a double-
sized buffer
adjacent to
the urban
area.

Yang et al.,
2023a

Landcover-
based
methods

The difference
in mean LST
between the
urban area
and other land
cover types

Landcover-based
methods are easy
to implement,
but
standardizing
the criteria for
selecting
suitable feature
types used for
temperature
comparisons is
challenging.

Urban areas
are defined as
urban and
built-up
pixels derived
from the
MODIS land
cover
product, and
rural areas
are defined as
all other land
covers.

Zhou et al.,
2010

Urban areas
are defined as
built-up
pixels, and
rural areas
are defined as
croplands.

Jin et al.,
2005

Urban areas
are defined as
built-up
pixels, and
rural areas
are defined as
water
regions.

Chen et al.,
2006

Gaussian
model-
based
methods

The maximum
of a Gaussian
surface fitted
to the LST
signal after
subtracting
the
background

Gaussian model
methods have
the advantage of
being less
affected by
missing values,
but only applies
to cities with a
single core (Yang
et al., 2023b).

Urban and
rural areas
are identified
by the
landcover
data provided
by USGS
EROS data
center (Sellers
et al., 1996).

Streutker,
2002

Urban and
rural areas
are identified
by the MODIS
land cover
product.

Tran et al.,
2006
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classification schemes (Sulla-Menashe and Friedl, 2018). In this study,
the categorization stemmed from the International Geosphere-Biosphere
Programme (IGBP) framework that encompassed a total of 17 distinct
land cover categories. The classification labeled as “Urban and Built-up
Lands” was used to delineate urban areas (Sulla-Menashe and Friedl,
2018). The MCD product offers long-term year-by-year global extent of
urban areas with a spatial resolution of 500 m, and has been a crucial
data source for SUHI-related studies (e.g., Chakraborty and Lee, 2019;
Clinton and Gong, 2013; Liao et al., 2022; Liu et al., 2022a; Peng et al.,
2012; Yao et al., 2019).

2.2. LST data

This study utilized LST data from the MODIS version-6 LST product
(MYD11A1) in 2018. This product provides global daily pixel-by-pixel
LST with a spatial resolution of 1 km. Both daytime (approximately
13:30 local time) and nighttime (approximately 1:30 local time) LST
observations are available. Previous studies have demonstrated the
overall high accuracy and good applicability of the MODIS LST product
(Duan et al., 2018; Wan, 2014), which has been a foundational dataset
for investigating the SUHI effect (Zhou et al., 2018). Referring to pre-
vious studies (Chakraborty and Lee, 2019; Li et al., 2019; Yao et al.,
2018), we excluded LST pixels with errors higher than 3 ◦C based on the
quality assessment layer. The daily LST observations were then averaged
annually and seasonally. For cities in the northern (southern) hemi-
sphere, the periods of summer and winter were defined as June–August
(December–February) and December–February (June–August),
respectively.

2.3. Auxiliary data

The Global 30 Arc-Second Elevation (GTOPO30) can provide a
global digital elevation model at s spatial resolution of approximately 1
km. It was developed by the United States Geological Survey in collab-
oration with many research institutes worldwide (Miliaresis and

Argialas, 1999). This data was obtained from 2018 and was used to
remove or reduce the influence of topographic relief on SUHII estimates.

The Global Surface Water (GSW) data can provide the maximum
water extent across global surface with a spatial resolution of 30 m. The
GSW data has a good level of accuracy, with errors of omission<5% and
commission <1 % (Pekel et al., 2016). This data was derived from 2018
and was employed to mitigate the influence of water bodies on SUHII
estimates.

The global impervious surface area was provided by Huang et al.
(2022), which had a spatial resolution of 30 m and an F1-score score of
0.935. We used this product for the year 2018, and calculated the
impervious surface fraction (ISF) within the spatial grid corresponding
to each MODIS pixel. The resultant ISF map was used to remove the
influence of surrounding impervious surface area on SUHII estimates.

The Köppen climate classification map counts among the most
widely used climate classification systems, dividing the global terrestrial
surface into five major climate groups: tropical, arid, temperate, cold,
polar zones (Kottek et al., 2006). This study used the Köppen-Geiger
climate classification map with a resolution of 1 km published by Beck
et al. (2018). This data was utilized to ascertain whether a city belongs
to the arid climate zone.

The land cover data was obtained from the Copernicus Global Land
Service (2018): CGLS-LC100 Collection 3. It has a spatial resolution of
100 m and an accuracy of 80 % (Buchhorn et al., 2020) and includes
fractional estimates for basic land cover classes (built-ups, bare areas,
trees, shrubs, water bodies and herbaceous, etc.). This dataset was used
to discuss the spatial variations of land cover difference caused by urban
and rural definitions and its possible effect on the LST.

