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Current inequality and future potential of
US urban tree cover for reducing heat-
related health impacts
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Excessive heat is a major and growing risk for urban residents. Here, we estimate the inequality in
summertime heat-related mortality, morbidity, and electricity consumption across 5723 US
municipalities and other places, housing 180million people during the 2020 census. On average, trees
in majority non-Hispanic white neighborhoods cool the air by 0.19 ± 0.05 °C more than in POC
neighborhoods, leading annually to trees in white neighborhoods helping prevent 190 ± 139 more
deaths, 30,131 ± 10,406 more doctors’ visits, and 1.4 ± 0.5 terawatt-hours (TWhr) more electricity
consumption than in POC neighborhoods. We estimate that an ambitious reforestation program
would require 1.2 billion trees and reduce population-weighted average summer temperatures by an
additional 0.38 ± 0.01 °C. This temperature reduction would reduce annual heat-related mortality by
an additional 464 ± 89 people, annual heat-related morbidity by 80,785 ± 6110 cases, and annual
electricity consumption by 4.3 ± 0.2 TWhr, while increasing annual carbon sequestration in trees by
23.7 ± 1.2 MtCO2e yr

−1 and decreasing annual electricity-related GHG emissions by
2.1 ± 0.2 MtCO2e yr

−1. The total economic value of these benefits, including the value of carbon
sequestration and avoided emissions, would be USD 9.6 ± 0.5 billion, although in many
neighborhoods the cost of planting and maintaining trees to achieve this increased tree cover would
exceed these benefits. The exception is areas that currently have less tree cover, often the majority
POC, which tend to have a relatively high return on investment from tree planting.

Climate change is already here, with myriad impacts on human health and
society that are projected to increase over time as changes intensify1,2. One
important impact of climate change is increased risk from excessive heat, as
climate change increases in average summer temperature as well as the
frequency, intensity, anddurationof heatwaves.Already, in an average year,
heat stress kills roughly 6100 Americans and 356,000 people globally3, as
measured by epidemiological studies of excess deaths due to high tem-
peratures. Note that the statistical estimate of excess deaths is considered
more accurate than medical system records that often list another cause of
death4 (e.g., theUSCenters forDiseaseControl estimated an annual average
of 1200 deaths fromheat stress in theUSbased onmedical records5).Higher

air temperatures increase mortality and morbidity by causing heat stroke
and exhaustion and by exacerbating existing cardiovascular, pulmonary,
and renal diseases6,7. Summer temperatures in the United States (US), the
focus of this paper, are increasing, and heat waves are becoming more
frequent as climate change intensifies, with the average number of dayswith
a dangerous heat index (high temperature and humidity) forecast to triple
by 20508.

Projected impacts on mortality are uncertain, varying among studies.
One study projected that by 2090–2099, climate change in warmer regions
of the world could increase annual heat-related mortality by 3.0% percen-
tage points to 12.7%, depending on the region and the greenhouse gas
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(GHG) emissions scenario used. In the US specifically, annual heat-related
mortality is forecast to increase by 3.5% percentage points under the high
emissions scenario (RCP8.5)9. By contrast, another study in just the Eastern
US projected an additional 11,562 annual deaths by 2050, which would
represent a large increase in annual heat-relatedmortality10.While these two
examples fromthe literature illustrate thewide range of projections of health
impacts from increased heat waves, there is general agreement in the lit-
erature that climate change in the US will make heat waves more frequent
and intense, increasing mortality and morbidity11,12.

Trees can reduce solar radiation hitting surfaces such as asphalt and
concrete, reducing temporary heat storage in these materials, which would
laterbe emitted as thermal radiation.Trees also losewater to transpiration as
they respire, and this phase change of water from liquid to gas increases
latent heat flux13. The net effect of trees is, therefore, to reduce ambient air
temperature, particularly during the daytime. The effect of trees is fairly
local, reducing air temperatures primarily within a few hundred meters
horizontal distance from the tree canopy, although this distance varies with
factors such as the size of the canopy patch14, wind speed, and relative
humidity7. It is important to note that while air temperature is correlated
withhealth impacts, there are other heat stressmetrics that take into account
factors that are also important for thermal comfort, like humidity15 and
direct solar radiation16,17.

Heat action planning has been used by governments at many scales to
reduce the risk to vulnerable populations. Common components of heat
action planning include the creation of early warning systems, cooling
centers, and response plans by medical institutions18,19. One part of heat
action planning can be actions to reduce ambient outdoor air
temperature20,21, and many city governments have begun to consider the
additional role trees can play to reduce ambient outdoor air
temperatures22–28. Moreover, trees already provide significant heat-
reduction benefits7. One study in the United States estimated that without
urban tree canopy, annual mortality would have been 1200 deaths greater
than at present29.

Research on urban tree cover shows that its distribution is quite
unequal. One way to measure this is to compare tree canopy across US
Census blocks, for which we have associated socioeconomic data. In most
US cities, low-income or people-of-color (POC) neighborhoods have less
tree cover than high-income or non-Hispanic white (hereafter simply
“white”) neighborhoods30–39. One national survey of 5723 municipalities in
the US (the same set of municipalities used in this study) found that in 92%
of communities, low-income blocks have less tree cover than high-income
blocks, with low-income blocks on average having 15.2% less tree cover and
being 1.5 °C hotter (summer surface temperature) than high-income
blocks40. Multiple other studies show similar results using a variety of dif-
ferent methodologies, consistently finding that in most US cities, lower
income and minority populations live in neighborhoods with higher sum-
mer surface temperatures41,42.

Beyond the health impacts, heat has other impacts on society. For
instance, Santamouris and others43 found an average increase of 0.45–4.6%
in peak electricity load for each 1 °C increase in air temperature. Trees near
buildings can be one way to decrease electricity use, among other strategies
such as implementing energy efficiencyprograms, reducing building albedo
(“cool roofs”), and creating incentives to conserve electricity44. Tree cover
reduces ambient air temperature and shades buildings fromsolar insolation,
reducing the energy demand for indoor cooling from 2.3% to 90%,
depending on the study45. This avoids electricity consumption and also
avoids greenhouse gas emissions from electricity generation.

Urban trees also sequester and store carbon46, among other ecosystem
services47. Urban trees are one kind of natural climate solution (NCS),
defined as conservation, restoration, or management actions that increase
carbon sequestration or avoid greenhouse gas emissions48. In this study, we
use estimates ofnet carbon sequestrationbyurban trees, accounting for both
sequestration and emissions associated with tree mortality. Planting new
trees in urban areas (afforestation or reforestation depending on site history,
but for simplicity referred to as reforestation in this paper) will lead to net

carbon storage as the trees grow, even after accounting for GHG emissions
associated with tree mortality49,50.

Previous estimates of the urban reforestation potential in the United
States were designed to estimate the maximum carbon sequestration
potential. For instance, Fargione et al.46 assumed that essentially all land in
urban areas not currently developed (e.g., impervious surfaces, buildings) or
under other land use (e.g., agriculture, sportsfields, or golf courses) could be
available for tree planting, estimating that (19.17–30.15 95% CI) 23.3Mt
CO2 yr

−1 of carbon sequestrationwaspossible, around1.9%of the totalNCS
potential in the US46. More recently, Cook-Patton et al.51 modeled fully
planting all low-density open space in urban areas across the contiguousUS
where forest naturally occurs and estimated that 52.5MtCO2 yr

−1 of carbon
sequestration was possible.

However, only a fraction of the potentially available urban open area is
likely to be plantable due to municipal codes and land-use regulations,
landownerpreferences, andconflictswithother landuses that require sparse
vegetation like lawns. See Treglia et al. for an example of how these con-
straints may be considered in one municipality, New York City, with
abundant geospatial data52. Moreover, past efforts at estimating the NCS
potential of urban reforestation have often been based on 30m Landsat-
derived tree cover data. These coarser datasets miss many single tree
canopies in urban areas and can significantly underestimate current tree
cover53, particularly in landscapes with <30% tree cover54. Underestimation
of the current urban forest canopy may lead to an overestimation of
reforestation potential.