The enhanced vegetation index (EVI) data was derived from the
MODIS vegetation index product (MYD13A2). This data has a spatial
resolution of 1 km and has been collected for the year 2018. The EVI is
known for effectively reflecting surface vegetation and has been widely
used in SUHII-related studies (Peng et al., 2012; Yang and Zhao, 2023;
Yang et al., 2019; Yao et al., 2019; Zhou et al., 2014). This EVI data was
used to discuss the possible reasons for the SUHII uncertainties caused

Fig. 1. (a) The spatial distribution of 104 arid cities. (b) The spatial disparity in both urban and rural areas under different definitions, taking two cities as examples.
The background images of the two cities are standard false-color (R: Band 4, G: Band 3, B: Band 2) composites of Landsat data (Landsat 8–9 OLI/TIRS C2 L1).
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by urban and rural definitions.
The white-sky albedo (WSA) dataset was obtained from the MODIS

albedo product (MCD43A3) for the year 2018. The bias of the MODIS
albedo product has been reported to be mostly less 5 % (Liu et al., 2009).
This product provides white-sky and black-sky albedos over shortwave
broadband with a spatial resolution of 500 m.We usedWSA in this study
due to the strong linear association between these two types of short-
wave albedos (Peng et al., 2012). The WSA data was also used to discuss
the possible reasons for the SUHII uncertainties caused by urban and
rural definitions.

3. Methods

The primary goal of this study is to examine how urban and rural
definitions impact SUHII estimates across global arid cities. This
objective can be achieved by comparing estimated SUHIIs based on
different methods that vary in urban and/or rural definitions. Hence, our
analysis encompasses two main steps: the delineation of urban and rural
areas and the subsequent calculation and comparison of SUHII.

3.1. Delineation of urban and rural areas

The urban area for each city was delineated by using different global
urban datasets, including GUB, GHSL, and MCD (refer to the section 2.1
for specific details). First, we extracted all GUB polygons situated in the
arid climate zone, and merged those that were in close proximity (<2
km) to each other. The threshold of 2 km is determined based on pre-
vious studies (Lai et al., 2021; Yang and Zhao, 2023; Zhao et al., 2016;
Zhou et al., 2014; Yang et al., 2023b). The same approach was also used
from the GHSL polygons and MCD polygons following raster-to-vector
conversion. Then, urban areas were identified based on the above
merged polygons (i.e., GUB, GHSL and MCD), with the following
criteria: (1) The selected urban patches exhibit overlapping regions in all
three datasets; (2) The selected urban patches are larger than 20 km2 in
all three datasets. We considered polygons in each dataset that meet the
above criteria as the corresponding urban areas (Fig. S1). Finally, 104
cities were selected, distributed across the global arid zone (Fig. 1). The
use of a 20 km2 threshold in this study is an empirical trade-off. Urban
areas extracted from different global datasets can vary substantially, and
using a higher threshold would exclude some major arid cities, reducing
the number of available city samples. Conversely, a lower threshold
increases the number of samples but introduces problems such as
increased data uncertainty and complicated data processing. For con-
venience, we denote the urban areas corresponding to GUB, GHSL, and
MCD as urban1, urban2, and urban3, respectively.

Rural areas can be defined in various ways, primarily categorized
into area-based and distance-based methods (Table 1). The most com-
mon area-based method is to define the rural area as an equal-sized
buffer adjacent to its central urban area (Yang et al., 2023b; Li et al.,
2019; Chakraborty et al., 2021). This study incorporated such an area-
based method, and the rural area obtained through this method was
referred to as “rural1”. The distance-based method generally defined a
ring buffer with a specific width (w) at a certain distance (d) from the
urban area as the rural area (Clinton and Gong, 2013; Yang et al.,
2023b). The selection of d and w varied among studies, and this study
incorporated three classical assignments for d and w: (1) d = 0, w = 10
km (Clinton and Gong, 2013); (2) d = 10 km, w = 20 km (Yao et al.,
2019); (3) d = 45 km, w = 5 km (Imhoff et al., 2010). The rural areas
corresponding to the three combinations of d and w were labeled as
“rural2”, “rural3”, and “rural4”, respectively. To mitigate the influence
of confounding factors, we excluded specific regions within the rural
areas based on the following conditions: (1) regions covered by water
bodies; (2) regions influenced by elevation anomalies (deviating from
urban median elevation by 50 m); (3) regions covered by other urban
pixels; and (4) regions affected by impervious surfaces (ISF > 5 %). We
applied a stringent threshold of 5 %, as it is the most commonly used

threshold (Imhoff et al., 2010; Yao et al., 2018; Yang et al., 2023a). This
processing helps ensure that the rural areas are more representative of
the natural background climate.

3.2. Calculation and comparison of SUHII estimates

This study incorporated three types of urban definitions (urban1,
urban2, and urban3) and four types of rural definitions (rural1, rural2,
rural3, and rural4) (Table 2). Thus, in each city, there were 12 (i.e., 3 ×

4) different methods for estimating SUHII, with variations in urban and
rural definitions. For a given city, assuming that the mean LST of the ith
(i = 1, 2, or 3) urban area is LSTu_i, and the mean LST of the jth (i = 1, 2,
3, or 4) rural area is LSTr_j. Then, the corresponding SUHII can be
expressed as:

SUHIIij = LSTu i − LSTr j (1)

Obviously, for each city, there were 12 different SUHII estimates
derived from various combinations of urban and rural areas. Then, we
performed the following comparative analysis:

(1) Comparing SUHII estimates with varying rural definitions while
keeping the urban definition constant. For example, by fixing the urban
area as urban1, we made a paired comparison of SUHII estimates (i.e.,
SUHII11, SUHII12, SUHII13, and SUHII14) for four different rural areas (i.
e., rural1, rural2, rural3, and rural4). The absolute difference between
these SUHII estimates reflects the uncertainty caused by rural
definitions.

(2) Comparing SUHII estimates with varying urban definitions while
keeping the rural definition constant. For example, by fixing the rural
area as rural1, we made a paired comparison of SUHII estimates (i.e.,
SUHII11, SUHII21, SUHII31) for three different urban areas (i.e., urban1,
urban2, urban3). The absolute difference between these SUHII estimates
reflects the uncertainty caused by urban definitions.

(3) Comparing SUHII estimates for all combinations of urban and
rural definitions. The absolute difference between these SUHII estimates
reflects the uncertainty caused by co-variation of urban and rural
definitions.

4. Results

4.1. Variations in SUHII estimates arising from different urban and/or
rural definitions

As shown in Figs. 2–3 and Table 3, arid cities experienced high
variability in SUHII estimates when based on different urban and/or
rural definitions. For instance, the annual daytime SUHII reached its
highest average value (0.19 ± 0.44 ◦C) when determined by urban3 &
rural1 (i.e., SUHII31) and showed the lowest average value (− 1.10 ±

0.61 ◦C) when derived from urban2 & rural4 (i.e., SUHII24). Notably,
nearly 30 % of arid cities exhibited sign changes in SUHII estimates

Table 2
Descriptions of urban and rural definitions used in this study.

Description Reference

urban1 The urban area derived from the Global Urban
Boundary (GUB) dataset

Gong et al., 2020; Li
et al., 2020b

urban2 The urban area obtained from the Global Human
Settlement Layer (GHSL) dataset

Florczyk et al., 2019

urban3 The urban area obtained from the MODIS land
cover product (MCD12Q1)

Sulla-Menashe and
Friedl, 2018

rural1 The rural area is defined as an equal-sized buffer
adjacent to its central urban area

Yang et al., 2023b; Li
et al., 2019

rural2 The rural area is defined as a ring buffer with a
specific width (w) at a certain distance (d) from
the urban area as the rural area (d = 0, w = 10
km)

Clinton and Gong,
2013

rural3 d = 10 km, w = 20 km Yao et al., 2019
rural4 d = 45 km, w = 5 km Imhoff et al., 2010

Z. Liu et al.
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when transitioning from SUHII31 to SUHII24 during annual daytime.
These results underscored the substantial influence of urban or rural
definitions on SUHII estimates for cities located in the arid zone, and a
detailed analysis of the uncertainty introduced by it was provided
below.

4.2. Uncertainty in SUHII estimates caused by rural definitions

By holding the urban definition constant, the average absolute dif-
ference in SUHII estimates resulting from different rural definitions was
calculated, denoting this as the SUHII uncertainty induced by rural
definitions, represented by ΔSUHIIR. The spatial distribution, diurnal
difference, and seasonal contrast of ΔSUHIIR corresponding to different
urban definitions exhibited similar patterns (Fig. 4 and Fig. 5). Notably,
ΔSUHIIR surpassed 0.5 ◦C in the majority (50 %–84 %) of arid cities for
all periods (Fig. 5a).

During the daytime, ΔSUHIIR exhibited notable spatial variations,
with larger values concentrated in arid cities located in the North
American and Central Asian regions (Fig. 4). Approximately half of the
arid cities experienced an annual daytime ΔSUHIIR exceeding 1 ◦C, with
a few cities surpassing even 3 ◦C (Fig. 5a). On a global average for arid
cities, the annual daytime ΔSUHIIR reached 1.21 ± 0.17 ◦C (urban1),
1.19 ± 0.19 ◦C (urban2), and 1.25 ± 0.17 ◦C (urban3), respectively
(Fig. 5b). Taken together, the average uncertainties induced by rural
definitions in SUHII estimations during annual daytime reached 1.21 ±

0.16 ◦C. Besides, daytime ΔSUHIIR showed pronounced seasonal
contrast, with the summer averages being approximately more than
twice of those in winter (Fig. 5b).

Compared to the daytime results, the nighttime ΔSUHIIR demon-
strated a smaller magnitude, accompanied by a low degree of spatial

variation, with values below 1 ◦C in more than three-quarters of the arid
cities (Fig. 5a). On average for arid cities globally, the annual nighttime
ΔSUHIIR was recorded as 0.77 ± 0.09 ◦C (urban1), 0.72 ± 0.11 ◦C
(urban2), and 0.78 ± 0.10 ◦C (urban3), respectively (Fig. 5b). Taken
together, the average uncertainties arising from rural definitions in
annual nighttime SUHII estimates were 0.75 ± 0.09 ◦C. Moreover, un-
like daytime, nighttime average ΔSUHIIR remained comparable be-
tween summer and winter (Fig. 5b).

The uncertainty in SUHII estimates induced by rural definitions may
result in changes in their signs, introducing potential inconsistencies
regarding identification of heat and cold islands. It was found that
approximately 22 % to 32 % of all arid cities experienced a sign reversal
in daytime SUHII estimates, while about 5.8 % to 10.6% exhibited a sign
reversal in nighttime SUHII estimates.