While there have been studies of individual cities or sets of cities22–27,
here we conduct a quantitative national prospective study for the US, of a
large sample of thousands of cities, to estimate the potential that increases in
urban tree cover have to reduce mortality, morbidity, and electricity con-
sumption, examining how the potential of trees for heat-risk reduction
varies across gradients of race/ethnicity. Understanding the potential of
urban trees to serve as an adaptation to more frequent and intense heat
waves is particularly important at this moment, when there is substantial
investment inNCSas countries plan to achieve theirNationallyDetermined
Contribution (NDC) commitments under the Paris Climate Accords55, and
the US has committed to increased funding for climate-related forestry
programs as part of the Inflation Reduction Act56. Similarly, substantial
investment in climate adaptation is likely in the next decade by entities like
the Green Climate Fund57. Well-targeted, cost-effective investment in
nature-based solutions for climate mitigation and adaptation is difficult
without spatially detailed data on reforestation potential and need58.

In this paper, we use a high-resolution (2m) tree cover map for all
100 US urbanized areas >500 km2, which contain 5723 municipalities or
other Census-designated places that housed 180 million people in 2020
(68% of the people who live in urbanized areas in theUnited States or 55%
of the national population)40. For this large sample of 5723 municipalities
(of which 50.6%, or 91 million people, represent majority white neigh-
borhoods, 49.4%, or 89 million people, represent majority POC neigh-
borhoods), we estimate reforestation potential at the Census block-level,
accounting for variation in impervious cover among blocks and assuming
that reforestation is only likely up to levels commonly seen in other blocks
of similar impervious surface cover. We estimate the change in air tem-
perature due to tree planting and the resultant reductions in human
mortality, morbidity, and electricity consumption. In addition, we esti-
mate the carbon mitigation potential achievable through this large-scale
urban reforestation scenario. Across our analyses, we propagate statistical
uncertainty to describe the precision of our estimates. The major goals of
this paper are to:
• Quantify the inequality in the protective value trees currently provide

by reducingmortality andmorbidity across income and race/ethnicity.
• Estimate, for a variety of planting scenarios, the increase in urban tree

canopy, the number of trees planted, the net carbon sequestration, and
the costs. For each urban reforestation scenario, quantify the likely
reduction in summer air temperatures, as well as the associated
reduction in mortality, morbidity, and electricity consumption.
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• Examine the return-on-investment (ROI) curve of urban reforesta-
tion’s effect on avoidedmortality, morbidity, and electricity consump-
tion, to test whether ROI varies systematically with neighborhood
income or race/ethnicity.

Results
Current national benefits
On average, across the country, neighborhoods with a majority of people of
color (POC) have 11% less tree canopy cover and 14% more impervious
surface than white neighborhoods (Table 1; unless otherwise stated, we
present in this paper differences expressed as percentage points). We esti-
mate that the current tree canopy, on average, reduces air temperatures by a
population-weighted 1.01 ± 0.03 °C in white neighborhoods compared to
0.82 ± 0.03 °C in POC neighborhoods.

We estimate that in the majority of white neighborhoods, trees
annually help avoid 632 ± 100 deaths. The annual economic value of that
avoided mortality is USD 4.5 billion (Fig. 1). In contrast, we estimate that
even though the total population in each race/ethnicity type is of relatively
equal size (91 million in white neighborhoods vs. 89 million in POC
neighborhoods), in majority POC neighborhoods trees help avoid 442 ± 97
deaths annually, an annual economic value of avoidedmortality of USD 3.1
billion. This differential in benefits extends to other types of benefits.
Morbidity is avoided because tree cover is 30,131 ± 10,406 greater in white
neighborhoods than in POCneighborhoods (Table 1). Similarly, these trees
reduce total electricity consumption in white neighborhoods by
1.4 ± 0.5 TWhr more than it does total consumption in POC neighbor-
hoods (Table 1).

Patterns within urbanized areas
There is significant variation in current tree cover within urbanized areas,
which leads to variation in the potential for tree cover increases to provide
benefits. To demonstrate typical patterns, we provide a case study for
Washington, DC, in Fig. 2. At a neighborhood scale, there is significant
variation in tree cover, drivenby differences in settlement density and urban
form, as well as the existence of patches of forests within protected areas or
otherwise undevelopable sites (Fig. 2a). Neighborhoods in DC that pre-
dominatelyhousepeopleof colorhavehigherpopulationdensity (averageof
4828 people km−2), and are more often centrally located, than neighbor-
hoods that are predominately comprised of non-Hispanic white people,
which aremore often suburban or exurban (3962people km−2).On average,
tree cover is 12% lower inPOCneighborhoods than inwhite neighborhoods
due to the correlation with population density (and hence impervious
surface cover)40 as well as other historical factors, such as redlining59.

Across the entire Washington, DC urbanized area, there is an overall
gradient in summer land surface temperature (Fig. 2b), with less densely
populated suburbs and exurbs having lower land surface temperature than
dense urban core neighborhoods, due to their lower impervious surface
cover and greater tree cover. This pattern means that the greatest reduction
inheat risk fromadditional planting,measured as annual avoideddeathsper
million people (M), occurs in denser, often POC, neighborhoods (Fig. 2c).
However, the tree planting potential, measured in number of additional
stems or in potential carbon sequestration, is greatest in suburban and
exurban areas (Fig. 2d), which have low cover of impervious surfaces and
hence more space for planting, even though those are the neighborhoods
that already have disproportionately high tree cover. Thus, unless the total
plantable area is increased in POC neighborhoods, benefits from increased
tree cover are distributed unequally.

Patterns among urbanized areas
There is also variation among urbanized areas in the amount of tree cover
and the protective benefits trees are providing from avoided heat-related
mortality andmorbidity. The largest benefit in terms of deaths avoided is in
the urbanized areas with the greatest population, such as those centered
aroundNewYork City and Los Angeles (Fig. 3). This is not surprising since
there is a greater population potentially at risk from heat in the largest T
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urbanized areas, and so in absolute terms the number of avoided deaths due
to trees is greatest in these urbanized areas. Other factors matter as well,
however. Urbanized areas that are densely settled, with a lot of impervious
surface cover, and yet have significant tree cover will have a relatively high
number of avoided deaths due to trees, all else being equal. For instance,
Boston (population 4.5million) has both high impervious surface cover and
relatively high population density, and trees currently help avoid an esti-
mated 54 deaths annually. In comparison, Atlanta (population 5.1 million)
has lower impervious surface cover and lower population density, and trees
currently help avoid an estimated 32 deaths annually.

However, the protective benefits trees currently provide in terms of
avoided mortality are unequally distributed with respect to race/ethnicity.
To account for differences in population between majority POC and
majoritywhiteneighborhoods,we calculated theprotective rate, thenumber
of heat-related deaths avoided annually due to trees permillion people. The
protective rate is generally lower in majority POC neighborhoods than in
majority white neighborhoods (urbanized areas with yellow to red colors in
Fig. 3).The inequality inprotective rate is greatest in theNortheast of theUS,
in the so-called Northeast Corridor stretching from Washington (DC) to
Boston (MA). These cities have substantial inequality in tree cover and
surface temperature among neighborhoods, which leads to a substantial
inequality in air temperature and the protective benefits of trees in reducing
heat-related mortality40. Northeastern US cities are characterized by dense
city centers60, often formed prior to the widespread availability of the
automobile61, which often contain many of the POC neighborhoods and
lower-density suburbs and exurbs that are often majority white40. Con-
versely, there are urbanized regions where the protective rate is greater in
POC than in white neighborhoods, such as Southeastern US cities like
Atlanta40. In these cities, most neighborhoods are at lower population
densities and there is lower inequality in tree cover and surface temperature
between neighborhoods40.

National benefits of increased urban tree cover
Reforestation in our sample cities to an ambitious reforestation scenario
(bringing each block up to the 90th percentile observed in each impervious
surface category in each city; see methods section for details) could reduce
population-weighted mean summer air temperatures by 0.38 ± 0.014 °C

(Table 2), with reductions up to 1.8 °C possible for specific neighborhoods.
We estimate that this ambitious reforestation scenario would involve the
addition of 1.2 billion trees and would reduce annual heat-relatedmortality
by 464 ± 83 people, in addition to the current benefits that trees provide.
There is roughly similar potential to reduce mortality in white and POC
neighborhoods under the ambitious planting scenario (Fig. 1).