4.3. Uncertainty in SUHII estimates caused by urban definitions

By holding the rural definition constant, the average absolute dif-
ference in SUHII estimates resulting from different urban definitions was
calculated, which is the SUHII uncertainty induced by urban definitions
and represented by ΔSUHIIU. Unlike ΔSUHIIR, daytime and nighttime
ΔSUHIIU exhibited similar magnitudes, with approximately 30–40 % of
arid cities showing ΔSUHIIU exceeding 1 ◦C for both annual daytime and
nighttime (Fig. 6 and Fig. 7). On average, annual daytime ΔSUHIIU
reached 0.93 ± 0.13 ◦C (rural1), 0.88± 0.13 ◦C (rural2), 0.93 ± 0.14 ◦C
(rural3), and 1.11 ± 0.19 ◦C (rural4), respectively (Fig. 7b). Similarly,
annual nighttime ΔSUHIIU was 0.78 ± 0.13 ◦C (rural1), 0.90 ± 0.14 ◦C
(rural2), 1.01 ± 0.16 ◦C (rural3), and 1.02 ± 0.15 ◦C (rural4), respec-
tively (Fig. 7b). Taken together, the average uncertainties induced by
urban definitions in SUHII estimations during annual daytime reached

Fig. 2. Percentage-stacked bar chart of SUHII estimates based on different urban and/or rural area definitions. SUHIIij denotes the estimation derived from the ith
urban definition and the jth rural definition. The texts in parentheses after SUHIIij note the percentages of cities exhibiting a heat island effect (i.e., SUHII >0).
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0.96 ± 0.13 ◦C and reached 0.93 ± 0.13 ◦C during annual nighttime. In
terms of seasonal variation, summertime ΔSUHIIU was, on average,
approximately twice that of wintertime during the daytime, while
showing similar average values at nighttime (Fig. 7b). The uncertainties

caused by urban definitions can cause changes in the sign of SUHII es-
timates. It was found that about 18 % to 29 % of all arid cities experi-
enced a sign reversal in daytime SUHII estimates, while about 1.0 % to
13.5 % exhibited a sign reversal in nighttime SUHII estimates.

Fig. 3. Boxplot of SUHII estimates based on different urban and/or rural definitions. SUHIIij denotes the estimation derived from the ith urban definition and the jth
rural definition. The numerical values under the boxplot represent the mean ± 95 % confidence intervals. The central points and error bars in the boxes represent the
average values and 95 % confidence intervals of the SUHII estimates, respectively.

Table 3
Seasonal averages (± 95 % confidence intervals, ◦C) of SUHII estimates derived by different combinations of urban and rural definitions.

Period rural1 rural2 rural3 rural4

Summer day urban1 − 0.22 ± 0.43 − 0.50 ± 0.52 − 1.29 ± 0.55 − 2.20 ± 0.68
urban2 − 0.42 ± 0.46 − 0.81 ± 0.49 − 1.72 ± 0.55 − 2.42 ± 0.69
urban3 − 0.18 ± 0.41 − 0.60 ± 0.53 − 1.39 ± 0.61 − 2.26 ± 0.68

Summer night urban1 2.01 ± 0.20 2.27 ± 0.22 2.27 ± 0.24 2.11 ± 0.25
urban2 1.78 ± 0.18 1.88 ± 0.17 1.84 ± 0.21 1.65 ± 0.23
urban3 2.19 ± 0.19 2.39 ± 0.22 2.41 ± 0.24 2.24 ± 0.26

Winter day urban1 − 0.40 ± 0.27 − 0.46 ± 0.31 − 0.55 ± 0.36 − 0.71 ± 0.39
urban2 − 0.40 ± 0.25 − 0.47 ± 0.28 − 0.56 ± 0.33 − 0.61 ± 0.36
urban3 − 0.30 ± 0.25 − 0.46 ± 0.31 − 0.52 ± 0.36 − 0.65 ± 0.40

Winter night urban1 1.72 ± 0.20 2.06 ± 0.22 2.16 ± 0.25 2.15 ± 0.27
urban2 1.55 ± 0.17 1.73 ± 0.17 1.84 ± 0.21 1.80 ± 0.22
urban3 1.91 ± 0.20 2.22 ± 0.23 2.37 ± 0.27 2.32 ± 0.28
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4.4. Uncertainty in SUHII estimates caused by co-variation of urban and
rural definitions

There are a total of 12 different SUHII estimates that can be derived
based on different urban and rural definitions. The average absolute
difference between these SUHII estimates was denoted as the uncer-
tainty induced by co-variation of urban and rural definitions, repre-
sented as ΔSUHIIU_R. It was observed that nearly 60 % of arid cities
experienced ΔSUHIIU_R exceeding 1 ◦C during annual daytime, and
about 50 % during annual nighttime (Fig. 8c). On average, for arid cities
globally, the uncertainties in SUHII induced by the co-variation of urban
and rural definitions were 1.35 ± 0.14 ◦C and 1.03 ± 0.10 ◦C during
annual daytime and nighttime (Fig. 8d), respectively, surpassing those
induced by changes in the two individually.

In terms of seasonal variation, the summer daytime ΔSUHIIU_R
reached 1.84± 0.22 ◦C, which was significantly (p < 0.001) higher than
the winter daytime ΔSUHIIU_R. Similarly, the summer nighttime
ΔSUHIIU_R (0.80 ± 0.07 ◦C) was also higher than the winter nighttime
ΔSUHIIU_R (0.76± 0.07 ◦C), though their difference was not statistically
significant (p = 0.448).

The 12 different SUHII estimates in each arid city were assessed for
whether their signs of SUHII estimates changed. It was found that, under
the co-variation of urban and rural definitions, the percentages of cities
with sign reversals in daytime SUHII estimates were 51.0 % (annual),
51.0 % (summer), and 43.3 % (winter), respectively. Meanwhile, the
percentages of cities with sign reversals in nighttime SUHII estimates
were 17.3 % (annual), 17.3 % (summer), and 14.4 % (winter),
respectively.

5. Discussion

5.1. Possible reasons for the high uncertainty in SUHII estimates in arid
cities

The results of this study clearly demonstrated that SUHII estimates
for arid cities are significantly influenced by the definitions used to
select urban and rural areas. More importantly, the uncertainty caused
by urban and rural definitions can lead to a change in the sign of the
estimated SUHII. This can cause a reversal from heat to cold islands (and
vice versa) in nearly 50 % of arid cities during the daytime and
approximately 16 % of arid cities during nighttime. This high uncer-
tainty in the estimated SUHII for arid cities is precisely because of the
special land cover patterns and the small signal of the SUHI in these
cities. Unlike other climatic zones, the suburbs of many arid cities are
usually covered by deserts composed of bare soil and sand (a few are
vegetated) due to the lack of water (Li, 2003; Liu et al., 2021; Jones
et al., 2023). When the sun shines directly on the earth’s surface during
the day, the sand with a small specific heat capacity will quickly absorb
heat and increase the LST, making it higher than that in urban areas, and
so as to form an urban cold island. At night, the heat in the desert will
dissipate rapidly, causing the temperature to drop sharply, which will be
lower than the urban LST, so as to form an urban heat island (Zandi
et al., 2023). This phenomenon can also be clearly seen from the day and
night comparison results in Table 3 of this study. Complex land cover
composition may lead to significant spatial heterogeneity in surface
temperatures around urban areas in arid zones. As a result, changes in
the extent of urban and rural areas can lead to dramatic fluctuations in
LST within them that in turn can cause changes in the magnitude and
even the sign of the estimated SUHII.

To gain further insight into the causes of the high uncertainty in UHII

Fig. 4. Spatial distribution of ΔSUHIIR across global arid cities. ΔSUHIIR represents the average absolute difference in SUHII estimates among methods, where the
rural definition varies while the urban definition keeps constant. ΔSUHIIR reflects the uncertainty caused by rural definitions. In the first row (a-b), second row (c-d),
and third row (e-f), ΔSUHIIR values are presented with urban definitions fixed as urban1, urban2, and urban3, respectively.
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in arid cities, we included two surface properties, EVI and WSA, which
have been reported to be important factors influencing LST (Peng et al.,
2012; Yang and Zhao, 2023; Yang et al., 2019; Yao et al., 2019; Zhou
et al., 2014). Similar to SUHII, we calculated the urban-rural differences
in EVI (referred to as DiffEVI) andWSA (referred to as DiffWSA) for each
city. In addition, similar to ΔSUHIIU_R, we computed the mean absolute
differences for each city between DiffEVI and between DiffWSA ob-
tained under the 12 different urban and rural definitions, noting them as
ΔDiffEVIU_R and ΔDiffWSAU_R, respectively. These two metrics reflect
the uncertainty in DiffEVI and DiffWSA induced by co-variation of urban
and rural definitions, respectively. As depicted in Fig. 9, both DiffEVI
and DiffWSA demonstrated significant variations under different urban
and rural definitions, which aligned with the overall trend of SUHII.
Specifically, as depicted in Fig. 3, the mean values of annual daytime
and nighttime SUHII generally exhibited a decreasing and increasing
trend, respectively, as the definition of rural area shifted from rural1 to
rural3. Concurrently, as illustrated in Fig. 9, the mean values of DiffEVI
typically increased, while the mean values of DiffWSA typically
decreased, as the rural definition changed from rural1 to rural3. Fig. 10
shows the spatial patterns of ΔDiffEVIU_R and ΔDiffWSAU_R. It is evident
that both ΔDiffEVIU_R and ΔDiffWSAU_R exhibited high values in arid
cities across the North America and Central Asia, with a spatial distri-
bution similar to that of ΔSUHIIU_R (Fig. 8). Further spearman correla-
tion analysis revealed a significant (p < 0.05) positive relationship
between ΔSUHIIU_R and ΔDiffEVIU_R or ΔDiffWSAU_R (Fig. 10). Specif-
ically, ΔDiffEVIU_R exhibited a higher correlation coefficient with
ΔSUHIIU_R compared to ΔDiffWSAU_R, emphasizing the important role of

the vegetation index on heat islands (Fig. 10). For seasonal comparisons,
the correlation between ΔSUHIIU_R and ΔDiffEVIU_R was much stronger
in summer than in winter (Figs. S2–3), consistent with the seasonal
patterns in vegetation activity. In contrast, the correlation between
ΔSUHIIU_R and ΔDiffWSAU_R remained relatively consistent across sea-
sons, showing a weak positive relationship (Figs. S2–3).