The ambitious reforestation scenario would deliver other benefits as
well. It would reduce annual heat-related morbidity by an additional
80,785 ± 6110 cases andwould increase net carbon sequestration in trees by
23.7 ± 0.2MtCO2e yr

−1 above the status quo (Table 2). It would also reduce
annual electricity consumption by 4.3 ± 0.2 TWhr yr−1, avoiding electricity-
related GHG emissions annually by 2.1 ± 0.1MtCO2e yr

−1. Note, however,
that even lower levels of tree canopy cover increases could still deliver
substantial benefits. For instance, aiming for anominal 5% increase in urban
tree canopy cover where feasible would reduce annual morbidity by
23,614 ± 1832 cases (29% of the morbidity reduction achieved under the
ambitious planting scenario).

Spatial pattern of benefits of additional tree planting
Under the ambitious reforestation scenario, the largest reforestation
potential, in terms of trees planted or additional net carbon sequestration,
occurs in the urbanized areas with the largest geographic extent (Fig. 4). For
instance, the Chicago andNewYork City urban areas are among the largest
in extent in the United States, and both have an increase in net carbon
sequestration ofmore than 1MtCO2e yr

-1 under the ambitious reforestation
scenario. However, the potential additional net carbon sequestration varies
by climate, with arid regions generally having lower feasible tree canopy
targets due to natural limits on tree canopy in arid climates (see the
“Methods” section for details), and humid regions in naturally forested
biomes having higher feasible tree canopy targets. Similarly, the potential
additional net carbon sequestration also varies by population density, with
greater reforestation possible in lower population density areas, which have
less impervious surface and hence higher proportions of plantable area. For
the same reason, within urban areas, the greatest reforestation potential is
often in suburban neighborhoods that are often majority white (e.g., Fig. 2,
lower right). If reforestation in urbanized areas were to be prioritized solely
based on potential additional carbon sequestration, then suburban neigh-
borhoods would often have priority.

However, patterns are different with regard to tree canopy cover’s role
in reducingmortality andmorbidity. The greatest increase in protective rate
(avoided annual deaths per million people) under the ambitious reforesta-
tion scenario occurs in the northeastern and western US (Fig. 4). These
urbanized areas are relatively dense, with a high proportion of impervious
surfaces. The addition of new tree canopy cover thus tends to shade
impervious surfaces, reducing the urban heat island effect more sub-
stantially than if tree canopy shaded grass or other sparse vegetation.
Moreover, these urbanized areas are in naturally forested biomes, so larger
increases in tree cover arepossible than in arid areas,wherewater limitations
might limit tree canopy cover expansion.

For avoided mortality, we defined the return on investment (ROI) in
tree planting as avoided annual heat-related mortality per tree planted.
Within urbanized areas, the greatest increase in ROI under the Ambitious
reforestation scenario is in dense neighborhoods, often located in city
centers and often majority POC neighborhoods (e.g., Fig. 2, lower right).
Thus, if reforestation in urbanized areas was to be prioritized solely based
upon the potential protective health benefits of trees, then dense urban
neighborhoods would have priority. For this reason, on average across the
US, the ROI of tree planting is greater inmajority POCneighborhoods than
inmajoritywhite neighborhoods (Fig. 5, top panel). This is true for any level
of planting ambition, from the 5% nominal target to the ambitious refor-
estation scenario. For instance, the 5% nominal target for majority POC
neighborhoods would avoidmoremortality than the 5% nominal target for
majoritywhiteneighborhoods,withonlyhalf thenumber of trees as inwhite
neighborhoods. It is worth stressing, however, that there is significant var-
iation among neighborhoods in ROI. If we examine themortality reduction

Fig. 1 | Mortality and urban tree canopy cover for our sample of 5723 US
municipalities. Shown are the current annual reduction in mortality due to trees, as
well as the additional reduction in mortality possible under the ambitious planting
scenario. This quantity can be expressed not just in the annual lives saved (left axis)
but also in the estimated annual value of avoiding this mortality (right axis).

https://doi.org/10.1038/s42949-024-00150-3 Article

npj Urban Sustainability |            (2024) 4:18 4



benefits of the 5% of neighborhoods with the highest ROI (Fig. 5, bottom
panel), we find the same general pattern of POC neighborhoods having
higher ROI than white neighborhoods, but the number of deaths reduced
per million trees planted is an order of magnitude greater in these high
priority blocks than the overall national average.

Economic benefits of tree canopy increase
Total economic benefits of additional tree cover are shown in Table 3 for
the 5% nominal target and the ambitious reforestation scenario. Benefits
valued in this study are avoided mortality, avoided morbidity, avoided
electricity consumption, and avoided damages resulting from higher
atmospheric carbon dioxide concentrations, the latter due to avoided
GHG emissions from avoided electricity generation and from increased
carbon sequestration by the additional tree cover. Under the Ambitious
tree planting scenario, USD 9.6 ± 0.4 billion in annual benefits would
accrue. The 5% target tree planting scenario delivers fewer annual
benefits, USD 2.5 ± 0.1 billion. The largest share of economic value is
contributed by the carbon sequestered in the trees, followed closely by
avoided heat-related mortality. Avoided electricity consumption, avoi-
ded GHG emissions from electricity consumption, and avoided heat-
related morbidity all have meaningful but relatively smaller total eco-
nomic values.

The economic benefits of the Ambitious tree canopy scenario are split
relatively equally (Table 4) between POC neighborhoods (USD 3.9 ± 0.2
billion) and white neighborhoods (USD 5.0 ± 0.2 billion). Annual tree
planting andmaintenance costswould exceed annual benefits for both POC
neighborhoods (costs of USD 19.5 ± 4.4 billion, Return on Investment,
ROI = 0.20) and, especially, white neighborhoods (USD 40.5 ± 9.4 billion,
ROI = 0.12). However, if tree canopy increases were targeted to the neigh-
borhoodswith the highestROI, the situation looks different,with the annual
economic benefits roughly equal to the costs of annual tree planting and
maintenance. Indeed, a 5% nominal target for additional tree planting in
High-ROI POC neighborhoods is estimated to provide USD 32 ± 4million
in benefits but to cost onlyUSD29 ± 7million in planting andmaintenance,
an ROI of 1.12.

Discussion
Our results show that trees provide substantial benefits in terms of avoided
heat-related mortality and morbidity in the US but that inequality in urban
tree canopy cover leads to inequality in these protective benefits. In our
sample of 5723 municipalities, we estimate that, annually, trees in white
neighborhoods help avoid 190more deaths, 30,131more doctors’ visits, and
1.4 TWh more electricity consumption than in POC neighborhoods,
despite the nearly equal number of people in white and POC

Fig. 2 | Inequality in the Washington, DC
urbanized area. a Zoom-in of a purple rectangle
shown in other panels. Tree cover varies sig-
nificantly from block to block. Neighborhoods that
are predominately people of color (POC) are shown
in gray and are primarily east of Rock Creek Park,
while the majority of non-Hispanic white neigh-
borhoods are west of the park. Note that Rock Creek
Park itself has no residents. b Land surface tem-
perature in summer by census block, as observed by
satellite imagery. For reference, the extent of the
zoomed-in panel in the upper left is outlined in
purple. c The potential reduction in heat risk due to
additional tree planting (increase in protective rate,
in avoided annual deaths per million people).
d Potential additional carbon sequestered due to
new tree planting within census blocks. While tree
planting in the city center occurs at higher popula-
tion densities and so benefits more people with heat
reduction, the greatest number of potential trees can
be planted in suburban areas.
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neighborhoods. While POC neighborhoods have less tree cover than white
neighborhoods, their higher impervious surface areameans that tree cover is
more often shading impervious surfaces and thus provides relatively larger
cooling benefits per unit canopy area.Climate change is expected to increase
the frequency and intensity of heat waves, increasing mortality and
morbidity9. This will likely elevate the public health importance of heat
actionplanning in the comingdecades.Webelieve that heat actionplanning
should consider outdoor temperature, its public health impacts, the equity
of these impacts, and strategies tomitigate these impacts and their inequity,
such as increased investment in tree planting and maintenance.

We found that an ambitious reforestation scenario in these 5723
municipalities would annually save an additional 464 lives otherwise
threatened by heat, equal to around 8% of current total heat-related deaths
in theUS3. It should benoted that this is just excessmortality associatedwith
heat, and other studies that looked at health benefits fromall pathways often
show larger benefits. For instance, a study in Philadelphia estimated that an
ambitious increase in tree canopy cover could avoid annually 298–618
premature adult deaths, due to all causes62. A similar study that looked at a
sample of almost one thousandEuropean cities estimated that an increase in
NDVI to a level recommended by the World Health Organization could
reduce mortality from all causes by 32,000–64,000 deaths annually63.

Fig. 3 | Protective value of urban tree canopy for
large US urbanized areas. The size of the circle is
proportional to the avoided annual mortality due to
urban tree canopy in the urbanized area. The color of
the circle indicates the difference in the protective
rate (annual deaths avoided due to urban tree
canopy per million population) between people-of-
color (POC) majority neighborhoods and non-
Hispanic white majority neighborhoods. Negative
values indicate that POC neighborhoods have a
lower protective rate than white neighborhoods.

Table 2 | Estimated potential of reforestation in urbanized areas to provide benefits to human well-being for increases in tree
canopy cover in 5% increments above current tree canopy

Target (%) Reduction in median summer air temperature
due to additional tree cover (°C)

Additional annual
avoided mortality

Additional annual
avoided morbidity

Additional annual avoided elec-
tricity consumption (TWhr)

Additional carbon
storage (MtCO2e)

5 0.11 ± 0.004 138 ± 25 23,614 ± 1832 1.2 ± 0.1 5.6 ± 0.1

10 0.19 ± 0.007 250 ± 44 42,855 ± 3280 2.2 ± 0.1 10.4 ± 0.1

15 0.26 ± 0.010 331 ± 59 56,993 ± 4340 3.0 ± 0.2 14.2 ± 0.2

20 0.31 ± 0.011 386 ± 69 66,535 ± 5064 3.5 ± 0.2 17.1 ± 0.2

25 0.34 ± 0.013 420 ± 75 72,626 ± 5524 3.8 ± 0.2 19.2 ± 0.2

30 0.36 ± 0.013 440 ± 79 76,260 ± 5792 4.0 ± 0.2 20.6 ± 0.2

35 0.37 ± 0.014 451 ± 81 78,326 ± 5938 4.1 ± 0.2 21.7 ± 0.2

40 0.37 ± 0.014 457 ± 82 79,468 ± 6017 4.2 ± 0.2 22.4 ± 0.2

Ambitious
scenario

0.38 ± 0.014 464 ± 83 80,785 ± 6110 4.3 ± 0.2 23.7 ± 0.2

Shownare the annual reduction inmortality,morbidity, and electricity during heatwaves, aswell as the additional annual carbon storage. Error ranges show the95%confidence interval of the estimate. The
ambitious target scenario shows hitting the maximum possible planting, given our assumptions, across the 5723 municipalities in our sample. See text for details.
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A more direct comparison to our work is a recent paper in Europe,
which estimated that tree planting up to a 30% target in all neighborhoods
would reduce European deaths from heat by around 33%64. One potential
reason for the difference between our study and this study is the differences
in how targets were set. Our targets considered physical and social limita-
tions in dense neighborhoods to tree planting while the European study did

not. Another potential reason is simply that European cities are, on average
denser with more impervious surfaces than American cities, so tree cover is
more likely to shade impervious surfaces, resulting in more significant heat
reduction benefits.

Trees provide other benefits as well. We estimated that our ambitious
tree restoration scenario could reduce annual heat-related morbidity by an

Fig. 4 | Ambitious reforestation potential for large
US urbanized areas. The size of the circles is pro-
portional to the potential additional carbon storage
under the ambitious reforestation scenario. The
color of the circle indicates the increase in the pro-
tective rate (annual deaths avoided due to urban tree
canopy per million population) under the same
reforestation scenario.

Fig. 5 | Mortality reductions as a function of
planting ambition. Blocks are classified as either
majority people of color (POC) or majority non-
Hispanic white. For each census block, additions of
tree cover of 5%, 10%, etc., up to an Ambitious
Scenario, the maximum possible given our
assumptions. Each point along the curve thus
represents an additional 5% increase in tree cover,
wherever this is possible. Error bars are the 95%
confidence interval of reduction in annual heat-
related mortality. a Results for all census blocks. For
instance, planting 200 million additional trees in
white blocks for a 5% increase in tree cover reduces
annual heat-related mortality by an additional 62
lives. b Results for high ROI census blocks, defined
as in the top 5% of ROI (see methods for details).
Note the very different scales in the two plots. For
instance, planting 0.4 million additional trees in
white blocks for a 5% increase in tree cover reduces
annual heat-related mortality by an additional
2 lives.
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additional 80,785 cases, increase carbon sequestration in trees by
23.7MtCO2e yr

−1, and decrease electricity-related GHG emissions by
2.1 ± 0.1MtCO2e yr

−1. While expanding the urban forest by the additional
1.2 billion trees needed under this Ambitious Scenario would be a large
financial investment, we want to emphasize that the heat-health benefits
would likely offset a significant fraction of the costs. Indeed, targeted actions
to increase tree canopy in high-ROI neighborhoods can result in benefits
that equal or exceed tree planting and maintenance costs. Trees, of course,
provide many other benefits not modeled in this paper, both to overall
health65 and to human well-being47, and consideration of these other ben-
efits would increase the total estimated benefits and ROI of increased urban
tree canopy. Moreover, while our methods allowed for spatial variation in
the impact of tree canopy on LST and air temperature by climate zone and
region, as well as accounted for block-level variation in impervious surface
cover, they do not allow for variation in model parameters with a city,
potentially underestimating benefits at some sites within a city (see the
Caveat and Limitations portion of the Methods section for a more detailed
discussion).

There is greater return-on-investment in tree cover increases in
majority POC neighborhoods for health benefits, relative to majority-white
neighborhoods. That is, for a given number of trees planted, urban greening
projects in POCneighborhoods will, on average, have a greater reduction in
mortality and morbidity than projects in majority-white neighborhoods.
Similarly, tree planting projects that target neighborhoods with dis-
proportionately low tree cover will deliver disproportionate benefits to POC
householdsbecausePOChouseholds tend to live inneighborhoodswith less
tree cover. Given the high tree cover inequality in the US with respect to
race/ethnicity and income40, programs such as the Inflation Reduction Act
that aim to reduce heat-health impacts will have to address tree cover
inequality, either explicitly or implicitly, if they are to target trees where they
will have the greatest benefit. Of course, there are other reasons to consider
race/ethnicity and socioeconomic status in heat action planning, as these
populations aremore vulnerable to heat hazards due to, amongother things,
lower access to air conditioning66.

The estimated net carbon sequestration potential of reforestation in
our sample of 5723 municipalities, under our Ambitious Scenario, is
23.7MtCO2e yr

−1. This is lower than Cook-Patton et al.’s estimate51 of
52.5MtCO2 yr

−1 and higher than Fargione et al.’s estimate46 of 23.3Mt
CO2 yr

−1, both of whose estimates cover all US urban areas (although the
two studies useddifferent definitionsofwhat is urban).Anotherdifference is
that our definition of what could potentially be planted is more restrictive
than in Cook-Patton et al.51 due to our consideration of both physical and
social barriers to planting, which may further explain why our estimate is
lower. Our estimation of reforestation potential in urbanized areas for
sequestration is about 2.6% of the overall US potential for NCS across all
natural climate solutions pathways in the US identified by Fargione et al.46.

Table 3 | Economic benefits of tree planting for 5723 munici-
palities in the United States

Variable Economic value (annual
millions USD) at 5%
target

Economic value (annual mil-
lions USD) at ambitious sce-
nario target

Avoided mortality 982 ± 101 3299 ± 339

Avoided morbidity 32 ± 2 108 ± 7

Avoided electricity
consumption

204 ± 14 703 ± 46

Carbon
sequestration

1221 ± 65 5166 ± 287

Avoided GHG
emissions from
electricity

98 ± 6 344 ± 22

Total 2536 ± 121 9620 ± 447

Shown are the results for the 5% planting scenario and the ambitious planting scenario.
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For context, urbanized areas occupy about 2.8% of the total land area of the
US67. We also estimated that avoided electricity consumption due to addi-
tional trees would decrease electricity-related GHG emissions by
2.1MtCO2e yr

−1, for a total net climate mitigation potential of our ambi-
tious reforestation scenario of 25.8MtCO2e yr

−1, a modest amount of car-
bon relative to the entire US carbon budget, but not insignificant, being the
annual equivalent emissions of 5.7 million gasoline-powered cars68.