Taken together, the analysis suggests that variations in urban and
rural definitions can influence their respective land covers, thereby
impacting surface properties such as EVI and WSA. These variations can
lead to differences in average LST within urban and rural areas, conse-
quently contributing to uncertainties in the estimated SUHII. To illus-
trate these ideas more intuitively, we used two arid cities as examples to
explore variations in land cover, surface properties, and SUHII estimates
under different urban and rural definitions. In Fig. 11, a representative
city demonstrated a notable variation in the spatial extent of its rural
areas under different rural definitions. These variations led to changes in
both the distribution and composition of land covers within different
rural areas. Specifically, with the transition from rural1 to rural4, there
was a gradual decline in the proportion of vegetation within the rural
area, accompanied by a corresponding increase in the proportion of bare
lands (Fig. 11c). This change in land cover composition led to a decrease
in rural EVI and an increase in rural WSA, resulting in a larger DiffEVI
and a smaller DiffWSA (Fig. 11b). SUHII was typically negatively
correlated with DiffEVI and positively correlated with DiffWSA (Peng
et al., 2012; Zhou et al., 2014). Consequently, SUHII showed an obvious
increasing trend when transforming from rural1 to rural4, with its
highest value of 2.50 ◦C based on rural1 and its lowest value of − 6.13 ◦C

Fig. 5. Diurnal and seasonal contrasts of ΔSUHIIR across global arid cities. ΔSUHIIR represents the average absolute difference in SUHII estimates among methods,
where the rural definition varies while the urban definition keeps constant. ΔSUHIIR reflects the uncertainty caused by rural definitions. In each subplot, the first,
second, and third rows display ΔSUHIIR values with urban definitions fixed as urban1, urban2, and urban3, respectively. The numerical values in (b) represent the
mean ± 95 % confidence intervals. The central points and error bars in the boxes represent the average values and 95 % confidence intervals of the ΔSUHIIR,
respectively.
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based on rural4 (Fig. 11b). Fig. 12 illustrates an example of how urban
definitions influence SUHII estimates. Despite the prevalence of artifi-
cial surfaces within the boundaries of all urban areas, modifying their
definitions can still lead to changes in the distribution of other land
covers within these areas (Fig. 12c). The modification of land cover
proportions can lead to a change in the DiffEVI and DiffWSA inside the
urban area, which further caused a change in the estimated SUHII
(Fig. 12b). However, the alterations in land cover resulted from urban
definitions were relatively weaker than that caused by rural definitions,
which partially elucidated why the uncertainty stemming from rural
definitions is generally higher than that arising from urban definitions.

To summarize, modifications in urban and rural definitions directly
impact their land cover and surface properties, resulting in shifts in their
average LSTs that, in turn, contribute to variations in the estimated
SUHII. The complexity of land cover types in/around arid cities can
amplify such variations in LST, consequently contributing to elevated
uncertainties in SUHII estimates. Additionally, the topography of

mountainous cities is characterized by substantial undulations, resulting
in considerable variations in the elevations of rural areas based on
different definitions. Even though areas with elevation anomalies have
been excluded during the rural selection process, the notable topo-
graphic relief in mountainous cities may still exert influences on the
estimation of SUHII (Yang et al., 2023b).

5.2. Implications and contributions

Firstly, this study provides a global-scale survey on the SUHI effect in
arid cities based on multiple remote sensing products and diversified
urban-rural definition methods. Previous studies have predominantly
focused on the separate effects of rural or urban definitions on SUHII
estimates (Schwarz et al., 2011; Yao et al., 2018; Li et al., 2019; Li et al.,
2022; Yang et al., 2023b; Liu et al., 2023; Yang et al., 2023a). This study,
however, is the first to analyze the combined effects of urban and rural
definitions on the estimated SUHII. Our findings revealed that the

Fig. 6. Spatial distributions of ΔSUHIIU across global arid cities. ΔSUHIIU represents the average absolute difference in SUHII estimates among methods, where the
urban definition varies while the rural definition keeps constant. ΔSUHIIU reflects the uncertainty caused by rural definitions. In the first row (a-b), second row (c-d),
third row (e-f), and fourth row (g-h), ΔSUHIIU values are presented with rural definitions fixed as rural1, rural2, rural3, and rural4, respectively.
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uncertainty arising from simultaneous variations in both urban and rural
definitions was generally higher than that resulting from their individual
changes. These results contribute to a more comprehensive under-
standing of the quantitative approach to SUHII quantification.

Secondly, this study offers new insights into the ongoing debate on
heat and cold islands in arid cities. Previous studies focused on arid cities
have not reached consensus on the spatial patterns and magnitudes of
the estimated SUHII, and even provided contradictory observations
between cold and heat islands (Sofer and Potchter, 2006; Rasul et al.,
2017; Chen et al., 2023; Reisi et al., 2019). By analyzing over a hundred
global arid cities, this study showed that the identification of UHI or UCI
depended largely on the choice of urban and rural definitions. This
provides a plausible explanation for the inconsistency between previous
analyses of the SUHII estimates in arid cities.