We caution that there is, to some extent, a spatial disconnect between
optimal sites for climate mitigation and climate adaptation. Although the
carbonbenefit per additional treedidnot vary inour studyand is expected to
be the same from exurbs to downtown, the overall potential for carbon
sequestration is greater in neighborhoods with more plantable areas (i.e.,
fewer impervious surfaces). This is more frequently the case in the suburbs
or exurbs than in the city center. Patterns for avoided electricity con-
sumption from space cooling (and hence avoided GHG emissions) are the
opposite, being greater in densely populated blocks, but are an order of
magnitude smaller than carbon sequestration in termsofMtCO2 yr

−1.Heat-
related health benefits also are greatest when trees are planted close towhere
people live and work, which is more frequently the case in city centers. We
note that greater heat-relatedmitigation benefits inmore densely populated
neighborhoodswould likely hold for other tree-provided ecosystemservices
that need to be generated close to people, such as air pollution mitigation,
stormwater mitigation, and the benefits to physical andmental health from
exposure to nature47. The varying spatial scales of different ecosystem ser-
vices lead to different optimal places for tree planting69, with heat-reduction
benefits needing to be provided within 100m or so of people7. Carbon
sequestration is, on the other hand, essentially global since the atmosphere is
well-mixed and not restricted to locations near people. We stress, however,
that this spatial disconnect between heat mitigation and carbon mitigation
benefits is only partial, and sites can be found that have good returns for
both. If both benefits are important, planners would do well to consider the
joint return on investments from both benefits when making decisions
about where to plant.

Realizing the climate mitigation and adaptation benefits of the
reforestation scenarios considered in this paper requires overcoming the
“wrong pocket problem”70. This problem occurs when the person or
institution that pays for an action is not the one benefiting from that
action. Urban forestry agencies in municipalities do not generally have
climate mitigation or adaptation as part of their mission, so while they
must pay for increased tree planting and maintenance, they may not see
a benefit in terms of their mission. Conversely, health agencies see heat
action planning as part of their mission and would welcome the mor-
tality and morbidity reductions of increased tree planting, but many
have neither the capacity nor the budgetary authority to plant trees.
Regulations, incentives, or investments created to increase the provision
of ecosystem services can give value to these benefits and solve the wrong
pocket problem by creating an incentive for different institutions to
work together.

Investment at a higher level of government by agencies that have
climate mitigation or climate adaptation as part of their mission can
overcome the sometimes narrower goals and capacities of municipal
forestry offices. To the extent that natural climate solutions are considered
as part of federal policies to mitigate and adapt to climate change, refor-
estation in urbanized areas may be an investment that generates relatively
modest carbon sequestration but delivers significant local climate adap-
tation benefits71. This may be particularly important in low-income
neighborhoods, which generally have less tree cover and are hotter than
high-income neighborhoods40,72. Although there is a growing interest in
reforestation in urbanized areas to meet climate mitigation goals, our
work shows that a single-minded focus on carbon sequestration could
further exacerbate inequities by shifting planting efforts outside of his-
torically POC neighborhoods. Instead, putting equity first and making
targeted investments in tree planting and maintenance in neighborhoods
most at risk from heat could help correct some of the historic racial
inequality in tree cover.

Methods
Our analysis proceeded in four phases. First, we assembled spatial data from
multiple sources and compiled them into a common analysis unit. Second,
we developed an algorithm that would set a plausible ambitious reforesta-
tion target, given other land-use constraints. Third, we estimated the heat
mitigation-related benefits of the current tree canopy and of future planting
scenarios up to the ambitious planting scenario. The benefits evaluatedwere
avoided mortality, avoided morbidity, avoided electricity consumption,
avoided release of greenhouse gases from avoided electricity consumption,
and carbon sequestration in aboveground tree biomass. Fourth, we valued
these benefits inmonetary terms. In the following section,wediscuss eachof
these phases in detail. We end the Methodology section with a broader
conceptual discussion of some caveats and limitations of our analysis, dis-
cussing how theymight affect our results and how future researchmight be
able to improve upon our estimates.

Data sources
Our study focused on all US urbanized areas larger than 500 km2 in extent40.
Urbanized area is defined by the US Census Bureau as census blocks that
exceed a population density threshold (1000 people per square mile) as well
as contiguous blocks with more than 500 people per square mile that link
nearby blocks of high-density settlements67,73. There are 100 urbanized areas
that are >500 km2 in extent, housing 180 million people during the 2020
census. Each urbanized area contains manymunicipalities or other census-
designatedplaces; in total, our study area contains 5723 such communities40.
These span the range of population sizes and densities, from a large central
city like New York City (8.4 million people) to small communities at the
edges ofmetro areas with just a few thousand people. These urbanized areas
also span the range of biomes in the United States, from forests to deserts to
grasslands.

The fundamental unit of analysis for our study is the census block, as
defined by theUSCensusBureau. These are thefinest spatial resolutiondata
on population and demography available in theUnited States, whichmakes
them appropriate for an analysis of the cooling effects of trees for different
demographic groups. The median census block in our cities (excluding
census blocks with no population, such as parks) has 57 people in it, but this
varies widely, with 80% of blocks having between 16 and 198 population.
The average person lives in a census block of 4.5 ha (80% range: 1.2–50 ha).
Importantly, census blocks are designed to be smaller in area in city centers
and thus capturemorefine-grained detail and to be larger in rural areaswith
lower population density.

Our tree cover maps are taken fromMcDonald et al.40, which mapped
tree cover for the same set of 100 urbanized areas, using the boundaries of
the urbanized area set after the 2010 Census. For consistency with that
dataset, we use the same boundary file for this analysis rather than the 2020
urbanized area boundaries.Aerial photos takenduring the summer growing
season at approximately 2m resolution from the National Agricultural
Imagery Program (NAIP) were classified into a forest/non-forest grid using
Google Earth Engine’s cloud computing platform. Training data for the
supervised classification came from Nowak and Greenfield74, which
examined tree cover at 10,000 control points throughout urban and com-
munity areas of the United States. After creating several texture variables
and band indices (e.g., NDVI), this information, along with information
from the original spectral bands, was classified using a random forests
classifier built off the training data. Pixel-level classification accuracy varies
by biome but averages 82%.

Importantly, however, our unit of analysis for this paperwas the census
block level, not the pixel level. Census blocks containmany2mpixels, so the
estimate of tree cover at the census block level can be more accurate than at
thepixel-level scale if anyclassification errors areuncorrelated.Wevalidated
our estimates of tree cover at the census block level against an independent
dataset, the accurate high-resolution tree cover maps produced by Urban
Tree Canopy assessments75,76. At the block level, our estimates of tree cover
were highly linearly correlated with those of the validation dataset
(R = 0.97). On average, the median absolute block-level error of our tree
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cover estimate, as compared to the validation dataset, was 6.0%. Thus, while
the pixel-level accuracy of our classification was only moderate, our esti-
mates of tree cover at the block level were highly correlated with an inde-
pendent validation dataset. Much more information on our classification
methodology is available in McDonald et al.40.

Our information on demography and socio-economic status comes
from the US Census Bureau’s 2020 decennial census, downloaded from the
NationalHistoricalGeographic InformationSystem(NHGIS)77. Population
and its breakdown by race and ethnicity were available at the Census block
level. Details of the GIS analysis and processing of this data can be found in
McDonald et al.40, which used the 2010 Census but otherwise had similar
processing of Census data.

Impervious surface data were taken from the National Land Cover
Database 2019 product78. This dataset was derived from Landsat imagery,
and measures as a continuous variable the percent impervious surface in
each pixel. While 30m data on the impervious surface cover is coarser than
our forest cover map, the fact that there is a continuous estimate of
imperviousness helps address sub-pixel heterogeneity.

Land surface temperature (LST)was derived from theCollection 2LST
science product from Landsat 8 at 100m resolution. Pixel level quality flags
were used to remove cloud-contaminatedpixels, following themethodology
of Chakraborty et al.79. All data between 2016 and 2020 were accessed
through the Google Earth Engine platform80 to create mean summer (June,
July,August; JJA) LST composites. This 5-year period averages over year-to-
year variability in LST while also being long enough to ensure that most
regions have usable, cloud-free pixels for which LST can be estimated.

Reforestation scenarios
Next, we defined an algorithm to set an ambitious reforestation target, given
other land-use and climatic constraints. Conceptually, we wanted to con-
sider two constraints: a physical constraint (trees can generally only be
planted on non-impervious surfaces, excluding rare landscape features such
as planter boxes) and a social/political/climatic constraint (planting trees is
constrained by numerous other considerations, including competing land
uses, landowner preferences, zoning and building codes, and climatic
conditions). Formore conceptual discussionof these two constraints, see the
“Defining plantable area” section below.

Tree cover is negatively correlatedwith impervious surface cover40.We
divided the landscape into five impervious surface categories (0–20%,
20–40%, 40–60%, 60–80%, 80–100%) to reflect the different landscape
contexts from lightly settled suburbs to dense urban core. Our general
strategy was to model different scenarios in each US Census block, where
tree cover was increased by intervals of 5% (e.g., from 5% to 10%), poten-
tially up to an Ambitious Scenario where all previous surface was greened.
However, tree planting was stopped when there were likely to be other
constraints. This likely constraint was defined at the 90th percentile of
observed tree cover in each impervious surface category for each urbanized
area. In other words, tree planting was halted at the 90th percentile of tree
cover for blocks in that urbanized area with similar landscape contexts
(imperviousness). This approach implicitly accounts for differences among
cities (e.g., in climate), as well as urban form and zoning and building codes.

Once our ambitious reforestation scenariowas estimated at theCensus
block level, we constructed a set of scenarios for all our sample cities, each
aiming to hit a certain nominal increase in tree cover. Thus, for instance, the
5% increase planting scenario aimed to increase tree cover in each census
block by 5%. If this nominal increase exceeded the Ambitious Scenario for a
census block, then tree cover for that census blockwas held at theAmbitious
Scenario tree cover amount instead.We constructed planting scenarioswith
increases of 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, and Ambitious (i.e.,
all census blocks set at the maximum possible reforestation amount, given
our assumptions), respectively.

Note that an increase in tree canopy cover, as seen from directly
overhead above the tree canopy, necessarily decreases other land covers
since total land cover in a region must sum to 100%. To account for this in
our planting scenarios, we made the simplest possible assumption that

additional tree cover occurs randomly over other land covers in proportion
to their cover before planting. For instance, if in an impervious surface
category in a particular city, 25% of the area not already in tree cover was
impervious and 75% was in sparse vegetation, we assumed that any tree
canopy increases would occur 25% over impervious surfaces and 75% over
sparse vegetation, displacing these land cover types accordingly.

Finally, we calculated the number of new stems that would need to be
planted to achieve this increase in the tree canopy based on the average
canopy size of 19.6m2 stem−1 derived from Nowak and Greenfield81. Note
that planted trees grow their tree canopy over time,with some tree species in
mesic environments taking 3–5 years to reach 5m height and crown dia-
meter and more than 10 years to reach 10m height and crown diameter82.
Our tree planting scenarios assume spacing appropriate for adult trees, and
we are estimating benefits for the tree canopy associated with those
adult trees.

Estimating benefits
We focused in our analysis on themost important heat-related benefits that
trees provide, as identified in previousmanuscripts7,29,83, aswell as on carbon
sequestration46.

Values of average annual carbon sequestration per m2 of urban tree
canopywere taken fromNowak et al.84. They assembled data on tree growth
rates and carbon accumulation in tree biomass using information from 28
cities and 6 states to estimate average gross carbon sequestration per m2 of
tree canopy. They then considered average mortality rates and associated
releaseof stored carbon, estimating that therewas 0.226 kg Cannual average
net carbon sequestration per m2 of the canopy. We acknowledge that this
estimate does not include greenhouse gas emissions from tree planting and
management practices that result in greenhouse gas emissions,which canbe
significant, but we are not aware of national representative numbers that
would account for this effect. For comparison, Kendall and McPherson85

estimate that over the lifecycle of California-planted urban trees (note that
many urban trees are not planted but spontaneously regenerate), carbon
dioxide emissions from tree planting amount to a 20–50% reduction in
mean annual net carbon dioxide storage rates.

To estimate the likely reduction in summer air temperature that would
occur due to reforestation, we used a two-step regression approach, similar
to that of Zhang et al.86. Another recent paper in the Lancet by Lungman
et al.64 also uses a two-step approach, estimating as we do the effect of trees
on LST, then the effect of LST on air temperature. This two-step regression
approach allows us to set up two regressions that each relate observed
information to observed values of predictor variables, allowing us greater
interpretability for each regression and greater flexibility in functional form
than if we tried to conduct a one-stage regression. Note also that the
observed data for LST (derived from satellite imagery and available for all
census blocks in our study area) and air temperature (measured at a smaller
number of air temperature sensors) are at different spatial and temporal
scales. By conducting two separate regressions, we avoid the loss of infor-
mation that would occur from combining these two datasets.

In ourfirst step,we statistically related impervious cover andurban tree
cover to LSTat the census block level.Urbanized areasweredivided into two
climatic groups,mesic and xeric, based on biomes (seeMcDonald et al.29 for
details). For each climatic group, a linear regression was conducted using
PROC GLM in SAS, relating LST (the dependent variable) to both imper-
vious cover and urban tree cover. A fixed effect for urbanized areas was also
included. To avoid potential issues of spatial autocorrelation, we take a
sparse sample of 10,000 census blocks out of the 2.3million census blocks in
our sample area. The sparse sample represents 0.4% of the total number of
Census blocks and ensures that census blocks are, on average, quite far from
one another and are thusmore likely to be independent statistically in terms
of the dependent variable, LST (i.e., any errors in the estimation of LST in
one census block are likely to be spatially uncorrelated with errors in other
census blocks). Five observations were dropped due tomissing data. Results
from our regression are shown in Table 5. The R2 for xeric regions was 0.85,
while that for mesic regions was 0.76.
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In our second step, we statistically related air temperature information
with LST. The air temperature data came from the Global Historical Cli-
matologyNetwork87 for summer (JJA) average dailymean (seeMcDonald et
al.29 for details on data handling and processing). There were 423 air tem-
perature stations within our study area. A linear regression was conducted
using PROCGLM in SAS, relating air temperature (the dependent variable)
to LST. The fitted slope was allowed to vary by biome (i.e., biome is included
as a fixed effect in interaction with LST in the model). A fixed effect for
urbanized areas was also included. The number of air temperature sensors is
relatively small, they aremeasured independently bydifferentmachines, and
they are relatively far fromone another, sowe did not suspect therewould be
spatial autocorrelation in the dependent variable after accounting for LST.
Results from our regression are shown in Table 6. The R2 for this regression
was 0.49, lower than for our statistical model explaining LST, perhaps
reflecting the fact that there is a broad variety of factors that affect air
temperature beyond the local surface temperature88. Regardless, we can
propagate any uncertainty in estimating air temperature in our analysis,
which is an advantage of our statistical approach as opposed to more
mechanistic models.

Note that, therefore, the air temperature impacts of our tree planting
scenarios are a function ofmultiple factors: the amount of plantable area in a
Census block; the fraction of impervious surface before planting, which
determines how much impervious surface cover is reduced through
planting; the aridity and biome of an urbanized area, and an urbanized area
fixed effect. We summarize the effect of multiple factors in Supplementary
Table 1, which lists (by urbanized area and impervious surface category) the
realized change in tree cover and impervious surfaces for the 5% target
scenario, as well as the estimated change in LST and air temperature. Not
surprisingly, the greatest decline in impervious surface area with planting is
generally in impervious surface category 5 (defined as neighborhoods with
80–100% impervious surface cover). The only exception iswhen there is not
enough plantable area in impervious category 5 neighborhoods to approach
the 5% target for tree canopy increase. Conversely, the smallest decline in

impervious surface area with planting is generally in impervious surface
category 1 (defined as neighborhoods with 0–20% impervious surface
cover). For this reason, the greatest decline in LST occurs in impervious
category 5, while there are lesser declines in impervious category 1, with
similar patterns across climate variables (aridity and biome). Asheville, NC,
has the greatest average city-level decline in LST in impervious category 5
(0.49 °C). Patterns for air temperature declines are similarly generally
greater in impervious category 5 and less in impervious category 1, with
similar patterns across climate variables (aridity and biome). Bonita Spring,
FL, has the greatest decline in air temperature in category 5 (0.21 °C).
Finally, note that we estimate statistically the change in LST and air tem-
perature at the scale of a US census block, which includes a variety of land-
use types. Thismakes our estimates of temperature impact per unit increase
in tree cover different from (and lower in magnitude than) the estimates of
tree cooling efficiency of Zhao et al.89, who used Landsat-based estimates of
tree cover and LST to quantify change in LST for those pixels with tree
canopy.