Thirdly, this study emphasizes the importance of constructing a
unified and scientific urban-rural division method for heat island
research. The heat island signal of arid cities is low, thus the determi-
nation of their UHI or UCI effect is more sensitive to the definition of the
urban-rural boundary than cities in other climate zones. Therefore, we
suggest that maintaining the “purity” of the selected urban and rural
areas is crucial for reducing uncertainty in the estimated SUHII for arid
cities. One potential approach is to define urban and rural areas based on
the local climate zone (LCZ) classification system, which categorizes
cities into different types (e.g., compact high-rise, heavy industry, low
vegetation, etc.) based on surface coverages and structural characteris-
tics (Bechtel et al., 2019). By defining urban or rural areas as specific
LCZ subtypes rather than a mixture of types, variations in SUHII due to
changes in boundaries of urban and/or rural extents can be minimized.
Although this study does not provide a definitive answer on how to
choose the optimal urban and rural areas, it offers possible ideas for

addressing the issue.

5.3. Limitations and future studies

First, we employed the most popular LST data, MYD11A1, for
calculating the SUHII. Given the high spatiotemporal variability in LST,
the results obtained by the MYD11A1 LST data may differ from those
derived other LST products (Yang et al., 2024; Yao et al., 2020). The bias
resulting from data discrepancies requires further analysis in future
studies.

Second, this study incorporated several commonly used definitions
of urban and rural areas, thereby encompassing a diverse range of SUHII
estimation methods employed in existing studies. However, it should be
noted that our analysis results can be influenced by the included
methods. For instance, a less comprehensive inclusion of methods may
introduce a bias, leading to an underestimation of the SUHII uncertainty
caused by urban and rural definitions (Fig. S4). As the SUHII research
progresses, new methods for quantifying this phenomenon continue to
emerge (Yao et al., 2023; Yang et al., 2023b; Li et al., 2022). Future
studies should integrate more methods to provide a better comprehen-
sive analysis of SUHII uncertainty resulting from estimation methods.

Third, this study empirically required that all cities included must
have an urban area >20 km2. This threshold ensures the selection of a
sufficient number (more than one hundred) of major arid cities globally,
but it leads to the omission of many small cities. As shown in Fig. 13, the
uncertainty in SUHII caused by urban and rural definitions did not
exhibit an obvious trend with increasing urban area during the daytime,
but it decreased greatly with increasing urban area (from 20 km2 to 300
km2) during the nighttime. Thus, ignoring small cities does not appear to
have a significant impact on the daytime SUHII uncertainty quantified in

Fig. 7. Diurnal and seasonal contrasts of ΔSUHIIU across global arid cities. ΔSUHIIU represents the average absolute difference in SUHII estimates among methods,
where the urban definition varies while the rural definition keeps constant. ΔSUHIIU reflects the uncertainty caused by urban definitions. In each subplot, the first,
second, third, and fourth rows display ΔSUHIIU values with rural definitions fixed as rural1, rural2, rural3, and urban4, respectively. The numerical values in (b)
represent the mean ± 95 % confidence intervals. The central points and error bars in the boxes represent the average values and 95 % confidence intervals of the
ΔSUHIIU, respectively.
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Fig. 8. Spatiotemporal patterns of ΔSUHIIU_R across global arid cities. (a-b) Spatial distributions of annual daytime and nighttime ΔSUHIIU_R. (c) Percentage-stacked
bar chart of ΔSUHIIU_R. (d) Boxplot of ΔSUHIIU_R. ΔSUHIIU_R represents the average absolute difference in SUHII estimates among methods with different urban and
rural definitions. ΔSUHIIU_R reflects the uncertainty caused by the co-variation of urban and rural definitions. The central points and error bars in the boxes represent
the average values and 95 % confidence intervals of the ΔSUHIIU_R, respectively.
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this study, but it could potentially lead to an underestimation of the
nighttime SUHII uncertainty. Furthermore, it is crucial to acknowledge
that by excluding areas within rural buffers affected by disturbing fac-
tors (details in Methods), there is a notable decrease in available rural
areas for some cities (see supplementary materials). The reduction in
accessible rural pixels may compromise the representativeness of
background climate data and potentially increase uncertainty in SUHII
estimates. Hence, future research should prioritize developing a dy-
namic method for rural area extraction that maximizes the retention of
background reference pixels while minimizing the influence of con-
founding factors.

Finally, this study offers a plausible explanation for the SUHII un-
certainties induced by urban and rural definitions, viewed through the
lens of land cover compositions and surface properties including EVI and
WSA. Alterations in urban and rural extents also influence other attri-
butes, such as human activities, regional climates, and other biophysical
attributes (Li et al., 2019; Liu et al., 2018). These factors are closely
linked to surface temperatures in urban and rural areas, influencing
SUHII estimates (Peng et al., 2012; Zhou et al., 2014). Future analyses
can be even more thorough and comprehensive by incorporating

additional datasets.