This study focuses on tree canopy and its benefits relative to the race/
ethnicity of neighborhoods. Within our sample of cities, race/ethnicity is
correlated to the impervious surface category (Table 7), with most neigh-
borhoods in categories 4 and 5 being majority POC, while most neigh-
borhoods in categories 1 and 2 are majority non-Hispanic white. This
pattern is discussed extensively in McDonald et al.40, results from low-
incomehouseholds,which aremore likely to bePOC, beingmore frequently
located in US Census blocks with high population density and high
impervious surface cover in city centers rather than less dense suburbs.
Race/ethnicity is also correlated with aridity, as the arid southwest of theUS
has a larger fraction of POC in all impervious categories than does themesic
region of the country. This latter pattern is primarily caused by a higher
share of people ofHispanic origin, who are counted in the POCcategory for
our study. Since impervious surface category and aridity are two of the
explanatory variables used to predict the impact of tree canopy increases on
air temperature, the correlation of race/ethnicity with these variables
necessarily implies that the impact of tree canopy increases on air tem-
perature varies with respect to race/ethnicity.

To estimate the health impacts of an estimated change in air tem-
perature due to tree canopy expansion, we follow the methodology of
McDonald et al.29. For estimating avoided mortality, we use published
epidemiological studies that relate changes in air temperatures to changes in
mortality over time. Specifically, we use Bobb et al.90, who estimated the
heat–mortality relationship for 105 US cities. In this study, we use Bobb
et al.’s regional estimates of the heat-mortality response curve, listed in our
Supplementary Table 2. For morbidity estimation, our analysis is based on
Gronlund et al.91, who estimated heat-related hospitalizations as a function
of air temperature for a large population in the US and then scaled from the
Gronlund et al. numbers to estimate emergency department visits and
doctor’s office visits29.

We estimated avoided electricity consumption due to tree cover, fol-
lowing the methodology in McDonald et al.29. We base our analysis on
Santamouris et al.43, a literature review that collected empirical estimates of

Table 5 | Model parameters from regression relating LST to tree cover and impervious surface cover

Type III SS Mean SS F value P Estimate SE

MESIC. Tree cover (fraction) 1443 1443 310 <0.001 −2.88 0.16

MESIC. Impervious surface cover (fraction) 15,684 15,684 3367 <0.001 9.06 0.16

MESIC. NAME (N = 86) 68,869 810 174 <0.001 Multiple

ARID. Tree cover (fraction) 1031 1031 212 <0.001 −8.06 0.55

ARID. Impervious surface cover (fraction) 327 327 67 <0.001 2.78 0.34

ARID. NAME (N = 14) 35,906 2762 567 <0.001 Multiple

Separate regression analyseswere undertaken formesic and arid cities. A fixed effect for urbanized areas (NAME)was included. Shown is first the regression for mesic cities (N = 8498with complete data),
followed by the regression results for arid cities (N = 1497 with complete data).

Table 6 | Model parameters from regression relating air
temperature to LST

Biomes Estimate SE

Temperate broadleaf and mixed forests 0.33 0.030

Temperate coniferous forests 0.35 0.030

Tropical and subtropical grasslands, savannas, and shrublands 0.40 0.033

Temperate grasslands, savannas, and shrublands 0.36 0.028

Flooded grasslands and savannas 0.46 0.034

Mediterranean forests, Wwoodlands, and scrub 0.25 0.026

Deserts and xeric shrublands 0.35 0.023

Regression slopes were allowed to vary by the biome in which an urbanized area is located. The
overall regression also included an intercept term and was highly significant (F = 57.8, P < 0.001).
Shown are the regression results for census blocks with air sensors (N = 423).
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increases in electricity use during periods of high air temperature.We subset
the results in Table 1 of their paper to just look at US studies, which gave a
rangeof 2.9–8.5% increase in electricity consumptionper 1 °C increase in air
temperature.We assume that the shift in summer daily mean temperatures
we modeled would only increase electricity consumption for space cooling
during summer months (One quarter of the year). From this assumption,
we calculated an estimated annual increase in electricity consumption,
assuming no increase in other seasons. We then multiplied the percent
increase in electricity consumption by city-level data on residential elec-
tricity use. To estimate avoided GHG emissions due to avoided electricity
consumption, wemultiplied avoided electricity consumption by the average
carbon intensity of US electricity generation, taken from EPA data.

Finally, when calculating statistics at the level of urbanized areas or
nationally, we used population-weighted statistics to give greater weight to
Census Blocks with greater population.

Valuation and extrapolation
Our valuation methodology follows McDonald et al.29 and is extensively
described in the supplementary methods section of that paper. The costs of
tree planting andmaintenance costs (annualized)were assessed for a sample
of US cities7,23, and we use those values hereafter adjusting for inflation.

To briefly summarize, for avoided mortality, we use a value of a
statistical life approach (VSL), adjusted for remaining life years(e.g.
refs. 92,93), using a range in the US of $5.4–13.4M (2015$)94. Most heat-
related deaths occur in people 55 years or older92,95, and so we apply
Murphy and Topel’s93 life cycle shape for the value of a life-year for 11
age classes to calculate an overall average, age-weighted VSL, accounting
for the age distribution of mortality from heat-related events, of $5.7M
(2015$, range: $3.3–8.2M).

For morbidity, we use a cost-of-illness (COI) approach to assess the
economic burden associated with heat-related illnesses (HRI) that were
avoided due to tree cover. Economic calculations were done separately for
avoided emergency department (ED) visits96, avoided hospitalizations97, and
outpatient visits98.We also estimated lostwork productivity as the product of
total work loss days (from HRI-related hospitalizations, ED visits, and out-
patient visits) and the average US daily earnings rate (see McDonald et al.29

for details).
For electricity consumption, we used the results of Santamouris and

colleagues43, which for US studies give a range of 2.9–8.5% increase in
electricity consumption per 1 °C increase in air temperature. Data on
average household residential electricity consumption and average cost per
KWh, by electric utility were taken from the US Energy Information
Administration (EIA, 2016) formEIA-861. SeeMcDonald et al.29 for details.
While our methodology is an accurate estimate of the average relationship
between changes in air temperature and electricity consumption, we
acknowledge that for particular buildings or neighborhoods the relationship
might have a greater or lesser slope.Note thatwe are accounting for different
regional climates by the different regional regressions used to model LST
and air temperature, as well as the information on local electricity con-
sumption and cost by the electric utility.

For carbon sequestration and avoided GHG emissions due to
avoided electricity consumption, we used the new EPA proposed
Social Cost of Carbon (SCC) for 2020 of USD 190 expressed at 2020
prices, assuming a 2% discount rate99. This estimate follows that of
recent science by Rennert et al.100. The SCCmeasures the total (global)
estimated economic damages, expressed in monetary terms, that
result from one additional ton of carbon dioxide in the atmosphere.
These damages from increased atmospheric CO2 concentrations are
separate from and fully additional to, the local damages from health
and electricity use impacts that increases in urban tree canopy avoid
via their local cooling effects. Where necessary, all economic costs and
benefits presented in this paper were standardized to USD in 2022,
using the US Bureau of Labor Statistics Consumer Price Index101.

Caveats and limitations
In this section, we discuss conceptually some caveats and limitations of our
analysis. We do not repeat the technical details of our methodology pre-
sented above. Rather, we discuss how these kinds of limitations, common
and in some cases currently unavoidable in this kind of research, might
affect our results. We also discuss how future research projects might
overcome some of these limitations and improve the accuracy of our
estimates.

As in many geospatial analyses of the linkage between land cover,
temperature, and health, we had to deal with spatial and temporal differ-
ences in the underlying data. For instance, our tree cover data is high-
resolution (2m) binary data, while the best available impervious surface
cover data for our sample of 5723 municipalities is at 30m resolution but
provides continuous estimates of the percent impervious. While the dif-
ference in spatial resolution between the twodatasetswill affect the accuracy
of our results, it was unavoidable given the best available input datasets. One
of the reasons we chose the census block as our unit of analysis, rather than
the pixel level, was so that information frommany pixels could be averaged,
reducing theoverall classification error rate. Similarly, the spatial boundaries
for which 2016 forest cover was classified correspond with the 2010 US
Census Bureau definition, which was altered for the 2020 US Census. The
shifting of spatial boundaries is relatively minor, occurring generally at the
edge of urbanized areas where population density is relatively low (Sup-
plementary Fig. 1). We chose to minimize temporal differences, using our
2016 forest cover data and the 2020 census data ondemography, rather than
the alternative of using 2010 census data for demography.