6. Conclusions

The ecological susceptibility of arid zones has prompted concerns
about climate impacts of urbanization in these regions. However,
existing studies on arid cities lack consensus regarding both the
magnitude and sign of the SUHII estimates. This disparity has ignited an
ongoing debate surrounding the question of whether urbanization in
arid cities results in a local temperature increase or decrease. Therefore,
we selected 104 arid cities globally to conduct a comprehensive
assessment of the impact of estimation methods on the quantification of
SUHII.

The findings indicated that urban and rural definitions can have a
substantial impact on the estimated SUHII, resulting in an uncertainty
(ΔSUHII) exceeding 1 ◦C in more than half of the cities. On average for
global arid cities, the annual daytime and nighttime ΔSUHII induced by
co-variation of urban and rural definitions reached 1.35 ◦C and 1.03 ◦C,
respectively. Moreover, the uncertainty arising from urban and rural
definitions can result in a reversal of the sign of estimated SUHII,

Fig. 9. Boxplots of DiffEVI and DiffWSA based on different urban and/or rural definitions. DiffEVIij or DiffWSAij denotes the urban-rural difference in EVI or WSA
derived from the ith urban definition and the jth rural definition. The numerical values under the boxplots represent the mean ± 95 % confidence intervals. The
central points in the boxes refer to the mean values of the DiffEVIij or DiffWSAij for all arid cities, and the error bars donates corresponding 95 % confidence intervals.

Z. Liu et al.



Science of the Total Environment 951 (2024) 175631

14

Fig. 10. Spatiotemporal patterns of ΔDiffEVIU_R and ΔDiffWSAU_R across global arid cities and their relation with ΔSUHIIU_R. (a and c) Spatial distributions of annual
ΔDiffEVIU_R and ΔDiffWSAU_R. (b) Scatterplot of ΔSUHIIU_R and ΔDiffEVIU_R for global arid cities. (d) Scatterplot of ΔSUHIIU_R and ΔDiffEVIU_R for global arid cities.
The r represents the spearman correlation coefficient and the p represents the level of significance. ΔSUHIIU_R refers to the SUHII uncertainty caused by co-variation
of urban and rural definitions. ΔDiffEVIU_R or ΔDiffWSAU_R represents the uncertainty in urban-rural difference in EVI or WSA caused by the co-variation of urban
and rural definitions.

Fig. 11. The influence of rural definition on SUHII estimates, taking Bukhara, Uzbekistan as an example. (a) Spatial patterns of land covers and extents of urban and
rural areas. (b) Variations of DiffEVI, DiffWSA, and SUHII estimates with different rural definitions. (c) Variations of land cover compositions with different rural
definitions. DiffEVI and DiffWSA denotes the urban-rural difference in EVI and WSA, respectively.
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indicative of a reciprocal transition between heat and cold islands. It was
observed that, under different definitions of urban and rural areas,
nearly 50 % of arid cities experienced a sign reversal in daytime SUHII,
and about 15 % exhibited a sign reversal in nighttime SUHII. Additional
analyses highlighted those variations in land covers and surface prop-
erties (vegetation index and albedo), stemming from differences in
urban and rural definitions, played a crucial role in elucidating the

uncertainty in SUHII estimations. In summary, our results offered in-
sights into the ongoing debate about urban heat and cold islands in arid
zones in existing studies and underscored the importance of standard-
izing SUHII estimation methods.
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Data availability

The Global Urban Boundary dataset can be downloaded from
http://data.starcloud.pcl.ac.cn/zh/resource/14. The Global Human
Settlement Layer is available at https://ghsl.jrc.ec.europa.eu/download.
php?ds=ucdb. The MODIS land cover data is available from
https://lpdaac.usgs.gov/products/mcd12q1v061/. The MODIS LST
products can be accessed from https://e4ftl01.cr.usgs.
gov/MOLA/MYD11A1.061/. The global 30 arc-second elevation data
can be downloaded from https://www.usgs.gov/centers/eros/science/
usgs-eros-archive-digital-elevation-global-30-arc-second-elevation-
gtopo30. The global surface water data can be accessed from
https://global-surface-water.appspot.com/download. The global

Fig. 12. The influence of urban definition on SUHII estimates, taking Petrolina-Juazeiro, Brazil as an example. (a) Spatial patterns of land covers and urban extents.
(b) Variations of DiffEVI, DiffWSA, and SUHII estimates with different urban definitions. (c) Variations of land cover compositions with different urban definitions.
DiffEVI and DiffWSA denotes the urban-rural difference in EVI and WSA, respectively.

Fig. 13. Variation of ΔSUHIIU_R with urban area size. ΔSUHIIU_R refers to the
SUHII uncertainty caused by co-variation of urban and rural definitions. The
error bars donate corresponding 95 % confidence intervals.
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impervious surface area data is available from http://irsip.whu.edu.
cn/resources/dataweb.php. The land cover data is available from
https://lcviewer.vito.be/2018. The Köppen-Geiger climate classifica-
tion map is available from https://www.gloh2o.org/koppen/. The
enhanced vegetation index (EVI) data is available from https://doi.
org/10.5067/MODIS/MYD13A2.061. The white sky albedo (WSA)
data is available from https://doi.org/10.5067/MODIS/MCD43A3.061.
All the other data can be accessed from the Google Earth Engine plat-
form (https://code.earthengine.google.com/). All data are available
upon reasonable request from the authors.
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