Our general approach when dealing with spatial or temporal differ-
ences in input datasets is to avoid inconsistencies where possible but to
choose methodologies that minimize their impact when not possible. The
empirical regressions we used to link tree cover and impervious surface
cover to land surface temperature (LST), as well as LST to air temperature,
are one example of a methodology that corrects inconsistencies in input
datasets. The regression parameters are chosen to maximally explain the
predicted variables, and so linear transformations of explanatory variables
alter the parameter but not the predicted variable. For instance, suppose
with a high-resolution sensor, the impervious cover was measured at X%,

Table 7 | Race/ethnicity composition of our sample, relative to impervious surface and aridity

Impervious surface
category

Arid population, millions
(%) White

Arid population, millions
(%) POC

Mesic population, millions
(%) White

Mesic population, millions
(%) POC

Total population,
millions

1 (0–20%) 0.7 (54%) 0.6 (46%) 15.6 (79%) 4.1 (21%) 21.0

2 (20–40%) 2.0 (54%) 1.6 (46%) 25.9 (66%) 13.4 (34%) 42.9

3 (40–60%) 4.5 (36%) 8.1 (64%) 22.9 (52%) 20.7 (48%) 56.2

4 (60–80%) 3.0 (22%) 10.8 (78%) 10.6 (38%) 17.2 (62%) 41.8

5 (80–100%) 0.8 (22%) 2.7 (78%) 5.2 (36%) 9.2 (64%) 17.8

Overall categories (32%) (68%) (55%) (45%)

Population totals, inmillions, are shown.Percentageof thepopulationwithin eacharidity category andeach impervious surfacecategory is shown inparentheses. For instance, in arid urbanizedareas, there
are 2.7 million POC in impervious surface category 5, 78% of the total population of arid cities in this impervious surface category.
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but with the 30m resolution data we used the impervious surface cover was
measured as some fraction of this, fX%. If a regression relating impervious
surface cover X to LST estimated a slope β, then a regression relating fX to
LST would estimate a slope β/f, but the predicted values of LST would not
change. If the relationship between impervious surface cover measured at
different resolutions is not a linear function, the effect on the predicted
values of LST is more complex to assess. In general, however, empirically
relating measurable variables to one another helps account for small dif-
ferences in spatial and temporal scale.

As with any analysis of the potential for increasing urban tree canopy
cover, ours had to define decision criteria for what is plantable. There is
some subjectivity in defining the maximum plantable area. In theory, an
urban area could install green roofs on many buildings, depave substantial
areas of impervious surfaces, and otherwise take expensive but feasible steps
to increase urban tree canopy cover and vegetative area. What is easier to
objectively define is how a certain percentage point increase in tree canopy
coverwill affect temperatures. In our study,we consider a range of tree cover
increases (5%, 10%, 15%, etc.), plus an “Ambitious” scenario where tree
cover is maximized subject to two constraints, discussed below. We
acknowledge that other studies could define a more or less ambitious sce-
nario of tree planting by making different assumptions about constraints.

Our first constraint, as in other studies7,23, is to consider the fraction
impervious as unplantable. Note that this constraint is implemented at the
census block level, not the pixel level. We acknowledge that there are very
detailed studies, such as Treglia et al.52. that use fine spatial resolution data at
the pixel level that consider how new trees might overhang impervious
surfaces in pixels adjacent to where the stem was planted. Note, however,
that at the US Census Block scale, it is rare that the amount of tree cover
exceeds the previous fraction (i.e., 1—impervious cover). Supplementary
Fig. 2 shows the relationship between tree cover and the impervious fraction
for the New York City urbanized area. In only 5.5% of the census blocks,
does the tree cover exceed the previous fraction (i.e., 1—impervious), and in
those cases where it does, tree cover exceeds the previous by a median of
3.7%p. For almost all census blocks, tree cover does not substantially exceed
the previous fraction.

Our second constraint tries to account formany other factors that vary
among urban areas, such as differences in aridity, regulations, urban form,
and landowner preferences. We acknowledge that a detailed study in one
municipality52 may have spatial information onmany of these factors. Such
an approach becomes infeasible, however when dealing with thousands of
municipalities, as is the case in this study. Following other published
studies7,23, we set a target at the 90th percentile of tree cover observed in
neighborhoods of similar impervious surface cover. Our way of setting an
Ambitious target using the observed distribution within an impervious
category within an urban area implicitly accounts for factors that vary
amongurbanareas, suchas climate, urban form, and regulations. It is also an
ambitious target implying, for example, that the Charlotte urbanized area
(mesic climate) could raise population-weighted tree cover from 50% to
67%percent, while the Phoenix urbanized area (arid climate) could go from
10% to 22%. By definition, however, there are 10% of neighborhoods that
exceed our 90th percentile target, and we acknowledge our “Ambitious
Scenario” is not the maximum imaginable.

One important innovation inourmethodology is to calculate tree cover
and its benefits at the local (census block) level when possible. When we
present averages or use them in calculations, we use the population-
weighted average rather than the simple average to better represent the tree
cover the typical person experiences. To seewhy the type of averagematters,
consider our Ambitious Scenario, where the simple average increase in the
New York City urbanized area was from 26% to 44%, while the population-
weighted average increase was from 22% to 35%. Focusing on the highest
impervious surface category used in setting our targets (80–100% imper-
vious), where 7.4 million people lived in the New York urbanized area in
2020, the population-weighted average increase in tree cover under the
Ambitious Scenario was from 6.8% to 12%. In other words, a dispropor-
tionate part of the tree cover increase in the urbanized area would occur in

relatively sparsely populated census blocks, while dense census blocks in
Manhattan would have relatively small increases. Contrast our methodol-
ogywith the assumptionmade in some studies that a citymight hit a certain
tree cover target (e.g., 30%) at a simple average level, essentially assuming all
neighborhoods hit that goal and then estimating health benefits using that
simple average change calculation. Such an approach would potentially
overstate the tree cover increases that arepossible inmoredensely populated
neighborhoods, which in the US are often predominately people of color40.

Finally, another challenge for any study of many municipalities is
deciding when to use a national average, perhaps relatively precisely esti-
mated, versus when to account for regional variation. Our approach has
been to use regional estimates where they can be consistently estimated for
our 5723 municipalities and to otherwise use the best available national
estimates. For instance, our empirical regressions relating tree cover and
impervious cover to LST (Supplementary Fig. 3) and LST to air temperature
(Supplementary Fig. 4) allow for regional variation in the parameters of the
model. The amount of regional variation allowed (i.e., the regional
boundaries) depended on the patterns in our dataset, as described above in
the subsection “Estimating benefits” section. Our estimate of mortality
impacts comes from Bobb et al.90, who also allowed their regression para-
meters to vary by region (Supplementary Table 2). Readers should note,
however, that there are many other studies of heat/mortality relationships,
using different indices of thermal comfort and showing various response
curves102–104.

Sometimes, however, national averages were the best available. For
instance, we used data on average planting and maintenance costs from a
sample ofUS cities7,23. Thesewere estimates formunicipal staff planting and
maintenance, and we acknowledge other groups that use volunteer labor,
such as non-profit organizations might have lower costs. While this dataset
of costs is sufficient to calculate a national average, we do not have infor-
mation for each of the 5723 municipalities in our database, and we
acknowledge that individual municipalities might have quite different
planting costs. Similarly, we use the US national average for canopy size
from the US Forest Service but do not have access to information on the
average canopy size for each municipality. Undoubtedly, tree canopy size
varies by municipality due to the species planted, planting age, and climate,
among other factors. In general, the use of accurate national averagesmeans
our national estimates are correct but we cannot map regional or local
variability in these factors. Future US national studies would benefit from
more spatially resolved data on planting costs and canopy size.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

Data availability
The datasets generated during the current study are available in the Data
Dryad repository, https://doi.org/10.5061/dryad.zgmsbcckf.

Code availability
The underlying code for this study is available in Zenodo and can be
accessed via the linked Data Dryad repository, https://doi.org/10.5061/
dryad.zgmsbcckf.
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